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Abstract

This paper analyses cause-of-death mortality changes and its impacts on
the whole population evolution. The study combines cause-of-death analy-
sis and population dynamics techniques. Our aim is to measure the impact
of cause-of-death reduction on the whole population age structure, and more
specifically on the dependency ratio which is a crucial quantity for pay-as-you-
go pension systems. Whereas previous studies on causes of death focused on
mortality indicators such as survival curves or life expectancy, our approach
provides additional information by including birth patterns. As an important
conclusion, our numerical results based on French data show that populations
with identical life expectancies can present important differences in their age
pyramid resulting from different cause-specific mortality reductions. Sensitiv-
ities to fertility level and population flows are also given.
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1 Introduction

The studies on cause-of-death mortality have provided a better understanding of
the level and the evolution of aggregate mortality rates over the years. At the same
time, population dynamics models have been developed in mathematical ecology
and demography to model the evolution of the population age structure over time
by including both death and birth patterns. Whereas studies on cause-of-death
mortality focused on the impact on mortality indicators, this paper aims to combine
these two fields in order to answer the following question: what is the impact of
changes in cause-of-death mortality on the whole population age structure ?

To address such question, the first step is the modeling of cause-of-death mor-
tality. Each observed death is recorded with a primary cause, such as for exam-
ple cancer, accident, or a disease related to circulatory or respiratory system. For
modeling cause-of-death mortality, one famous framework in actuarial science and
biostatistics is the competing risks model. In this framework, each cause of death
is modeled at the individual level by a clock, and the death occurs when the first
clock rings. In other words, the lifetime of an individual is modeled as the minimum
between competing cause-specific lifetimes. Unfortunately, those cause-specific du-
rations are not observable in the data: in practice we only observe the minimum
between the durations related to each cause. Since information on causes of death
durations are not observable, assumptions about the dependence between causes of
death have to be set in order to capture the marginal distributions and to model
changes in cause-of-death mortality. The seminal work of Chiang (1968) on the
competing risks theory considered independent causes of death and led to further
studies during the last decades. The competing risks framework has been investi-
gated with several dependence structures between the competing lengths of time
(see e.g. Carriere (1994), Kaishev et al. (2007) and Dimitrova et al. (2013)). For
our study, we focus on the competing risks framework under the independence as-
sumption, although we also briefly survey the debate on the dependence structure.
This independence assumption is much used (see e.g. Prentice et al. (1978), Tsai
et al. (1978), Wilmoth (1995) and Putter et al. (2007)), and allows us to already
highlight interesting effects of cause removal on the population dynamics.

The previous studies in the cause-of-death literature focused on the impact of
cause-of-death removal or reduction on mortality indicators: e.g. life expectancy for
Prentice et al. (1978), survival curve for Dimitrova et al. (2013) and death proba-
bilities for Alai et al. (2015). In this paper, the aim is to go further and study the
impact on the population age pyramid (the number of individuals by age-class) by
means of a population dynamics model. The age pyramid is a crucial quantity of
interest since it gives informations on how age-classes evolve and interact with each
others. To our knowledge, this has not been addressed in the current literature.
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To do so, we rely on both deterministic and stochastic population dynamics mod-
els. Historically, the first models that addressed the deformation of the age struc-
ture of a population over time were deterministic models. The most famous one is
called the McKendrick-Von Foerster model (see McKendrick (1926) and Von Foer-
ster (1959)). Based on death rates by age, and also birth rates, they are able to
capture the time evolution of the number of individuals by age-class. For demo-
graphic purposes, dealing with gender classification has become natural as census
and national data make this distinction between males and females for a long time.
It is also crucial since age but also gender is known to have a real impact on mortal-
ity. To this aim, there is now a sizable literature on two-sex population deterministic
models both with and without age structure (see e.g. Keyfitz (1972) and Iannelli
et al. (2005)). The deterministic point of view is useful to understand the evolution
of the "average" age pyramid, and can provide first interesting insights about the
impact of cause-of-death reductions on the whole population, based on a fast nu-
merical discretization scheme. But in practice, we are not only interested in the age
pyramid, but also in non-linear quantities such as the age dependency ratio. This is
defined as the number of people aged above 65 divided by the number of individuals
aged between 15 and 65. This indicator is a crucial quantity of interest for pure de-
mographic analysis but also for pay-as-you-go pension systems. The deterministic
evolution of the population and the age dependency ratio, interesting in itself, is not
realistic for populations with finite size in which individuals have random lifetimes
and times of birth. What is then the population dynamics ? First insights tell us
that the average stochastic dependency ratio, as a non-linear quantity, cannot be
equal to the ratio of the average population. Therefore a proper stochastic modeling
framework is needed. In fact, in a large population asymptotics, the stochastic be-
havior can be approximated by its deterministic counterpart, making this approach
micro-macro consistent. In other words, at the microscopic scale, the population
behaves stochastically whereas if the number of individuals is "large", the behav-
ior is described by deterministic equations that are classical in demography. The
micro-macro consistency is at the core of what are called individual-based models,
that have been developed in mathematical ecology (see Fournier and Méléard (2004)
and Champagnat et al. (2006)), in particular to understand the evolutionary mech-
anism. In addition, these models have been developed to take ages into account (see
Ferriere and Tran (2009)), which is crucial for our purpose.

These processes have been little used for demographic applications compared to
issues linked to biology or evolutionary theory. In particular, to our knowledge none
of them address the impact of cause-of-death removals on the population age struc-
ture. Importantly for our purpose, we are inspired by the work of Bensusan et al.
(2010–2015) (see also Bensusan (2010)) who have extended and used population dy-
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namics models in view of human population applications, including pension systems
and longevity risk in insurance. Among the few applications to demographic pur-
poses, note also that an alternative named Markovian binary tree is considered in
Hautphenne and Latouche (2012) for demographic applications. Markovian binary
trees differ from individual-based models as they involve discrete age-classes and a
random aging pattern to preserve the Markov property. The key feature of our ap-
proach is to take into account aging in continuous time and to use a microsimulation
procedure for the stochastic scenarios. It is interesting to note that microsimula-
tion procedures are used in a discrete time setting by several public institutions to
test economic and retirement policies (see e.g. the review by Li and O’Donoghue
(2013)). This includes for example the French National Institute for Statistics and
Economic Studies (INSEE) with the model Destinie (see Bonnet et al. (1999) and
Duée (2005)). Apart from government bodies, microsimulation approaches have
also been used in the demographic and statistical literature. As an example, Hyn-
dman and Booth (2008) used discrete-time stochastic simulations to compute the
population evolution and the age pyramid, while aggregate mortality, fertility, and
migration rates are forecasted.

