N. Lane and W. Martin, The Origin of Membrane Bioenergetics, Cell, vol.151, issue.7, pp.1406-1422, 2012.
DOI : 10.1016/j.cell.2012.11.050

J. Tyson, Biochemical Oscillations, pp.230-60, 2002.
DOI : 10.1007/978-0-387-22459-6_9

R. Deberardinis, J. Lum, G. Hatzivassiliou, and C. Thompson, The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation, Cell Metabolism, vol.7, issue.1, pp.11-20, 2008.
DOI : 10.1016/j.cmet.2007.10.002

K. Alfarouk, D. Verduzco, C. Rauch, A. Muddathir, H. Adil et al., Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question, Oncoscience, vol.1, issue.12, pp.777-802, 2014.
DOI : 10.18632/oncoscience.109

A. Uzman, Molecular Cell Biology, Sixth Edition, Biochemistry and Molecular Biology Education, vol.38, issue.1, pp.60-61, 2010.
DOI : 10.1002/bmb.20373

I. Fabregat, E. Revilla, and A. Machado, The NADPH consumption regulates the NADPH-producing pathways (pentose phosphate cycle and malic enzyme) in rat adipocytes, Molecular and Cellular Biochemistry, vol.74, issue.1, pp.77-81, 1987.
DOI : 10.1007/BF00221914

S. Diaz-moralli, M. Tarrado-castellarnau, A. Miranda, and M. Cascante, Targeting cell cycle regulation in cancer therapy, Pharmacology & Therapeutics, vol.138, issue.2, pp.255-71, 2013.
DOI : 10.1016/j.pharmthera.2013.01.011

E. Noor, E. Eden, R. Milo, and U. Alon, Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy, Molecular Cell, vol.39, issue.5, pp.809-829, 2010.
DOI : 10.1016/j.molcel.2010.08.031

A. Bar-even, A. Flamholz, E. Noor, and M. R. , Rethinking glycolysis: on the biochemical logic of metabolic pathways, Nature Chemical Biology, vol.9, issue.6, pp.509-526, 2012.
DOI : 10.1002/tcr.1013

D. Fell, Evolution of Central Carbon Metabolism, Molecular Cell, vol.39, issue.5, pp.663-667, 2010.
DOI : 10.1016/j.molcel.2010.08.034

J. Calderon-montano, E. Burgos-moron, C. Perez-guerrero, J. Salvador, A. Robles et al., Role of the Intracellular pH in the Metabolic Switch between Oxidative Phosphorylation and Aerobic Glycolysis -Relevance to Cancer, WebmedCentral CANCER, vol.2, issue.3, p.1716, 2011.

S. Harguindey, J. Arranz, P. Orozco, J. Rauch, C. Fais et al., Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs ??? an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research, Journal of Translational Medicine, vol.11, issue.1, p.282, 2013.
DOI : 10.1038/459508a

M. Marcussen, P. Larsen, M. Anatomy, and T. Panum, Cell cycle-dependent regulation of cellular ATP concentration, and depolymerization of the interphase microtubular network induced by elevated cellular ATP concentration in whole fibroblasts, Cell Motility and the Cytoskeleton, vol.7, issue.2, pp.94-103, 1996.
DOI : 10.1002/(SICI)1097-0169(1996)35:2<94::AID-CM2>3.0.CO;2-I

F. Yu, R. Dai, S. Goh, L. Zheng, and Y. Luo, Logic of a mammalian metabolic cycle: An oscillated NAD+/NADH redox signaling regulates coordinated histone expression and S-phase progression, Cell Cycle, vol.8, issue.5, pp.773-782, 2009.
DOI : 10.4161/cc.8.5.7880

O. Warburg, On the Origin of Cancer Cells, Science, vol.123, issue.3191, pp.309-323, 1956.
DOI : 10.1126/science.123.3191.309

L. Demetrius, J. Coy, and J. Tuszynski, Cancer proliferation and therapy: the Warburg effect and quantum metabolism, Theoretical Biology and Medical Modelling, vol.7, issue.1, pp.2-7, 2010.
DOI : 10.1186/1742-4682-7-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819045

