
HAL Id: hal-01158683
https://hal.science/hal-01158683

Submitted on 11 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transversal stability of the bouncing ball on a concave
surface

J.-y Chastaing, G Pillet, N Taberlet, J.-C Géminard

To cite this version:
J.-y Chastaing, G Pillet, N Taberlet, J.-C Géminard. Transversal stability of the bouncing ball on
a concave surface. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2015, 91,
pp.052918. �10.1103/PhysRevE.91.052918�. �hal-01158683�

https://hal.science/hal-01158683
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 91, 052918 (2015)

Transversal stability of the bouncing ball on a concave surface

J.-Y. Chastaing,1 G. Pillet,1 N. Taberlet,1,2 and J.-C. Géminard1
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A ball bouncing repeatedly on a vertically vibrating surface constitutes the famous “bouncing ball” problem, a
nonlinear system used in the 1980s, and still in use nowadays, to illustrate the route to chaos by period doubling.
In experiments, in order to avoid the ball escape that would be inevitable with a flat surface, a concave lens is
often used to limit the horizontal motion. However, we observe experimentally that the system is not stable. The
ball departs from the system axis and exhibits a pendular motion in the permanent regime. We propose theoretical
arguments to account for the decrease of the growth rate and of the asymptotic-size of the trajectory when the
frequency of the vibration is increased. The instability is very sensitive to the physics of the contacts, which
makes it a potentially interesting way to study the collisions rules, or to test the laws used in numerical studies
of granular matter.
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I. INTRODUCTION

Studies of vibrated grains are numerous in literature [1]. The
problem has attracted the attention of engineers and physicists
for both practical and fundamental reasons. In practice,
mechanical vibrations are likely to rearrange the grains and,
for instance, to lead to changes in the density of granular
assemblies [1–4], to convection [5], to grain separation [6,7],
to subharmonic instabilities [8,9], etc. The problem has also
attracted the attention of the physicists as the mechanical
vibrations can also be considered as a way to introduce
a “temperature” in an, otherwise, athermal system [10,11].
Looking for minimal systems they considered, in particular,
layers of grains covering partially a flat and horizontal
surface that is vibrated vertically. Such systems, with grains
consisting of spherical beads, were regarded as prototypes
of two-dimensional granular fluids that revealed nonstandard
velocity fluctuations [12] and phase transitions [13,14]. These
works were extended to elongated particles making the
systems resemble liquid crystals [15]. Asymmetric particles
can self-propel and the system becomes a prototype of active
matter [16]. The case of a single particle bouncing freely
upon a vibrating surface has also attracted much attention,
first as an example of nonlinear system exhibiting a transition
to chaos by period doubling [17,18]. Authors also considered
the statistical properties of the particle in the chaotic regime,
which can be viewed as a simplified one-dimensional gas [19]
or a dissipative system maintained in a permanent regime [20].

The experimental realization of the so-called “bouncing
ball” problem requires the use of a trick to impose the motion
of the ball along the vertical. Indeed, any misalignment of
the vibrating surface leads the ball to migrate in the, almost,
horizontal plane and, finally, to escape the system. The use of
a guiding vertical tube is a possibility [21], but it introduces
undesired friction with the vertical walls that is potentially
annoying. The usual trick is to use a concave surface instead
of a flat surface [17]. The expectation is that the slope repels
the bead toward the lowest point when the ball departs from
center. Even if the technique has been successfully used in
many experimental studies, the stability of the motion of the
ball along the vertical is not ensured. Apart from a numerical

study reporting an intermittent lateral motion due to asperities
of the surface in contact [22], the problem has not been tackled.
In the present article, we report experimental evidence that
the system is, in fact, unstable, and we propose a theoretical
approach to identify the underlying mechanisms.