The paper is organized as follows. In Section 2, we first describe the competing
risks framework for the modeling of cause-of-death mortality, and secondly introduce
the deterministic and stochastic population dynamics approaches. Section 3 details
the data we use to carry out our study: the World Health Organization data for
the cause-of-death mortality rates and the data from INSEE for the birth rates
and the initial age pyramid. Section 4 contains our numerical results regarding
deterministic and stochastic patterns of the age pyramid and the dependency ratio,
as well as sensitivities to fertility scenarios and also to population flows computed
from the data. As an important conclusion, our numerical results show that under
same life expectancy improvement, the age pyramid can evolve in many ways if
different causes of death are reduced.

2 The Model

As usual when working with human population, we are concerned with population
structured by gender and age, so we make the distinction between the age pyramid
of females and the age pyramid of males. It is well known that gender and age induce
significant differences on mortality. In the model, each individual, female or male,
is exposed to d competing causes of death, such as cancers, diseases of circulatory
system, diseases of respiratory system or accidents, well described in Section 3, but
may die from any single one of the d causes. After a brief description of the classical
competing risks framework in survival analysis, we introduce the debate on the
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2.1 Cause-of-Death Mortality

dependence structure between causes of death, and describe the different points of
view proposed in the literature. Afterwards, we present the meaning of removal of
a cause of death. The population dynamics modeling is described secondly.

2.1 Cause-of-Death Mortality

Competing risks framework Standard survival data measure the length of time
from the time origin until the occurrence of some events; for human population, one
is interested in the duration between the time of birth and the time of death (frailty
time in other framework). This is called the lifetime and is represented by a random
variable τ ε, with survival function Sεpaq “ Ppτ ε ą aq, for an individual with gender
ε (ε “ f for female or ε “ m for male). This is the probability for an individual
with gender ε to survive until age a. As usual, the information is often expressed in
term of hazard rate (also called force of mortality in actuarial sciences), defined as
the probability to die before age a` da for an individual alive at age a:

µεpaq “
Ppa ă τ ε ď a` da | τ ε ą aq

da
“ ´

d lnpSεpaqq

da
. (2.1)

At this elementary stage, as in Elandt-Johnson (1976), we assume that in each
group, females or males, each individual with gender ε is assigned a vector of poten-
tial lifetimes pτ ε1 , τ ε2 , ..., τ εdq corresponding to the d causes of death. The d causes of
death are modeled by d lengths of time, that is to say d competing clocks, denoted
τ ε1 , τ

ε
2 , ..., τ

ε
d. The death occurs when the first event corresponding to one of the d

causes of death occurs: that is when the first clock rings. In other words, the lifetime
of an individual τ ε is defined as the minimum between the different lengths of time:
τ ε “ min

1,...,d
τ εi . In terms of survival function, we have:

Sεpaq “ Ppτ ε1 ą a, ¨ ¨ ¨ , τ εd ą aq. (2.2)

To study the lifetimes associated to causes of death, we need the correspond-
ing marginal survival functions. In particular, to model changes in cause-of-death
mortality, as a reduction of death due to cause i, the survival function has to be
expressed with the marginal distribution Sεi paq “ Ppτ εi ą aq and these have to be
estimated from the data. In practice, when looking at a sample of lifetimes, we
observe for a given individual, the age at death and the cause from which this in-
dividual dies. In the competing risks framework, this means that we observe the
minimum of the d competing clocks, and that we know what is the clock which rang
first. However, we do not observe the clocks for the other causes of death. Since
marginals are not observable, dependence assumptions between causes of death have
to be set.
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2.1 Cause-of-Death Mortality

On the dependence structure It is well known that, without additional assump-
tion, it is impossible to identify the dependence structure of the joint distribution
and their marginal from the data (Tsiatis (1975)). A considerable literature has been
devoted to the competing risk model for cause-of-death mortality, starting from the
independent case (Chiang (1968)) to more complex dependence structures. Carriere
(1994), Kaishev et al. (2007) and Dimitrova et al. (2013) have worked on the theory
of copula fonctions to model dependence: they have been interested in modeling
density function and survival curve. Alai et al. (2015) have studied causal mortality
shocks with a multinomial logistic model. They have studied and modeled the death
probabilities. Also models incorporating observed individual risk factors (see e.g.
Manton (1986a), Rosen (2006) and Girosi and King (2006)) and unobserved ones
(frailty models, see e.g. Vaupel and Yashin (1983) and Manton et al. (1986b)) have
been developed. More recently, cointegration analyses have been applied to causes
of death studies (see Arnold and Sherris (2013), Arnold and Sherris (2015a), Arnold
and Sherris (2015b)). In that framework, cointegration is used to model dependence
between the cause-of-death mortality rates.

Nonetheless, the independence assumption between cause-of-death durations is
widely used (see e.g. Prentice et al. (1978), Tsai et al. (1978) and Wilmoth (1995),
Putter et al. (2007)). Even if we agree with many authors on the partial irrelevance
of this assumption, that can unfortunately not be tested in practice, it contributes
to considerably simplify the further developments of this study. In particular, the
marginals are directly estimated from the data (see the discussion below). Moreover,
under the independence assumption, we can already highlight interesting effects of
cause removal on the population dynamics.

Independence assumption Under the independence assumption between causes
of death, the survival function defined in Equation (2.2) can be expressed with the
marginals: Sεpaq “

śd
i“1 S

ε
i paq. In this way, the hazard rate of the individual lifetime

is the sum of the hazard rates by cause: µεpaq “
řd
i“1 µ

ε
ipaq, where µεi is such that

Ppτ εi ą aq “ exp
`

´
şa

0
µεipsqds

˘

. The rate µεipaq is called the net force of mortality
for cause i, gender ε and age a. Formally, this corresponds to the probability to die
instantaneously if only cause i exists, given the survival at age a:

µεipaq “
Ppa ă τ εi ď a` da | τ εi ą aq

da
. (2.3)

As already described, the cause-specific durations are not totally observable in
practice. However, from the data one can estimate the distribution of τ εi for all
individuals that died from cause i, because in this specific case the duration τ εi is
completely observed. In other words, it is possible to estimate the quantity
Ppτ εi P ra, a ` daq, τ ε “ τ εi q. By independence between the cause-specific durations,
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2.1 Cause-of-Death Mortality

this quantity is equal to

Ppτ εi P ra, a` daq, τ ε “ τ εi q “ Sεi paqµ
ε
ipaqda

ź

k‰i

Sεkpaq “ Sεpaqµεipaqda.

