K. Zengler and B. Palsson, A road map for the development of community systems (CoSy) biology, Nature Reviews Microbiology, vol.131, pp.366-372, 2012.
DOI : 10.1038/nrmicro2763

K. Brenner, L. You, and F. Arnold, Engineering microbial consortia: a new frontier in synthetic biology, Trends in Biotechnology, vol.26, issue.9, pp.483-489, 2008.
DOI : 10.1016/j.tibtech.2008.05.004

R. Kleerebezem and M. C. Van-loosdrecht, Mixed culture biotechnology for bioenergy production, Current Opinion in Biotechnology, vol.18, issue.3, pp.207-212, 2007.
DOI : 10.1016/j.copbio.2007.05.001

G. Muyzer and A. J. Stams, The ecology and biotechnology of sulphate-reducing bacteria, Nature Reviews Microbiology, vol.41
DOI : 10.1038/nrmicro1892

M. P. Bryant, L. L. Campbell, C. A. Reddy, and M. R. Crabill, Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria, Appl Environ Microbiol, vol.33, pp.1162-1169, 1977.

A. S. Traore, M. L. Fardeau, C. E. Hatchikian, L. Gall, J. Belaich et al., Energetics of Growth of a Defined Mixed Culture of Desulfovibrio vulgaris and Methanosarcina barkeri: Interspecies Hydrogen Transfer in Batch and Continuous Cultures, Appl Environ Microbiol, vol.46, pp.1152-1156, 1983.

C. B. Walker, The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris, Journal of Bacteriology, vol.191, issue.18, pp.5793-5801, 2009.
DOI : 10.1128/JB.00356-09

C. Collet, O. Gaudard, P. Péringer, and J. P. Schwitzguébel, Acetate production from lactose by Clostridium thermolacticum and hydrogen-scavenging microorganisms in continuous culture???Effect of hydrogen partial pressure, Journal of Biotechnology, vol.118, issue.3, pp.328-338, 2005.
DOI : 10.1016/j.jbiotec.2005.05.011

C. Collet, J. P. Schwitzguébel, and P. Péringer, Improvement of acetate production from lactose by growing Clostridium thermolacticum in mixed batch culture, Journal of Applied Microbiology, vol.109, issue.4, pp.824-831, 2003.
DOI : 10.1021/bp0001157

A. S. Traore, C. E. Hatchikian, J. P. Belaich, and J. Le-gall, Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth, J Bacteriol, vol.145, pp.191-199, 1981.

D. T. Jones and D. R. Woods, Acetone-butanol fermentation revisited, Microbiol Rev, vol.50, pp.484-524, 1986.

T. Lütke-eversloh and H. Bahl, Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production, Current Opinion in Biotechnology, vol.22, issue.5, pp.634-647, 2011.
DOI : 10.1016/j.copbio.2011.01.011

J. Nölling, Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum, Journal of Bacteriology, vol.183, issue.16, pp.4823-4838, 2001.
DOI : 10.1128/JB.183.16.4823-4838.2001

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.73, pp.10-10, 1038.
DOI : 10.1038/ncomms7283

URL : https://hal.archives-ouvertes.fr/hal-01427429

J. F. Heidelberg, The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, Nature Biotechnology, vol.10, issue.5, pp.554-559, 2004.
DOI : 10.1093/nar/29.1.41

H. Y. Holman, Real-time molecular monitoring of chemical environment in obligate anaerobes during oxygen adaptive response, Proceedings of the National Academy of Sciences, vol.106, issue.31, pp.12599-12604, 2009.
DOI : 10.1073/pnas.0902070106

A. H. Rickard, P. Gilbert, N. J. High, P. E. Kolenbrander, and P. S. Handley, Bacterial coaggregation: an integral process in the development of multi-species biofilms, Trends in Microbiology, vol.11, issue.2, pp.94-100, 2003.
DOI : 10.1016/S0966-842X(02)00034-3

H. Pan, X. He, R. Lux, J. Luan, and W. Shi, Killing of Escherichia coli by Myxococcus xanthus in Aqueous Environments Requires Exopolysaccharide-Dependent Physical Contact, Microbial Ecology, vol.178, issue.3
DOI : 10.1007/s00248-013-0252-x