II. EXPERIMENTAL SETUP AND PROTOCOL

The experimental setup (Fig. 1) consists of a parabolic
concave lens of radius of curvature R = 15.6 cm at the
center (external diameter 10 cm) driven into a sinusoidal
motion along the vertical by means of an electromagnetic
shaker (Brüel&Kjaer, Type V406 M4). A steel bead of radius
r = 0.5 cm is bouncing upon it. The powerful shaker makes
possible the use of a mobile part (lens and holder) of large
inertia, which avoids any significant receding of the bottom
surface due to the impact with the bead. The power amplifier
(Kepco, BOP50-4M) driving the shaker receives a sinusoidal
signal from an analog output of a data acquisition board
(National Instruments, PXIe 1073). In the present study,
the typical frequency f of the vibration ranges from 30 to
70 Hz, for a resulting peak acceleration never greater than
0.7 g, where g denotes the acceleration due to gravity. A
noncontact inductive sensor (Electrocorp, EMD1053, sensing
range 0–3 mm, resolution 1 μm) is used to measure the
vertical displacement z(t) of the lens, which is thus of
about a few tens of μm and never exceeds 500 μm. In
addition, a microphone (Sennheiser, MKH20 P48), plugged
into a soundcard (TASCAM, US 122MKII) connected to the
computer, is used to detect the bead-lens collisions from the
noise they produce. Finally, a video camera (jAi, CM080GE)
is used to acquire images of the bead from above and to
determine its position in the horizontal plane as a function of
time. The signals from the inductive sensor and microphone,
as well as the images from the camera, are recorded during
the whole experimental time and processed subsequently.
The acquisition rates, fs = 10 kHz for the inductive sensor
and the microphone and fi = 20 frames per second for the
camera, ensure a sufficient temporal resolution while keeping
a reasonable size of the data sets.
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FIG. 1. Sketch of the experimental setup.

For the sake of simplicity, the amplitude A and frequency
f of the vertical oscillation, z(t) = A sin(2πf t), are chosen
such that the bead is locked into the so-called mode 1:
the bead collides with the lens once per period 1/f . For a
given restitution coefficient e (� 0.81 in our experimental
conditions) this is possible only if the reduced acceleration
� ≡ A(2πf )2/g is large enough for the mode 1 to exist
(� > 1−e

1+e
π � 0.33) and small enough to avoid period dou-

bling (in practice, � < 1) [23].

III. EXPERIMENTAL OBSERVATIONS AND
FIRST ANALYSIS

Whereas a concave surface is usually used as a trick to
maintain the bead at the vertical of the vibrator axis, we
observe strikingly that, even if it indeed does not escape
from the system, the bead exhibits a significant and complex
horizontal motion. We report in Fig. 2 a typical trajectory:
the bead first moves aside and starts following an almost
elliptic trajectory whose main axis slowly rotates. With time,
the typical amplitude of the horizontal motion increases in
both directions until an almost circular trajectory is reached in
the steady state. This constitutes the main observation of the
present study.

Before tackling the instability mechanism, we comment on
the characteristic frequency, f0, associated with the horizontal
motion. First, f0 is almost constant during the growth of
the instability. Second, in the whole experimental range, we
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FIG. 2. (Color online) Typical trajectories of the bead in the
horizontal (X-Y) plane—early (left) and final (right) stages. f =
30 Hz, A = 4.110−2 cm, R = 15.6 cm, and r = 0.5 cm.

measured f0 = (1.10 ± 0.02) Hz, independent of the vibration
frequency f (∈ [30; 70] Hz) and amplitude A. This observation
can be understood using the following rough arguments: Let us
assume that the bead moves only in a vertical plane containing
the vertical axis of the shaker and consider the permanent
regime. Since the bead is locked in mode 1, the duration of
the free fall between two successive collisions is 1/f and
its vertical velocity at the collision Vz = −g/(2f ), where z

denotes the vertical coordinate. Supposing a Snell-Descartes
reflection of the bead at the impact, the change in its horizontal
velocity follows �Vx = 2( x

R
)Vz, where x denotes the distance

to the center in the horizontal plane and, thus, x
R

the local
slope the surface makes with the horizontal. Considering
the fact that the bead collides with the surface with the
frequency f , we write ẍ = f �Vx and, then, ẍ = − g

R
x,

where ˙ denotes the derivative with respect to time. Such
simple arguments lead to f0 = 1