This way, it is possible to recover the net force of mortality by

µεipaq “
Ppτ εi P ra, a` daq, τ ε “ τ εi | τ

ε ą aq

da
.

In the actuarial literature, the right hand side of the previous equation is called the
crude force of mortality. Under the independence assumption, it can be directly es-
timated form the data. The fact that net and crude mortality forces are equal under
the independence assumption is a fundamental result which considerably simplifies
the estimations.

Cause-of-death removal To address the impact of cause-of-death reduction or
removal, a rigorous definition is needed. In the competing risks literature, two
possible definitions have been introduced and tested: ignore or eliminate, see e.g.
Elandt-Johnson (1976) and Dimitrova et al. (2013).
(i) To ignore The first one says that if cause k is ignored, then the lifetime becomes
τ ε
p´kq “ min1ďiďd,i‰k τ

ε
i . In this case, the survival function is replaced by Ppτ ε

p´kq ą tq.
Under the ignoring definition, the random variable τ ε

p´kq can be interpreted as the
lifetime in the world where cause k does not exist.
(ii) To eliminate The other definition is the elimination: in this case, the lifetime
is now conditioned to the fact that τ εk grows to infinity, that is the survival function
is replaced by Ppτ ε ą t | τ εk Ñ `8q. This models the fact that the cause still
remains, but its associated lifetime is postponed to an arbitrary value. Despite
their difference in terms of interpretation, in the case where the τ εi are independent,
the two definitions are equivalent. This is another fundamental consequence of the
independence assumption. In our case, we will use the term remove to refer to both
definitions.
We will also refer to cause-of-death reduction: we say that cause k is reduced by a
factor αε P r0, 1s for individuals with gender ε if the death rate µεpaq becomes:

p1´ αεqµεkpaq `
ÿ

1ďiďd,i‰k

µεipaq.

Debate on temporality of death rates It is well known that mortality is im-
proving over the years. This is captured for example by the increase in life ex-
pectancy which reflects the fact that individuals belonging to recent generations are
living longer. In particular, the time evolution of mortality differs across age classes.
In this paper, as a first step, we consider time-invariant death rates (and also fertility
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2.2 Population Dynamics

rates), although the modeling framework can be described with time varying demo-
graphic rates. Whereas the purpose of our paper is not to forecast cause-specific
mortality rates, we are interested to forecast the population itself with current fer-
tility and cause-of-death mortality rates, and possibly population flows, in order to
analyse the deformation of the age structure in this special setting. This is known
as the stable population framework which is standard in demography. Although,
it does not provide realistic population forecasts, this framework already allows to
understand and interpret some short and long term impacts of a change in current
cause-of-death mortality on the population age pyramid.

2.2 Population Dynamics

Cause-of-death mortality rates are useful to understand the distribution of individual
lifetimes in a static population made of both men and women. However, this does
not tell something about the time evolution of the whole population, in particular
its interdependence with birth patterns and mortality reduction.

Two-sex birth-death process with age structure The simple one-sex popu-
lation model is the well known birth-death process, in which birth and death rates
are constant. While applied demographers primarily worked with one-sex popula-
tion models, many sociological applications required two-sex models that explicitly
address matching of females and males into couples. Some important applications
such as "marriage squeeze", i.e. the impact on marriage of an imbalance between
males and females (see e.g. Schoen (1983), Guilmoto (2012)), further investigated
age-structured models that keep track of the age distributions of single females and
single males as well as the joint distribution of ages across couples. In fact, dealing
with gender classification has become natural as census and national data make this
distinction for a long time. There is now a sizable literature on two-sex popula-
tion models both with and without age structures (see e.g. Keyfitz (1972), Iannelli
et al. (2005)). However, these two-sex population models do not embed cause-of-
death analysis, which is the purpose of the present paper which focuses on both
deterministic and stochastic two-sex birth-death processes with age structure and
cause-of-death mortality. In order to understand the behavior of the population over
time, in particular that of the age pyramid, we first need to specify how individuals
give birth. The age pyramid (see Figure 3 for an illustration) is a crucial quantity of
interest for pure demographic analysis, but also public pension pay-as-you-go sys-
tems. As for private insurers, this is crucial to understand how national mortality
data is computed, especially how a biased knowledge on birth patterns and corre-
sponding age pyramid can lead to misevaluation of reference mortality rates (see
Cairns et al. (2014)). Further investigation on the impact of (heterogenous) birth
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2.2 Population Dynamics

patterns is carried out in Bensusan et al. (2010–2015).

Female fertility In our model, each individual with gender ε and age a gives birth
to new individuals (of age 0) with rate bεpaq. In a stochastic setting, the first time
of birth T εb , for an individual with gender ε, is given by its marginal distribution
PpT εb ą aq “ exp

`

´
şa

0
bεpsqds

˘

. As this individual can give birth to more than
one individual, the times of birth occur as the jumps of a non-homogenous Poisson
process with rate a ÞÑ bεpaq, until the parent dies. At birth, the new individual of
age 0 is a female (f) with probability p and a male (m) with probability 1 ´ p. In
our application, we assume that only a female can be the cause of the arrival of a
new individual in the population. This choice is driven by the lack of data on male
birth rates, in particular the age of the father at birth of his children. So the birth
rate for any individual of gender ε and age a can be written bεpaq “ bpaq1f pεq, where
1f pεq is the indicator function defined as 1f pfq “ 1 and 1f pmq “ 0. In this model,
only each female has an intrinsic birth rate bpaq, so we do not take into account the
impact of the relative number of males and females in the population on the birth
patterns. This has been the topic of several models and debates in demographic
studies. In particular, this could be of interest to model events such as shocks in
birth patterns prior and posterior to world wars. Also, the general setting can be
useful to test several assumptions on the link between the birth rate and the whole
population. This issue is left for further research.

Deterministic population model How does the population evolve over the
years? In particular, what is the dynamics of the age pyramid over time? The
first models which tried to address these questions were deterministic population
models. They go back to McKendrick (1926) and Von Foerster (1959) and focus on
the quantity gpε, a, tq of individuals with gender ε and age a at time t (see also Ian-
nelli et al. (2005) and the brief review in Tran (2008)). The population structured
by gender is described by the vector

gpa, tq “

˜

gpf, a, tq

gpm, a, tq

¸

.