G. P. Dubey and S. Ben-yehuda, Intercellular Nanotubes Mediate Bacterial Communication, Cell, vol.144, issue.4, pp.590-600, 2011.
DOI : 10.1016/j.cell.2011.01.015

URL : http://doi.org/10.1016/j.cell.2011.01.015

L. D. Mermelstein, N. E. Welker, G. N. Bennett, and E. Papoutsakis, Expression of Cloned Homologous Fermentative Genes in Clostridium Acetobutylicum ATCC 824, Bio/Technology, vol.120, issue.2, pp.190-195, 1992.
DOI : 10.1016/0300-9084(88)90093-4

S. Y. Lee, L. D. Mermelstein, G. N. Bennett, and E. Papoutsakis, Vector Construction, Transformation, and Gene Amplification in Clostridium acetobutylicum ATCC 824, Annals of the New York Academy of Sciences, vol.55, issue.1 Biochemical E, pp.39-51, 1992.
DOI : 10.1002/bit.260270518

L. D. Mermelstein and E. T. Papoutsakis, In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824, Appl Environ Microbiol, vol.59, pp.1077-1081, 1993.

R. D. Li, An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis, BMC Systems Biology, vol.5, issue.Suppl 1
DOI : 10.1128/JB.186.7.2006-2018.2004

G. Voordouw, Carbon Monoxide Cycling by Desulfovibrio vulgaris Hildenborough, Journal of Bacteriology, vol.184, issue.21, pp.5903-5911, 2002.
DOI : 10.1128/JB.184.21.5903-5911.2002

M. Desvaux, Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1745, issue.2, pp.223-253, 2005.
DOI : 10.1016/j.bbamcr.2005.04.006

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.73, pp.10-10, 2015.
DOI : 10.1038/ncomms7283

URL : https://hal.archives-ouvertes.fr/hal-01427429

R. Fronzes, P. J. Christie, and G. Waksman, The structural biology of type IV secretion systems, Nature Reviews Microbiology, vol.179, issue.10, pp.703-714, 2009.
DOI : 10.1038/nrmicro2218

N. R. Stanley, R. A. Britton, A. D. Grossman, and B. A. Lazazzera, Identification of Catabolite Repression as a Physiological Regulator of Biofilm Formation by Bacillus subtilis by Use of DNA Microarrays, Journal of Bacteriology, vol.185, issue.6, pp.1951-1957, 2003.
DOI : 10.1128/JB.185.6.1951-1957.2003

C. Beloin, Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression, Molecular Microbiology, vol.93, issue.3, pp.659-674, 2004.
DOI : 10.1046/j.1365-2958.2003.03865.x

B. L. Bassler and R. Losick, Bacterially Speaking, Cell, vol.125, issue.2, pp.237-246, 2006.
DOI : 10.1016/j.cell.2006.04.001

URL : http://doi.org/10.1016/j.cell.2006.04.001

E. Marsili, Shewanella secretes flavins that mediate extracellular electron transfer, Proceedings of the National Academy of Sciences, vol.105, issue.10
DOI : 10.1073/pnas.0710525105

L. M. Mashburn-warren and M. Whiteley, Special delivery: vesicle trafficking in prokaryotes, Molecular Microbiology, vol.124, issue.4, pp.839-846, 2006.
DOI : 10.1111/j.1574-6968.1998.tb13049.x

C. W. Mullineaux, Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria, The EMBO Journal, vol.196, issue.9, pp.1299-1308, 2008.
DOI : 10.1038/emboj.2008.66

K. Schara, Mechanisms for the formation of membranous nanostructures in cell-tocell communication, Cell Mol Biol Lett, vol.14, pp.636-656, 2009.