2π

√
g/R, the frequency of

the pendulum of length R, thus independent of f and A.
Whereas the independence of f0 on A was not surprising
as none of the characteristics of the motion depends on A in
mode 1, the proposed arguments account for the independence
of f0 on f , which was not obvious. They lead to the theoretical
value f0 = 1.26 Hz, which is close to the experimental
one, but there is a measurable difference between these two
frequencies. Quantitative agreement was not expected as many
experimental features were neglected by limiting the motion
in a vertical plane, leaving out the spin of the bead around
its own axis and the velocity of the surface at the collision,
and making a strong assumption on the collision rule. But
more importantly, our rough arguments do not account for any
amplification mechanism that can explain the growth of an
instability and finer analysis is needed.

Seeking for clues to help modeling the system, we per-
formed a series of experimental tests. First, we checked by
tilting the axis of the shaker that the instability was not driven
by a misalignment of the vibration with the vertical. The only
consequence of the tilt is an elliptical trajectory with the major
axis oriented in the tilt direction. Second, we considered that a
possible source of instability could be a modulation, resulting
from the horizontal motion of the bead, of the time between two
successive collisions. Indeed, moving away from the axis, the
bead “sees” a higher surface and the free-fall time is reduced.
We checked that such modulation has no or little effect by
imposing, separately, slow (with frequencies of the order of f0)
variations (of about 10%) of the frequency f and of the ampli-
tude A of the vertical motion. We did not observe any signifi-
cant change in the behavior of the system. Third, we performed
experiments with beads of different sizes (r = 0.1 to 1 cm)
and made of different material (stainless steal, plastic, cork).
The instability is always observed, but we did not manage to
study separately the influence of the bead size and mass and of
the properties of the contact (restitution, friction). Finally, to
better characterize the growth of the instability, we measured
the distance to the center D(t) as function of time t (Fig. 3)
from which we estimated the growth rate σ and steady-state
radius of the trajectory Dmax [Fig. 4, σ is obtained by adjusting
the local maxima of D(t) in Fig. 3 to exp(σ t)]. The amplitude
A of vibration alters neither σ nor Dmax (not shown), as long
as the bead remains locked in mode 1. By contrast, the growth
rate σ and Dmax significantly decrease when f is increased.
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FIG. 3. (Color online) Typical behavior of the distance to the
center D(t). The initial, exponential growth of the instability with
the rate σ is observed and the late saturation toward D(∞) ≡ Dmax.
f = 30 Hz, A = 4.010−2 cm, R = 15.6 cm, and r = 0.5 cm.

IV. 2D MODEL

To account for the instability, and for the decrease of σ

and Dmax with f , the problem is considered in 2D, in a
vertical plane containing the axis of the shaker. The frame of
reference is attached to the vibrating surface and the vertical
axis is oriented downwards (Fig. 5). The spin of the bead in
the horizontal plane (with the angular velocity �, a signed
scalar) is taken into account and the collisions are accounted
for more precisely than previously. In the moving frame, in
addition to any external force f, the additional acceleration due
to the motion of the frame −mAω2 sin(ωt) i must be taken
into account (m denotes the mass of the bead and i the unit
vector along the vertical). The problem is considered in polar
coordinates ρ and θ (Fig. 5) and the characteristic frequency of
the pendulum ν ≡ √

g/(R − r) is introduced for convenience
(R − r is indeed the distance between the center of curvarture
of the lens and the center of mass of the bead). The bead
motion has two phases: the free fall between collisions and the
collisions.

The free fall is the easiest to account for since f = m g i
and �̇ = 0. In the radial component ρ̈ − ρ θ̇2 of the bead
acceleration, the second term can be neglected as ρ̈ is of the
order of g and ρ θ̇2 of the order of g (ν/f )2 �θ2. Indeed, the
characteristic frequency of the pendulum ν is much smaller
than the vibration frequency f and the angular amplitude
�θ of the oscillations is less or about unity. The dynamical
equation for ρ(t), which reduces to ρ̈ = g [1 − � sin(ωt)],
can be solved analytically. With n the index of the collision
and the assumption that the duration of the free fall is
1/f (i.e., tn+1 = tn + 1/f ), the boundary conditions reads
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FIG. 4. Left: Growth rate σ as a function of f ; right: Dmax as a
function of f (circles, average over ∼10 realizations; dashed lines,
fit ∝f −1). R = 15.6 cm and r = 0.5 cm.