First, individuals with non-negative ages evolve according to deaths over time, that
is

p Ba ` Btqgpa, tq “ ´Qpaqgpa, tq, (2.4)

where Qpaq “

˜

µf paq 0

0 µmpaq

¸

. This equation corresponds to the transport com-

ponent: it states that individuals are aging over time and that the number of indi-
viduals is decreased by the number of deaths. Now, at a given time t, the number
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2.2 Population Dynamics

of newborn is given by the sum over all newborns of all females with any age, and
added to the gender class depending on the probability at birth, that is

gp0, tq “

ˆ
ż

R`

gpf, a, tqb paq da

˙

˜

p

1´ p

¸

. (2.5)

This is called the renewal component, which sets some boundary condition on the
space of ages. Initially, at time 0, the age pyramid is given by some initial condition
gpa, 0q “ g0paq for each a ě 0. Equations (2.4) and (2.5) form what is called
the McKendrick-Von Foerster equation. Note that this formulation exhibits an
autonomous behavior of the female population, and that the renewal of the male
population can be computed based on the female population at time t. Note also
that we deal with "quantities" of individuals as gpf, a, tq and gpm, a, tq are real
numbers: this represents the average population quantity. A first advantage of the
deterministic equation is to be numerically very fast to compute through an explicit
discretization scheme, and thus provides first insights on the average dynamics.

The numerical scheme The deterministic equation can be computed in the
following way. Let ∆t be the discretized time step. Let also G denote the grid
t0,∆t, 2∆t, ...u on R`, and G` denote the grid G without 0. We start with an initial
population g0paq for a P G, with g0paq the quantity of individuals of age in ra, a`∆tr

for each gender ε in the initial population. The explicit numerical scheme can be
written

gpa`∆t, t`∆tq ´ gpa, tq “ ´Qpaqgpa, tq∆t, @a P G`

gp0, tq “
ÿ

aPG`

gpf, a, tqb paq∆a

˜

p

1´ p

¸

, where ∆a “ ∆t,

gpa, 0q “ g0paq, @a P G.

(2.6)

To clarify the simulation steps, we describe how to proceed recursively. Suppose
that the population at time t has been computed. From the first line of (2.6), for
a P G, one can compute

gpa`∆t, t`∆tq “ pI ´∆tQpaqqgpa, tq,

where I denotes the 2 ˆ 2 identity matrix. Then, one gets from the second line of
(2.6), where t is replaced by t`∆t,

gp0, t`∆tq “
ÿ

aPG`

gpf, a, t`∆tqb paq∆t

˜

p

1´ p

¸

.

This leads to the whole population at time t`∆t.
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2.2 Population Dynamics

From deterministic to stochastic population The deterministic equation is
useful to understand the evolution of the "average" age pyramid, in the sense that
gpε, a, tq represents the average quantity of individuals with gender ε and age a at
time t. But in practice, we are not only interested in the age pyramid, but also in
non-linear quantities such as the dependency ratio. This is defined as the number
of people aged above 65 divided by the number of individuals aged between 15 and
65. Let us denote gtpaq “ gpm, a, tq` gpf, a, tq the quantity of people aged a at time
t. Let us also introduce the notation gtpra1, a2qq “

ş

ra1,a2q
gtpaqda for the quantity of

individuals with age a P ra1, a2q at time t. Formally, the dependency ratio computed
from the deterministic equation can be defined as

rt “
gtpr65,8qq

gtpr15, 65qq
.

The assumption of a deterministic population pattern is obviously not realistic.
In practice, one deals with finite size populations in which individuals have random
lifetimes and times of birth. What is then the stochastic population dynamics?
Before introducing the stochastic point of view, let us focus on the corresponding
stochastic dependency ratio, say Rt. We want to underline that the average depen-
dency ratio E rRts cannot be directly computed from the deterministic equation, as
it is not equal to the ratio of the average population, rt. To further analyse the
stochastic behavior and make the link with its deterministic counterpart, let us first
describe the stochastic representation.

Analogously to the deterministic counterpart, let us denote Zε
t pra1, a2qq the num-

ber of individuals with age a P ra1, a2q and gender ε at time t. The difference
is that we deal here with (random) number of individuals as we are in the mi-
croscopic stochastic setting. The population Zε

t , which is in fact a measure on
the space of ages, evolves over time according to random births and deaths with
rates described at the beginning of this Section. Let us introduce the total number
Ztpra1, a2qq “ Zf

t pra1, a2qq`Z
m
t pra1, a2qq. In this microscopic setting, the stochastic

dependency ratio is defined as

Rt “
Ztpr65,8qq

Ztpr15, 65qq
.

As mentioned in Bensusan et al. (2010–2015) (see also the discussion in Fournier
and Méléard (2004)), as individual birth and death rates do not depend on the whole
population, the average population density satisfies E rZtpra1, a2qqs “ gtpra1, a2qq,
provided that such density exists. However, the dependency ratio Rt is a non-linear
quantity. In particular, one can write the definition of the covariance to get

rt “ E rRts ` Cov

ˆ

Rt,
Ztpr15, 65qq

gtpr15, 65qq

˙

.
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2.2 Population Dynamics

That is, the deterministic dependency ratio rt is the average dependency ratio E rRts

plus a corrective term related to the covariance between the dependency ratio and
the deviation of the number of people aged [15,65) from its mean. This shows
that the stochastic dependency ratio with finite population is obviously not well
described by the deterministic equation. Therefore, a proper stochastic framework is
needed. In addition, one can be more precise about the link between the stochastic
representation and its deterministic counterpart. At the core of what are called
individual-based models is the micro-macro consistency: at the microscopic scale,
the population behaves stochastically whereas if the number of individuals is "large",
the behavior is described by deterministic equations that are classical in demography.
In the following, we briefly highlight the large population point of view and then
describe the intuitive stochastic simulation procedure.

Link between stochastic and deterministic models One main advantage of
such stochastic model is its micro-macro consistency. If the number of individuals
increases to infinity, the stochastic dynamics tends to the deterministic pattern

described by Equations (2.4)-(2.5). Let us introduce the vector Zt “

˜

Zf
t

Zm
t

¸

, and

recall that each component defines a measure on the space of ages. In particular,
Ztpra1, a2qq is the number of individuals for each gender and ages in ra1, a2q at time
t. To get a large population limit theorem, it is assumed that the size of the initial
population tends to infinity proportionally to a scaling parameter K ě 1. We
consider a sequence of population processes pZKt qtPr0,T s with initial population ZK0 .
A non-degenerate process appears in the limit if each individual is weighted 1

K
: the

renormalized population process is defined by Z̃Kt :“ 1
K
ZKt . The convergence to the

deterministic limit solution to (2.6) is stated in the following theorem. We state it
in a summarized way and refer to Tran (2006) and Bensusan et al. (2010–2015) for
the technical details.