P. Davies, L. Demetriusl, and J. Tuszynski, Cancer as a dynamical phase transition, Theoretical Biology and Medical Modelling, vol.8, issue.1, pp.8-30, 2011.
DOI : 10.1088/1478-3975/8/1/015017

URL : http://doi.org/10.1186/1742-4682-8-30

E. Rietman, D. Friesen, P. Hahnfeldt, R. Gatenby, L. Hlatky et al., An integrated multidisciplinary model describing initiation of cancer and the Warburg hypothesis, Theoretical Biology and Medical Modelling, vol.10, issue.1, p.39, 2013.
DOI : 10.1007/s10863-012-9417-4

C. Burhans and N. Heintz, The cell cycle is a redox cycle: Linking phase-specific targets to cell fate, Free Radical Biology and Medicine, vol.47, issue.9, pp.1282-93, 2009.
DOI : 10.1016/j.freeradbiomed.2009.05.026

J. Chiu and I. Dawes, Redox control of cell proliferation, Trends in Cell Biology, vol.22, issue.11, pp.592-601, 2012.
DOI : 10.1016/j.tcb.2012.08.002

S. Menon and P. Goswami, A redox cycle within the cell cycle: ring in the old with the new, Oncogene, vol.279, issue.8, pp.1101-1110, 2007.
DOI : 10.1038/sj.onc.1209895

E. Sarsour and M. Kumar, Redox Control of the Cell Cycle in Health and Disease, Antioxidants & Redox Signaling, vol.11, issue.12, pp.2985-3011, 2009.
DOI : 10.1089/ars.2009.2513

T. Jenuwein and C. Allis, Translating the Histone Code, Science, vol.293, issue.5532, pp.1074-80, 2001.
DOI : 10.1126/science.1063127

A. Morinobu, Y. Kanno, O. Shea, and J. , Discrete Roles for Histone Acetylation in Human T Helper 1 Cell-specific Gene Expression, Journal of Biological Chemistry, vol.279, issue.39, pp.40640-40646, 2004.
DOI : 10.1074/jbc.M407576200

M. Choudhury, P. Park, D. Jackson, and S. Shukla, Evidence for the role of oxidative stress in the acetylation of histone H3??by ethanol in rat hepatocytes, Alcohol, vol.44, issue.6, pp.531-571, 2010.
DOI : 10.1016/j.alcohol.2010.06.003

C. Smith, A shifting paradigm: histone deacetylases and transcriptional activation, BioEssays, vol.23, issue.1, pp.15-24, 2008.
DOI : 10.1002/bies.20687

I. Fabregat, J. Vitorica, J. Satrustegui, and A. Machado, The pentose phosphate cycle is regulated by NADPHNADP ratio in rat liver, Archives of Biochemistry and Biophysics, vol.236, issue.1, pp.110-118, 1985.
DOI : 10.1016/0003-9861(85)90610-1

I. Fabregat, E. Revilla, and A. Machado, Short-term control of the pentose phosphate cycle by insulin could be modulated by the NADPHNADP ratio in rat adipocytes and hepatocytes, Biochemical and Biophysical Research Communications, vol.146, issue.2, pp.920-925, 1987.
DOI : 10.1016/0006-291X(87)90618-8

E. Revilla, I. Fabregat, S. María, C. Machado, and A. , The NADPH-producing pathways (pentose phosphate and malic enzyme) are regulated by the NADPH consumption in rat mammary gland, Biochem Int, vol.14, pp.957-62, 1987.

