The action of the special orthogonal group on planar vectors: integrity bases via a generalization of the symbolic interpretation of Molien functions

Abstract : The present article completes the mathematical description initiated in the paper by Dhont and Zhilinskií (2013 The action of the orthogonal group on planar vectors: invariants, covariants and syzygies J. Phys. A: Math. Theor. 46 455202) of the algebraic structures that emerge from the symmetry-adapted polynomials in the $({{x}_{i}},{{y}_{i}})$ coordinates of n planar vectors under the action of the SO(2) group. The set of $\left( m \right)$-covariant polynomials contains all the polynomials that transform according to the weight $m\in \mathbb{Z}$ of SO(2) and is a free module for $|m|\leqslant n-1$ but a non-free module for $|m|\geqslant n$. The sum of the rational functions of the Molien function for $\left( m \right)$-covariants describes the decomposition of the ring of invariants or the module of $\left( m \right)$-covariants as a direct sum of submodules. A method for extracting the generating function for $\left( m \right)$-covariants from the comprehensive generating function for all polynomials is introduced. The approach allows the direct construction of the integrity basis for the module of $\left( m \right)$-covariants decomposed as a direct sum of submodules and gives insight into the expressions for the Molien functions found in our earlier paper. In particular, a generalized symbolic interpretation in terms of the integrity basis of a rational function is discussed, where the requirement of associating the different terms in the numerator of one rational function with the same subring of invariants is relaxed.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2015, 48 (3), pp.035201. 〈10.1088/1751-8113/48/3/035201〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01158118
Contributeur : Patras Frédéric <>
Soumis le : vendredi 29 mai 2015 - 15:54:50
Dernière modification le : mardi 22 mars 2016 - 09:43:58

Identifiants

Collections

Citation

Guillaume Dhont, Frédéric Patras, Boris I Zhilinskií. The action of the special orthogonal group on planar vectors: integrity bases via a generalization of the symbolic interpretation of Molien functions. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2015, 48 (3), pp.035201. 〈10.1088/1751-8113/48/3/035201〉. 〈hal-01158118〉

Partager

Métriques

Consultations de la notice

75