FIG. 5. Definition of the variables ρ, θ , and � in the model.

ρ(tn) = R − r and ρ(tn + 1/f ) = R − r . From now on, a
− sign is used to indicate a quantity prior to the collision
and a + sign to indicate a quantity after the collision. Note that
the solution for the free fall imposes a first relation between
ρ̇+

n ≡ ρ̇(tn) and ρ̇−
n+1 ≡ ρ̇(tn + 1/f ). In addition, at collision

n, provided that the bead impinges with the normal velocity
ρ̇−

n and takes off with the normal velocity ρ̇+
n , the collision law

reads

ρ̇+
n = −eρ̇−

n , (1)

where e is the restitution coefficient. With the additional
assumption that the radial motion is periodic, the collision time
tn obeys the classical relation cos(2πf tn) = 1−e

1+e
π
�

. Then, the
dynamical equation in the radial direction links θ (t) and ρ(t)
and, in the limit f 	 ν,

θ̇−
n+1 =

[
1 − 1

1 + e

(
ν

f

)2]
θ̇+
n −

(
ν

f

)
θ+
n . (2)

The collision is more difficult to account for, and additional
assumptions concerning the collision law are needed. At
contact, the bead is subjected to the contact force, which is
decomposed in its normal (radial) N and its tangential T

components. First, an estimate of N is obtained by introducing
the duration of the collision τ and writing, for collision n,
ρ̈ = ρ̇+

n −ρ̇−
n

τ
, and, then, N � m ρ̈ (in the limit τ → 0, the

acceleration due to gravity is negligible during the collision).
The use of Eq. (1) leads to N = −m (1 + e) ρ̇−

n

τ
. The dynamics

of the bead at the collision is also governed by two additional
equations: The equation governing the orthoradial velocity,

m (R − r) θ̈ = T − m g [1 − � sin(2πf t)] sin(θ ), (3)

and the dynamical equation coupling the torque r T and the
angular momentum J�,

J �̇ = r T , (4)

where J = 2
5 m r2 for a bead. Equations (3) and (4) both

involve the tangential component of the contact force T and
additional assumptions are needed to go farther. Since the bead
is initially at the center of the lens, bouncing mostly vertically
with no spin, the tangential component T is likely negligible
compared to the normal one N . Consequently, it is reasonable
to consider that the contact point, I , is not sliding and that
its velocity vI = r � + (R − r) θ̇ is initially governed by a
collision rule similar to Eq. (1):

vI
+
n = e′vI

−
n . (5)

Thus, a second restitution coefficient, e′, is introduced here,
which potentially differs from e [24]. Equations (3), (4), and (5)
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lead to

�+
n = 2 + 5e′

7
�−

n + 5(1 − e′)
7

R − r

r
θ̇−
n , (6)

θ̇+
n = 5 + 2e′

7
θ̇−
n + 2(1 − e′)

7

r

r − R
�−

n . (7)

The collision is thus accounted for by Eqs. (1), (6), and (7),
which give the value of dynamical quantities after the collision,
ρ̇+

n , �+
n , and θ̇+

n , as functions of their values prior to the
collision, ρ̇−

n , �−
n , and θ̇−

n .
From now on, successive collisions are considered. Equa-

tion (2), θ−
n+1 = θ+

n + θ̇+
n /f , and �−

n+1 = �+
n account for

the variations in θ , θ̇ , and � during the free fall between
collisions n and n + 1. Then, using Eqs. (1), (6), and (7), and
defining ε ≡ r/(R − r), a recurrence relation for the vector
Xn = (ε�+

n ,θ̇+
n ,θ+

n ) is obtained in the form Xn+1 = MXn,
where

M =

⎡
⎢⎢⎣

(2+5e′)
7

5(1−e′)
7

[
1 − ν2

(1+e)f 2

] − 5(1−e′)
7

ν
f

2(1−e′)
7

(5+2e′)
7

[
1 − ν2

(1+e)f 2

] − (5+2e′)
7

ν
f

0 ν
f

1

⎤
⎥⎥⎦. (8)