Theorem 1. Assume that there exists a finite and deterministic measure g0paqda

such that Z̃K0 converges in distribution to g0 as K Ñ `8 and that supK E
”

Z̃K0 pr0,8qq
2
ı

ă

`8. Then the sequence of measure-valued processes
´

Z̃K
¯

KPN˚
converges in dis-

tribution towards the continuous and deterministic process g., which satisfies the
McKendrick-Von Foerster equation (2.4)-(2.5) (in a weak sense).

Simulation of the stochastic scenarios We detail here the simulation proce-
dure described in Bensusan et al. (2010–2015) (see also Tran (2006)). The idea of
the simulation procedure is to generate candidate times of event for the population,
and for each of them, decide if a real change happens or not. At each candidate
time, we pick an individual in the population. According to this choice, we decide if
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an event (birth or death from a cause) occurs or not. This approach is based on the
simulation of a simpler process with more jump times and some of them are deleted
with a rule leading to the desired distribution for the population process. This pro-
cedure is analogous to the thinning procedure for point processes. This simulation
technique is required since demographic rates depend on age which introduce time
dependency.

Assumption 1. (Bounded intensities) Denote X “ tf,mu the set of possible gen-
der. There exists positive constants b̄ and pµ̄iqdi“1 such that for all pε, aq P X ˆ R`,
bεpaq ď b̄, µεipaq ď µ̄i. Let µ̄ “

řd
i“1 µ̄i.

We describe below the simulation procedure.

Algorithm 1. Start at time T “ 0 with a given population ZT of size NT .
Step 1.
Simulate a r.v. τ „ Expppb̄` µ̄qNT q and set T ` τ as the next candidate time.
Step 2.
Form the population ZT`τ by adding τ to all ages in ZT .
Step 3.
Select an individual pεI , aIq uniformly in the population ZT`τ and compute his prob-
abilities to give birth (B) and to die for cause i (Di), denoted respectively pb and pi
for i in v1, dw: pb “ bε

I
paIq

b̄`µ̄
and pi “

µε
I

i pa
Iq

b̄`µ̄
. Let also define po “ 1´ pb ´

řd
i“1 pi the

"no event" probability.
Step 4.
Generate a potential event E P tB,D1, ..., Dd, Ou with probability pb, p1, ..., pd, po:
(i) If E “ B (birth) then generate ε1 in tf,mu with probability pp, 1 ´ pq and add
the individual pε1, 0q to ZT`τ .
(ii) If E “ Di (death for cause i) then remove the individual pεI , aIq from ZT`τ .
(iii) If E “ O (no event) then nothing happens.
Let T Ð T ` τ and go to Step 1.

This algorithm is simple and only involves the computation of uniform random
variables which can be used to generate τ, I, E and ε1. Note also that at each candi-
date time of event, only one individual is checked so that only one intensity function
is computed. Remark that for numerical efficiency, the four random variables τ, I, E
and ε1 needed can be generated using only one uniform random variable.

3 Data

We choose to apply our model to the French population with birth and death rates
for the year 2008. We use data from the World Health Organization (WHO) for the
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cause-of-death mortality rates and the French National Institute for Statistics and
Economic Studies (INSEE) for the birth rates and the initial age pyramid. TheWHO
has developed a tool to classify causes of death: the International Classification of
Diseases (ICD). The database assembles deaths by cause of death, year, age and
gender since approximately 1950 in about 225 countries. In this section, we present
the data and the estimation methods for the mortality and fertility rates.

Cause-of-death mortality rates WHO provides the number of deaths by cause,
gender and five-year age-class, and the exposure to risk by gender and age-class. We
estimate death rates by the number of deaths over the exposure to risk (see e.g.
Delwarde and Denuit (2006)). The exposure to risk corresponds to an estimation of
the average time during which the population of interest is alive, here, the mid-year
population. We denote Dε

ipaq the number of deaths due to cause i with gender ε at
age a, and ERεpaq the exposure to risk for gender ε and age a. Under the assumption
of independence between cause-specific durations (see Section 2.1), the net force of
mortality can be estimated from the data by

µ̂εipaq “
Dε
ipaq

ERεpaq
.

Data on deaths are provided for age-classes of five years, except classes "0","1-4"
and "95+", therefore we assume the mortality to be constant within each age-class.
Moreover, the number of death by cause of death are classified until the age-class
"95 years and more" while the data on exposures to risk are classified until the
age-classes "85 years and more". To use information on the number of deaths for
age-classes "85-89", "90-94" and "95 years and more", we approximate the cause-of-
death mortality rates using exposures to risk from the Human Mortality Database
(HMD) from the corresponding age-classes 4.

In the International Classification of Diseases (ICD) for France, deaths are clas-
sified according to 4563 different cause labels. Based on previous papers (Alai et al.
(2015), Arnold and Sherris (2015a)), we have chosen to regroup causes of death in
six categories: cancers, diseases of the circulatory system, diseases of the respira-
tory system, external causes, infectious and parasitic diseases (in short: I&P) and
all the others causes brought together, see details on Table 1. The three main causes
of death are cancers, diseases of circulatory system and the category other causes.
More precisely, other causes regroup mainly the diseases of the nervous system (21%

of other causes), metabolic diseases (16%), diseases of the digestive system (13%)
and mental disorders (12%). Infectious and parasitic diseases, diseases of respiratory
system and external causes are less represented in the total deaths but represent an

4We compared exposures to risk from HMD and WHO for the entire age range and year 2008.
The relative difference between the exposures to risk is lower than 2%.
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important part of deaths for some ages. For example, external causes represent 55%

of deaths for individuals between ages 10 and 20, and 46% of deaths for individuals
between ages 20 and 40. By comparison, death rates for external causes impact
more specifically ages from ages 10 to 40, while cancers impact more generally ages
above 40.

Cause label %

Cancers 30 %

Other causes 28 %

Diseases of the circulatory system 27 %

Diseases of the respiratory system 6 %

External causes 7 %

Infectious and parasitic diseases 2 %

Total 100 %

Table 1: Deaths repartition by cause for the French population in 2008

On the whole, the different categories of causes of death impact differently the
age-classes and genders. It is illustrated in Figure 1, which represents the death rates
by cause, gender and age. As external causes mainly represent the accidents, it is
interesting to note that the accident hump of aggregate mortality, which impacts
more males, is essentially reflecting these external causes. More generally, it is clear
that causes of death impact very different age ranges. This suggests that a drop in
some cause-of-death mortality would modify the population age structure in a very
specific manner. This is studied in the next section.

