Hierarchical adaptive polynomial chaos expansions

Abstract : Polynomial chaos expansions (PCE) are widely used in the framework of uncertainty quantification. However, when dealing with high dimensional complex problems, challenging issues need to be faced. For instance, high-order polynomials may be required, which leads to a large polynomial basis whereas usually only a few of the basis functions are in fact significant. Taking into account the sparse structure of the model, advanced techniques such as sparse PCE (SPCE), have been recently proposed to alleviate the computational issue. In this paper, we propose a novel approach to SPCE, which allows one to exploit the model's hierarchical structure. The proposed approach is based on the adaptive enrichment of the polynomial basis using the so-called principle of heredity. As a result, one can reduce the computational burden related to a large pre-defined candidate set while obtaining higher accuracy with the same computational budget.
Type de document :
Communication dans un congrès
1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering, May 2015, Crete, Greece. 2015
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01158502
Contributeur : Chu Mai <>
Soumis le : lundi 1 juin 2015 - 15:22:38
Dernière modification le : jeudi 11 janvier 2018 - 06:22:26
Document(s) archivé(s) le : lundi 24 avril 2017 - 23:23:19

Fichier

MaiSudret_Uncecomp2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01158502, version 1

Collections

Citation

Chu V. Mai, Bruno Sudret. Hierarchical adaptive polynomial chaos expansions. 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering, May 2015, Crete, Greece. 2015. 〈hal-01158502〉

Partager

Métriques

Consultations de la notice

81

Téléchargements de fichiers

125