From the eigenvalues of M, an oscillation at the frequency,

f0 = 1

2π

√
5

7
ν + O

(
ν

f

)
, (9)

can grow with the rate

σ = 5e − 2e′ − 7ee′

14(1 + e)(1 − e′)
ν2

f
+ O

(
ν2

f 2

)
, (10)

where, we recall, ν ≡ √
g/(R − r). From the experimental

parameters, Eq. (9) leads to f0 = (1.095 ± 0.005) Hz in
excellent agreement with the experimental value. In addition,
σ is predicted to decrease for increasing f as observed
experimentally (Fig. 4). The fit to the experimental data leads
to the reasonable estimate e′ ≈ 0.45 [24].

The model predicts an unlimited exponential growth of
the amplitude of the pendular motion [Eq. (10)] and thus
of the particle energy as result of the successive collisions
with the massive substrate. The phenomenon reminds of the
so-called Fermi acceleration [25]. Such divergence of the
energy is usually impeded by dissipation (for the classical
bouncing ball, with one degree of freedom, by a restitution
coefficient less than unity) [26,27]. One can, however, suggest
that, in our experimental configuration, the growth of the
instability is likely limited by a change in the collision rule.
Indeed, the bead can slide during the collision when it departs
significantly from center. This suggestion is supported by

the observation that, qualitatively, beads exhibiting a larger
friction experience a motion of larger amplitude. Indeed, for
large value of θ , |T/N | can overcome the friction coefficient μ
and the bead starts sliding. From the dynamics of the bead, one
can estimate T/N . From Eq. (1), N = −m (1 + e) ρ̇−

n

τ
. From

Eq. (5), T = 2
7τ

1−e′
e′ m [r �+

n + (R − r) θ̇+
n ]. Considering a

periodic solution for θ (t) at the frequency f0, one obtains
that the onset of sliding is reached for the amplitude:

Dmax � 49π

20

(1 + e) e′

1 − e′

(
f0

f

)
μR. (11)

Even if the agreement with the experiments is questionable,
in particular the dependency of Dmax on f , the quantitative
comparison with the data reported in Fig. 4 leads to μ ≈ 0.3,
which is also a reasonable value.

V. DISCUSSION AND CONCLUSION

The agreement with the experiments is only qualitative
probably because results of a two-dimensional (2D) model
are compared with experimental results of a three-dimensional
(3D) experiment. We attempted to perform the experiment in
2D, by confining the bead between two vertical walls. The
experiments are delicate, and probably because of excessive
friction with the lateral walls, we did not observe any
significant in-plane motion of the bead. From the theoretical
point of view, a 3D version of the model is probably
accessible, but an excellent agreement with the experiments
would require including a better description of the collision,
which is still a debated problem nowadays [24,28]. Due to
the sensitivity of the instability to the contact law, it might
be interesting to simulate the problem numerically to test the
laws commonly used in codes based on the discrete element
method (DEM) [29,30].

In conclusion, the dynamics of a bead bouncing upon a
curved, vertically vibrated surface reveals an unexpected and
intriguing instability. Locked in the first periodic mode, the
bead experiences a pendular motion whose typical frequency
f0 depends neither on the amplitude nor on the frequency of
the surface vibration, but only on the distance R − r between
the center of mass of the bead and the center of curvature
of the surface. We reported the first experimental evidence
of the phenomenon and proposed a theoretical approach that
reveals the underlying mechanisms. The instability grows due
to the coupling between the pendular motion and the spin
of the bead around an horizontal axis, which is insured by a
nonsliding contact at the collision. Strikingly, the growth rate
decreases when the frequency of the vibration is increased.
The growth of the instability is limited by the sliding at the
contact during the collision, thus by friction.
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