Fertility rates Fertility rates by age for females are provided by the INSEE. As
for the mortality rates, they are estimated by the ratio between the number of births
by the age of the mother at birth and the exposure to risk (see INSEE (2011)). Let
us denote Bpf, aq the number of births by age a of the mother at birth and ERpf, aq
the female exposure to risk at age a. The fertility rate is estimated by the INSEE
as follows:

b̂paq “
Bpf, aq

ERpf, aq
.

Birth rates by age of the mother at birth in 2008 for France are represented in
Figure 2. We observe the particular form of the birth rates: the intensity is maxi-
mal around age 30 and the distribution is almost symmetric. On the whole, the age
range to give birth is between ages 15 and 50.
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Figure 1: French death rates by cause, gender and age for year 2008
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Figure 2: Birth rates by age of the mother in 2008
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As detailed in Section 2, a newborn can be a female with probability p and a
male with probability 1´p. The probability p is derived from the data on the French
population age pyramid, provided by the INSEE. We estimate the probability p as
the ratio between the number of female births in year 2008 and the total number of
births in year 2008. We estimate that in France, in 2008, the probability to be born
as a female is equal to p̂ “ 0.4886.

4 Results

In this section, we present the results of the simulations of the stochastic scenarios
and the deterministic large population model. In the first part, we simulate the
population dynamics while considering all causes of death in order to get some
reference scenario. The time evolution of the dependency ratio (i.e. the number of
individuals aged above 65 divided by the individuals between 15 and 65) already
provides many insights regarding the long term impact of the initial population and
the level of current birth and death rates. In the second part, we remove each
cause of death to test the impact on the population age structure. As expected,
the higher the cause-of-death mortality, the bigger the impact on the age pyramid.
Finally, in the third part, we study the impact of a cause-specific reduction on the
population age structure. We focus in particular on cancer and external causes and
investigate how the age pyramid is affected if each cause is modified to get the same
improvement in life expectancy.

4.1 Reference Scenario

Stochastic scenario First, we model the population dynamics from 2008 to 2108,
considering the general mortality. We perform the simulation of a single stochastic
scenario from the microscopic model described in Section 2.2, based on Algorithm
1 and an initial population with size 100 000. On Figure 3, we represent the 2008
initial population with grey lines and the final 2108 population in color (males in
blue, females in pink). As explained in Section 3, the initial population is based
on the structure of the French population. In the initial population, we observe
more individuals between ages 40 and 70 representing the "Baby Boom" generation.
In 2108, we see that the population is almost globally uniformly distributed up to
age 70, and then decreases in an exponential form. This shape is stable and will
be analysed in the deterministic scenarios section. The aging of the population
is visible on Figure 4 which represents a path of the age dependency ratio with
an initial population of 100 000 individuals. The age dependency ratio is increasing
until the individuals from the "Baby Boom" generation die and then becomes stable
due to time-independent birth and death rates. With this first analysis, we capture
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4.1 Reference Scenario

the order of magnitude of the dependency ratio and we address the impact in time
of the "Baby Boom".
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Figure 3: Initial (100 000 individuals)
and final population pyramids
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Figure 4: Age dependency ratio from
2008 to 2108

Deterministic scenario The large population equation (2.4)-(2.5) allows to com-
pute the deterministic evolution of the population, in particular the whole age pyra-
mid and the old-age dependency ratio. Here, numerical insights about the stochastic
behavior cannot be addressed, but the virtue is that the numerical computation is
far faster, as it amounts to discretize a partial differential equation (see Section
2.2). We first plot in Figure 5 the evolution of the dependency ratio for 100 years.
This represents, up to the discretization error, the evolution of the dependency ratio
under the large population framework. Note that it is the dependency ratio for an
"infinite" population, and not the average dependency ratio of any finite-size popu-
lation. From the large population equation, it is possible to draw the deterministic
scenario in the long time. In Figure 6, we represent the deterministic evolution of
the dependency ratio over 300 years. Obviously, this time horizon does not make
sense in itself, in particular regarding the assumption of time-independent death
rates. But it provides the value of the asymptotically stable age dependency ratio.
The long-term stabilization of the age pyramid is a well known fact in demography
in a time-invariant rates setting. In the Appendix, we sketch the main results on
the stable age pyramid in the deterministic model and the closed-formulas for its
shape.
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4.2 Cause-of-Death Removal
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Figure 5: Age dependency ratio from
the limit equation from 2008 to 2108
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Figure 6: Age dependency ratio from
the limit equation from 2008 to 2308

4.2 Cause-of-Death Removal

Based on numerical simulations of the microscopic model, we test the impact of
removing each of the six causes of death. We now start with an initial population
of size 10 000 to allow the computation of several stochastic scenarios and thus
gain insights on the demographic fluctuations. The impacts of cause-removal on
the old-age dependency ratio are plotted in Figures 7a to 7f. As expected, the
causes with low death rates (infectious and parasitic diseases, respiratory diseases,
external causes) lead to lower differences with respect to the reference scenarios.
Besides, these differences are partly hidden with the demographic stochasticity. On
the whole, comparisons between cause removal scenarios are not easy since the
importance of each cause is quite different. Moreover, complete removal of one
important cause can be considered as unrealistic. In the following, we focus on
cancer and external causes and investigate how the age pyramid is affected if each
cause is modified to get the same improvement in life expectancy.

4.3 Cause-of-Death Reduction

For this numerical experiment, we focus on the two following causes: cancer and
external causes. They are known to have a different mortality structure: cancer has
an important impact on ages above 40, whereas external causes embed the accident
hump and impacts mainly ages around 25 (see Figure 1). Therefore, we want to
compare several scenarios:
(i) The first one is the reference scenario, computed with current birth and cause-
of-death rates. Life expectancies at birth are 84.4 and 77.7 years for females and
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4.3 Cause-of-Death Reduction

Figure 7: Age dependency ratio from 2008 to 2108
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(a) I&P diseases removal
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(b) Cancers removal
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(c) Circulatory diseases removal
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(d) Respiratory diseases removal
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(e) External causes removal

0 20 40 60 80 100

25
30

35
40

45
50

Time

D
ep

en
da

nc
e 

ra
tio

 (
%

)

Ignoring other causes
All causes

(f) Other causes removal
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4.3 Cause-of-Death Reduction

males respectively.
(ii) The second one is obtained by removing external causes. Under the assumption
of independent causes of death, life expectancies at birth are 85.1 and 79.1 years for
females and males respectively.
(iii) The last scenario is obtained by cancer reduction in the following way: each
female and male reduction factor, αf and αm respectively (see Section 2.1), is com-
puted so as to replicate the same life expectancy as in the scenario of external
causes removal. This implies a reduction of cancer death rates by αf “ 24.6% and
αm “ 35% for females and males respectively.
Comparing (ii) and (iii), we are interested in the evolution of the age pyramid know-
ing that life expectancies are equivalent in the two scenarios.