I. Vanamala, S. Radhakrishnan, L. Reddivari, V. Bhat, and A. Ptitsyn, Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways-A proteomic approach, Proteome Science, vol.9, issue.1, p.49, 2011.
DOI : 10.1021/ac60214a047

L. Eggleston and H. Krebs, Regulation of the pentose phosphate cycle, Biochemical Journal, vol.138, issue.3, pp.425-460, 1974.
DOI : 10.1042/bj1380425

J. Monod, J. Wyman, and J. Changeux, On the nature of allosteric transitions: A plausible model, Journal of Molecular Biology, vol.12, issue.1, pp.88-118, 1965.
DOI : 10.1016/S0022-2836(65)80285-6

C. Han, T. Umemoto, M. Omer, D. Hartigh, L. Chiba et al., NADPH Oxidase-derived Reactive Oxygen Species Increases Expression of Monocyte Chemotactic Factor Genes in Cultured Adipocytes, Journal of Biological Chemistry, vol.287, issue.13, pp.10379-93, 2012.
DOI : 10.1074/jbc.M111.304998

B. Winkler, N. Desantis, and F. Solomon, Multiple NADPH-producing pathways control glutathione (GSH) content in retina, Experimental Eye Research, vol.43, issue.5, pp.829-876, 1986.
DOI : 10.1016/S0014-4835(86)80013-6

H. Mcbride, M. Neuspiel, and S. Wasiak, Mitochondria: More Than Just a Powerhouse, Current Biology, vol.16, issue.14, pp.551-557, 2006.
DOI : 10.1016/j.cub.2006.06.054

C. Hackenbrock, ULTRASTRUCTURAL BASES FOR METABOLICALLY LINKED MECHANICAL ACTIVITY IN MITOCHONDRIA: I. Reversible Ultrastructural Changes with Change in Metabolic Steady State in Isolated Liver Mitochondria, The Journal of Cell Biology, vol.30, issue.2, pp.269-97, 1966.
DOI : 10.1083/jcb.30.2.269

B. Scalettar, R. Abney, and C. Hackenbrock, Dynamics, structure, and function are coupled in the mitochondrial matrix., Proceedings of the National Academy of Sciences, vol.88, issue.18, pp.8057-61, 1991.
DOI : 10.1073/pnas.88.18.8057

R. Christen, R. Schackmannfl, and M. Shapiroll, Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration, J Biol Chem, vol.258, issue.9, pp.5392-5401, 1983.

R. Jones, D. Plas, S. Kubek, M. Buzzai, J. Mu et al., AMP-Activated Protein Kinase Induces a p53-Dependent Metabolic Checkpoint, Molecular Cell, vol.18, issue.3, pp.283-93, 2005.
DOI : 10.1016/j.molcel.2005.03.027

D. Hardie, New roles for the LKB1???AMPK pathway, Current Opinion in Cell Biology, vol.17, issue.2, pp.167-73, 2005.
DOI : 10.1016/j.ceb.2005.01.006

S. Mandal, P. Guptan, E. Owusu-ansah, and U. Banerjee, Mitochondrial Regulation of Cell Cycle Progression during Development as Revealed by the tenured Mutation in Drosophila, Developmental Cell, vol.9, issue.6, pp.843-54, 2005.
DOI : 10.1016/j.devcel.2005.11.006

K. Mitra, C. Wunder, B. Roysam, G. Lin, and J. Lippincott-schwartz, A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase, Proceedings of the National Academy of Sciences, vol.106, issue.29, pp.11960-11965, 2009.
DOI : 10.1073/pnas.0904875106

S. Herzig, E. Raemy, S. Montessuit, J. Veuthey, N. Zamboni et al., Identification and Functional Expression of the Mitochondrial Pyruvate Carrier, Science, vol.337, issue.6090, pp.93-99, 2012.
DOI : 10.1126/science.1218530

D. Bricker, E. Taylor, J. Schell, T. Orsak, A. Boutron et al., A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans, Science, vol.337, issue.6090, pp.96-100, 2012.
DOI : 10.1126/science.1218099

A. Halestrap, The Mitochondrial Pyruvate Carrier: Has It Been Unearthed at Last?, Cell Metabolism, vol.16, issue.2, pp.141-144, 2012.
DOI : 10.1016/j.cmet.2012.07.013