N. S. Malvankar and D. R. Lovley, Microbial nanowires for bioenergy applications, Current Opinion in Biotechnology, vol.27, pp.88-95, 2014.
DOI : 10.1016/j.copbio.2013.12.003

J. M. Henke and B. L. Bassler, Bacterial social engagements, Trends in Cell Biology, vol.14, issue.11, pp.648-656, 2004.
DOI : 10.1016/j.tcb.2004.09.012

L. Keller and M. G. Surette, Communication in bacteria: an ecological and evolutionary perspective, Nature Reviews Microbiology, vol.184, issue.4, pp.249-258, 2006.
DOI : 10.1038/nrmicro1383

A. Ducret, B. Fleuchot, P. Bergam, and T. Mignot, Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus, p.868, 2013.

E. Nudleman, D. Wall, and D. Kaiser, Cell-to-Cell Transfer of Bacterial Outer Membrane Lipoproteins, Science, vol.309, issue.5731, pp.125-127, 2005.
DOI : 10.1126/science.1112440

J. R. Sieber, H. M. Le, and M. J. Mcinerney, The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism, Environmental Microbiology, vol.401, issue.1, pp.177-188, 2014.
DOI : 10.1111/1462-2920.12269

Y. A. Gorby, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proceedings of the National Academy of Sciences, vol.103, issue.30, pp.11358-11363, 2006.
DOI : 10.1073/pnas.0604517103

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.73, pp.10-10, 2015.
DOI : 10.1038/ncomms7283

URL : https://hal.archives-ouvertes.fr/hal-01427429

G. Reguera, Extracellular electron transfer via microbial nanowires, Nature, vol.435, issue.7045, pp.1098-1101, 2005.
DOI : 10.1038/nature03661

Z. M. Summers, Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria, Science, vol.330, issue.6009, pp.1413-1415, 2010.
DOI : 10.1126/science.1196526

S. Pirbadian, Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components, Proceedings of the National Academy of Sciences, vol.111, issue.35, pp.12883-12888, 2014.
DOI : 10.1073/pnas.1410551111

T. Maeda, V. Sanchez-torres, and T. K. Wood, Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli, Applied Microbiology and Biotechnology, vol.73, issue.79, pp.879-890, 2007.
DOI : 10.1007/s00253-007-1217-0

A. Yoshida, T. Nishimura, H. Kawaguchi, M. Inui, and H. Yukawa, Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains, Applied Microbiology and Biotechnology, vol.71, issue.79, pp.67-72, 2006.
DOI : 10.1007/s00253-006-0456-9

T. Giudici-orticoni, A new sulfurtransferase from the hyperthermophilic bacterium
URL : https://hal.archives-ouvertes.fr/hal-00215962

. Aquifex-aeolicus, Being single is not so simple when temperature gets high, FEBS J, vol.274, pp.4572-4587, 2007.

O. Savichtcheva, Quantitative PCR Enumeration of Total/Toxic Planktothrix rubescens and Total Cyanobacteria in Preserved DNA Isolated from Lake Sediments, Applied and Environmental Microbiology, vol.77, issue.24, pp.8744-8753, 2011.
DOI : 10.1128/AEM.06106-11

URL : https://hal.archives-ouvertes.fr/hal-00840945

A. Fiévet, The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by ??54 and a Cognate Transcriptional Regulator, Journal of Bacteriology, vol.193, issue.13, pp.3207-3219, 2011.
DOI : 10.1128/JB.00044-11

M. Quéméneur, J. Hamelin, S. Benomar, M. T. Guidici-orticoni, E. Latrille et al., Changes in hydrogenase genetic diversity and proteomic patterns in mixed-culture dark fermentation of mono-, di- and tri-saccharides, International Journal of Hydrogen Energy, vol.36, issue.18, pp.11654-11665, 2011.
DOI : 10.1016/j.ijhydene.2011.06.010

K. S. Bender, Analysis of a Ferric Uptake Regulator (Fur) Mutant of Desulfovibrio vulgaris Hildenborough, Applied and Environmental Microbiology, vol.73, issue.17, pp.5389-5400, 2007.
DOI : 10.1128/AEM.00276-07

R. P. Haugland, Handbook-a Guidebook to Fluorescent Probes and Labelling Technologies, 2005.

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Auteur de correspondance) (2015) Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.6

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Auteur de correspondance) (2015) Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.6

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Auteur de correspondance) (2015) Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.6

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Auteur de correspondance) (2015) Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.6

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Auteur de correspondance) (2015) Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.6

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Auteur de correspondance) (2015) Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.6

S. Benomar, D. Ranava, M. L. Cárdenas, E. Trably, Y. Rafrafi et al., Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature Communications, vol.73, pp.10-10, 1038.
DOI : 10.1038/ncomms7283

URL : https://hal.archives-ouvertes.fr/hal-01427429