Deterministic scenarios The deterministic scenario can be computed using the
large population equation. In Figure 8, the evolution of the age dependency ratio
is plotted under the three parameter configurations (i), (ii) and (iii). The scenario
(ii) removing the external causes is presented, and compared to the scenario (iii)
of cancer reduction. Recall that males and females life expectancies are equivalent
in both scenarios (ii) and (iii). We are then interested in analysing the impact of
each scenario on the population age pyramid. In all cases, the age dependency ratio
is higher than the reference scenario. However, the cancer reduction scenario leads
to a higher dependency ratio compared to that of external causes reduction. This
is explained by the fact that mortality due to cancer impacts mainly higher ages,
especially ages at which people do not give birth anymore, so that the effect is only
to extend life. As for the mortality due to external causes, it mainly impacts ages at
which people can give birth. The removal of external causes has two main effects:
as for cancer, the first one is to make people live longer, but at the same time many
people who did not die from external causes (e.g. accidents) at young ages will give
birth. This population renewal increases the proportion of young people and makes
the age dependency ratio lower than that with a reduction in cancer. One can find
other demographic studies dealing with the counter-intuitive fact that a reduction
in mortality do not necessarily lead to older populations; it can even lead to younger
populations (see e.g. Keyfitz (1968)). As we see, the impact on the whole population
depends on the ages at which mortality decreases. Different causes impact different
ages and thus different populations will result when some causes are reduced or
removed.

Remark 1. Note that external causes impact mainly men, whereas our model as-
sumptions result in a number of births depending only on the female population. In
case of removal of external causes, the number of births will increase due to the
part of the female population that do not die from external causes, but this could be
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4.3 Cause-of-Death Reduction

reinforced if a birth rate would have been defined for males.

In Figure 9, the time evolution of the population size under these three scenarios
is plotted. It is interesting to note that, even if the age composition becomes stable
over time, the population size is still decreasing. This is not consistent with real
demographic insights but this can be explained by the fact the migration flows
are not taken into account in these simulations. This is tested and discussed in
the following subsection. As expected, the population size is higher under cause
removal scenarios. In the short term, cancer reduction leads to a bigger population
since more individuals survive. However, in the medium-long term, the removal of
external causes leads to a higher number of individuals due to the additional effect
of the increasing number of births. On the whole, the size evolution depends on the
cause which is reduced.
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Figure 8: Age dependency ratio over
100 years from the limit equation

0 20 40 60 80 100

92
00

94
00

96
00

98
00

10
00

0
10

20
0

10
40

0

Time (years)

D
ep

en
de

nc
e 

ra
tio

 (
%

)

Reduction of cancers (e0h=79.1, e0f=85.1)
Ignoring external causes (e0h=79.1, e0f=85.1)
All causes  (e0h=77.7, e0f=84.4)

Figure 9: Population size for 100 years
from the limit equation

Stochastic scenarios Stochastic scenarios are interesting to get additional in-
sights on the random pattern of the dependency ratio and the magnitude of the
demographic noise linked to the finite size of the population. Scenario (ii) of exter-
nal causes of death removal is depicted in Figure 10, whereas scenario (iii) (cancer
reduction) is added in Figure 11. All stochastic scenarios are computed starting
with an initial population with size 10 000. For such size, to distinguish both sce-
narios is a hard task, making previous conclusions less striking with small samples.
However, we argue that real national population sizes are more in accordance with
"large population" patterns (see Figure 4 for an initial population size of 100 000).
Unfortunately, testing it numerically would required computer resources that we do
not have, and is beyond the scope of the present paper.
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4.4 Sensitivity to Population Flows and Fertility
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Figure 10: Age dependency ratio from
2008 to 2108: External causes removal
(10 scenarios)
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Figure 11: Age dependency ratio from
2008 to 2108: reducing cancers and ex-
ternal causes removal (10 scenarios)

4.4 Sensitivity to Population Flows and Fertility

We address here the sensitivity of our results to several assumptions on migration
flows and fertility rates. We emphasize that population flows are computed here in a
first basic approach, therefore we keep in mind that what we call "migration" is not
measured properly in terms of pure demographic analysis. However, our approach
is made so as to replicate the data and allows us to observe several interesting
patterns. We first detail how the migration rates are computed and then present nine
scenarios with several fertility and migration assumptions. On the whole, our results
persist with the inclusion of migration at several levels: the dependency ratios differ
between the two scenarios (cancer reduction and external causes removal) even in
the short term, making our findings stronger when population flow effects are taken
into account.

Population flow estimation As for the whole study, we focus on year 2008
for the computation of migration indicators. Migration flows are computed as the
difference between the population at the end and the beginning of 2008, augmented
by the number of deaths during this year. We approximate the population at the
end of the year 2008 by the population at the beginning of year 2009. Let us denote
M εpaq the population flow per gender ε and age a in year 2008. It is computed as
follows:

M ε
paq “ N ε

2009pa` 1q ´N ε
2008paq `D

ε
paq,

where N ε
t paq is the number of individuals with gender ε and age a at the beginning

of year t, and Dεpaq is the number of deaths with gender ε and age a during the year

23/32



4.4 Sensitivity to Population Flows and Fertility

2008. Since data on deaths are available until the one-year age-class 98 1, we perform
this computation for ages below 98 and assume that ages greater than 99 do not
participate into population flows. This is a reasonable assumption since at old ages,
above 95, population flows are negligible. Estimated population flows M εpaq by age
class can be positive or negative. These are depicted in Figure 12. Let us denote
M ε
`paq (resp. M ε

´paq) the population flow if M εpaq is positive (resp. negative), so
that M εpaq “ M ε

`paq1Mεpaqě0 ´ M ε
´paq1Mεpaqď0. This way, for each age-class, we

do not capture the real number of emigrants or immigrants but only the surplus
or deficit. By abuse of definition, we will call M ε

`paq (resp. M ε
´paq) the number of

immigrants (resp. emigrants). For the entire population in year 2008, population
flows implied a population surplus of 97369 individuals (males and females).