URL : http://doi.org/10.1016/j.cmet.2012.07.013

C. Beaulieu, The basis of anisotropic water diffusion in the nervous system - a technical review, NMR in Biomedicine, vol.8, issue.7-8, pp.435-55, 2002.
DOI : 10.1002/nbm.782

S. Fendt, E. Bell, M. Keibler, B. Olenchock, J. Mayers et al., Reductive glutamine metabolism is a function of the ??-ketoglutarate to citrate ratio in cells, Nature Communications, vol.358, p.2236, 2013.
DOI : 10.1159/000051031

M. Israël, Signaling And Metabolism In Cancer: Endocrine Pancreas Deficiency And Hybrid Anabolism?Catabolism. Drugs That Undo The Process, Cancer Ther, vol.10, pp.1-12, 2014.

S. Krauss and . Mitochondria, Structure and role in respiration, Encyclopedia of Life Sciences, p.6, 2001.

P. Mitchell, Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism, Nature, vol.182, issue.4784, pp.144-152, 1961.
DOI : 10.1002/jez.1400510306

L. Finley, J. Zhang, J. Ye, P. Ward, and C. Thompson, SnapShot: Cancer Metabolism Pathways, Cell Metabolism, vol.17, issue.3, pp.466-472, 2013.
DOI : 10.1016/j.cmet.2013.02.016

URL : http://doi.org/10.1016/j.cmet.2013.02.016

L. Gagliardi and D. Shain, Is intracellular pH a clock for mitosis?, Theoretical Biology and Medical Modelling, vol.10, issue.1, p.8, 2013.
DOI : 10.1186/1742-4682-10-8

W. Martin and A. Müller, The hydrogen hypothesis for the first eukaryote, Nature, vol.392, issue.6671, pp.37-41, 1998.
DOI : 10.1038/32096

C. Mummery, J. Boonstra, V. D. Saag, P. De-laat, and S. , Modulation of functional and optimal (Na+-K+)ATPase activity during the cell cycle of neuroblastoma cells, Journal of Cellular Physiology, vol.91, issue.1, pp.1-9, 1981.
DOI : 10.1002/jcp.1041070102

E. Van-zoelen, C. Mummery, J. Boonstra, P. Van-der-saag, and S. De-laat, Membrane regulation of the Na+, K+-ATPase during the neuroblastoma cell cycle: Correlation with protein lateral mobility, Journal of Cellular Biochemistry, vol.96, issue.1, pp.77-91, 1983.
DOI : 10.1002/jcb.240210109

R. Veech, Y. Kashiwaya, D. Gates, M. King, and K. Clarke, The Energetics of Ion Distribution: The Origin of the Resting Electric Potential of Cells, IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), vol.54, issue.5, pp.241-52, 2002.
DOI : 10.1080/15216540215678

R. Aerts, A. Durston, and W. Moolenaar, Cytoplasmic pH and the regulation of the dictyostelium cell cycle, Cell, vol.43, issue.3, pp.653-660, 1985.
DOI : 10.1016/0092-8674(85)90237-5

W. Busa and R. Nuccitelli, Metabolic regulation via intracellular pH, Am J Physiol, vol.246, issue.4 2, pp.409-447, 1984.

A. Cohen, E. Doveh, and U. Eick, Statistical properties of the rWG(J) index of agreement., Psychological Methods, vol.6, issue.3, pp.297-310, 2001.
DOI : 10.1037/1082-989X.6.3.297

B. Ciapa and P. L. , Intracellular and Extracellular pH and Ca Are Bound to Control Mitosis in the Early Sea Urchin Embryo via ERK and MPF Activities, PLoS ONE, vol.72, issue.4, 2013.
DOI : 10.1371/journal.pone.0066113.s002

URL : https://hal.archives-ouvertes.fr/hal-00911096

W. Busa, J. Crowe, and G. Matson, Intracellular pH and the metabolic status of dormant and developing Artemia embryos, Archives of Biochemistry and Biophysics, vol.216, issue.2, pp.711-719, 1982.
DOI : 10.1016/0003-9861(82)90261-2

