Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyperspectral Images

Abstract : Covariance matrix estimation is fundamental for anomaly detection, especially for the Reed and Xiaoli Yu (RX) detector. Anomaly detection is challenging in hyperspectral images because the data has a high correlation among dimensions, heavy tailed distributions and multiple clusters. This paper comparatively evaluates modern techniques of covariance matrix estimation based on the performance and volume the RX detector. To address the different challenges, experiments were designed to systematically examine the robustness and effectiveness of various estimation techniques. In the experiments, three factors were considered, namely, sample size, outlier size, and modification in the distribution of the sample. !
Type de document :
Article dans une revue
IEEE Journal of Selected Topics in Signal Processing, IEEE, 2015, pp.1-11. 〈10.1109/JSTSP.2015.2442213〉
Liste complète des métadonnées

Littérature citée [66 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01159878
Contributeur : Santiago Velasco-Forero <>
Soumis le : jeudi 4 juin 2015 - 09:11:10
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : mardi 25 avril 2017 - 01:44:08

Fichier

AD_JSTSP_2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Santiago Velasco-Forero, Marcus Chen, Alvina Goh, Sze Kim Pang. Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyperspectral Images. IEEE Journal of Selected Topics in Signal Processing, IEEE, 2015, pp.1-11. 〈10.1109/JSTSP.2015.2442213〉. 〈hal-01159878〉

Partager

Métriques

Consultations de la notice

272

Téléchargements de fichiers

586