W. Busa and J. Crowe, Intracellular pH Regulates Transitions Between Dormancy and Development of Brine Shrimp (Artemia salina) Embryos, Science, vol.221, issue.4608, pp.366-374, 1983.
DOI : 10.1126/science.221.4608.366

S. Hand and J. Carpenter, pH-Induced Metabolic Transitions in Artemia Embryos Mediated by a Novel Hysteretic Trehalase, Science, vol.232, issue.4757, pp.1535-1542, 1986.
DOI : 10.1126/science.232.4757.1535

K. Summers and I. Gibbons, Adenosine Triphosphate-Induced Sliding of Tubules in Trypsin-Treated Flagella of Sea-Urchin Sperm, Proceedings of the National Academy of Sciences, vol.68, issue.12, pp.3092-3098, 1971.
DOI : 10.1073/pnas.68.12.3092

W. Boron, Regulation of intracellular pH, AJP: Advances in Physiology Education, vol.28, issue.4, pp.160-79, 2004.
DOI : 10.1152/advan.00045.2004

W. Moolenaar, J. Boonstra, P. Van-der-saag, and S. De-laat, Sodium/proton exchange in mouse neuroblastoma cells, J Biol Chem, vol.256, issue.24, pp.12883-12890, 1981.

C. Sardet, A. Franchi, and J. Pouysségur, Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+H+ antiporter, Cell, vol.56, issue.2, pp.271-80, 1989.
DOI : 10.1016/0092-8674(89)90901-X

L. Bianchini and J. Pousségur, Molecular structure and regulation of vertebrate Na+/H+ exchangers, J Exp Biol, vol.196, pp.337-382, 1994.

S. Paris and J. Pouyssegur, Growth Factors Activate the Na+/H+ Antiporter in Quiescent Fibroblasts by Increasing Its Affinity for Intracellular H+, J Biol Chem, vol.259, issue.17, pp.10989-94, 1984.

J. Lacroix, M. Poët, C. Maehrel, and L. Counillon, A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens, EMBO reports, vol.5, issue.1, pp.91-97, 2004.
DOI : 10.1038/sj.embor.7400035

L. Counillon and J. Pouysségur, The Expanding Family of Eucaryotic Na+/H+Exchangers, Journal of Biological Chemistry, vol.275, issue.1, pp.1-4, 2000.
DOI : 10.1074/jbc.275.1.1

J. Pouysségur, A. Franchi, L. 'allemain, G. Paris, and S. , Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts, FEBS Letters, vol.76, issue.1, pp.115-124, 1985.
DOI : 10.1016/0014-5793(85)80439-7

K. Wellen, G. Hatzivassiliou, U. Sachdeva, T. Bui, J. Cross et al., ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation, Science, vol.324, issue.5930, pp.1076-80, 2009.
DOI : 10.1126/science.1164097

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746744

M. Vogelauer, A. Krall, M. Mcbrian, J. Li, and S. Kurdistani, Stimulation of Histone Deacetylase Activity by Metabolites of Intermediary Metabolism, Journal of Biological Chemistry, vol.287, issue.38, pp.32006-32022, 2012.
DOI : 10.1074/jbc.M112.362467

S. Kurdistani and M. Grunstein, Histone acetylation and deacetylation in yeast, Nature Reviews Molecular Cell Biology, vol.4, issue.4, pp.276-84, 2003.
DOI : 10.1038/nrm1075

M. Mcbrian, I. Behbahan, R. Ferrari, T. Su, T. Huang et al., Histone Acetylation Regulates Intracellular pH, Molecular Cell, vol.49, issue.2, pp.310-331, 2013.
DOI : 10.1016/j.molcel.2012.10.025

S. Kurdistani, Chromatin: a capacitor of acetate for integrated regulation of gene expression and cell physiology, Current Opinion in Genetics & Development, vol.26, issue.1, pp.53-61, 2014.
DOI : 10.1016/j.gde.2014.06.002