Figure 12: Estimated population flows in 2008 for females (left) and males (right)
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For the use of the population dynamics model, it remains to transform the pop-
ulation numbersM ε

`paq andM ε
´paq into intensities. Let us first consider emigration:

we assume that the emigrant number M ε
´paq is the result of the sum of emigration

intensities of each individual in the population. That is, the individual emigration
rate mεpaq is estimated as m̂εpaq “

Mε
´paq

ERεpaq
, where ERεpaq is the exposure to risk at

age a for individuals with gender ε in the 2008 population. As for immigration, we
want to capture a total intensity, say Iεnatpaq, of arrival of an individual with age a
and gender ε in the reference national 2008 population. Since the intensity Iεnatpaq
represents the average number of arrivals of individuals in age-class a over one year,
an estimator for this quantity is nothing but the number of immigrants in the year
2008, that is Îεnatpaq “M ε

`paq. However, it is natural to think that the immigration
flows depend on the size of the population at destination. Therefore we assume a
linear link with the initial population, so that if we start with an initial population

1INSEE: http : {{www.insee.fr{fr{themes{detail.asp?refid “ ir ´ irsocsd20133
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4.4 Sensitivity to Population Flows and Fertility

with size N ε for gender ε, we use the immigration rate Îεpaq “ Nε

Nε
nat
Îεnatpaq, where

N ε
nat is the size of the 2008 national population. Note here that the total immi-

gration rate is adjusted once at the beginning of the simulation and does not vary
with time: this is consistent to capture the proper order of magnitude but also not
to make it depend on the year to year variations of the population size, since in
practice there is no obvious demographic reason to do so.

Large population equation The sensitivities will be studied with the large pop-
ulation equation, including population flows. This is written as

p Ba ` Btqgpa, tq “ ´Q̃paqgpa, tq `

˜

If paq

Impaq

¸

,

gp0, tq “

ˆ
ż

R`

gpf, a, tqb paq da

˙

˜

p

1´ p

¸

,

where Q̃paq “

˜

µf paq `mf paq 0

0 µmpaq `mmpaq

¸

.

In this setting, the aging population is decreased by the number of deaths and the
number of emigrants, and is increased by the number of immigrants. The dynamics
of the births is the same as the case without population flows: the number of
newborn is computed as the sum of all newborn of all females, weighted by gender
probability at birth. The numerical scheme is a straightforward adaptation of that
described in Section 2.2.

Results We present nine deterministic scenarios with several fertility and migra-
tion assumptions. The scenario with current fertility and migration is displayed in
Figure 13e. In this reference scenario, the age dependency ratio stabilizes around
26% in the mid-term, and then increases to 30% in the long term. Note that previ-
ously, without population flows, the dependency ratio was around 40% in the mid
and long-term (see Figure 8). In Figure 13e, the two other scenarios (ii) and (iii) are
also depicted. Interestingly, cause reduction scenarios exhibit different dependency
ratios levels in the short term, therefore making our findings more relevant when
population flows replicating the data are taken into account. The same conclusion
holds for the other graphs, which present variations of fertility and migration rates
(variation of 25% of the current rates). Fertility scenarios can be read from left to
right: 75% , 100% and 125% of the current fertility rate, whereas the migration
scenarios are displayed from top to bottom: 75%, 100% and 125% of the current
migration rates. As expected, the higher are the fertility and migration, the lower
is the dependency ratio (see figure 13i). Moreover, we note a sensitivity more im-
portant on fertility (left to right) compared to migration (top to bottom). On the
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whole, these results including population flows seems to be more in accordance with
real demographic insights.

5 Concluding Remarks

In this paper, we studied the impact of a decrease in cause-of-death mortality on
the whole population dynamics, including birth patterns and population flows. The
study of the whole population structure gives additional information compared to
previous studies on causes of death focusing only on mortality indicators. We based
our study on a stochastic individual based model which is micro-macro consistent.
This allowed us to compute stochastic and deterministic scenarios, and to study both
the demographic noise in the scenarios and the stable average age pyramid. Interest-
ingly, as causes of death impact different age ranges, the impact on the age pyramid
can be different. Numerical simulations based on French data illustrate that even
if life expectancy improves in the same way, the reduction of some causes of death
can lead to populations that are older (cancer) or younger (external causes) than
expected. One can think of many applications of our model, including the study of
pension systems. Indeed, the evolution of the age dependency ratio impacts directly
pay-as-you-go pension systems, whose stability is often monitored through the age
dependency ratio. This model can also help to study impacts on the population of
public awareness campaigns on cancers or road safety for example. Our modeling
framework is rather general and flexible, and it is possible at this step to further
investigate the impact of several assumptions regarding cause-of-death mortality,
fertility and migration. In particular, further improvements of our study could be
to take into account different dependence assumptions between causes of death at
the individual level.
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Figure 13: Age dependency ratio from 2008 to 2108 with variation of fertility and migration
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(a) Fertility 75%, Migra-
tion 75%
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(b) Fertility 100%, Migra-
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(c) Fertility 125%, Migra-
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(d) Fertility 75%, Migra-
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(e) Fertility 100%, Migra-
tion 100%
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(f) Fertility 125%, Migra-
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(h) Fertility 100%, Migra-
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Appendix

We present the asymptotic behavior of the deterministic age pyramid (see Iannelli
et al. (2005)). Let us first focus on the dynamics of the number of females derived
from Equations (2.4)-(2.5):

p Bag ` Btgq pf, a, tq “ ´µ
f
paq gpf, a, tq

gpf, 0, tq “ p

ż

R`

gpf, a, tqb paq da

gpf, a, 0q “ g0pf, aq.
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In the deterministic model, the number of children per female is

Rf
0 “

ż

R`

bpaqe´
şa
0 µ

f psqdsda.

Then, the mean number of children per individual is given by R0 “ pRf
0 . With our

data, in the reference scenario, we find Rf
0 “ 1.97 and R0 “ 0.964. Note that the

first value Rf
0 is of the same order of magnitude as the fertility statistics for France.

Note also that we are in the case R0 ă 1 so that the average population size decreases
after some time and goes to zero as time goes to infinity. In Figure 9, one can see
that the speed of decrease for the population size depends on the cause of death
which is under reduction. But up to some scaling, one can be more precise about
the age pyramid long term behavior. Let us introduce the characteristic equation in
λ,

p

ż

R`

bpaqe´λa´
şa
0 µ

f psqdsda “ 1.

The unique real solution λ˚ (say) is called the population intrinsic growth rate.
Since we have R0 ă 1, then λ˚ ă 0. Numerically, we find λ˚ “ ´0.00123 (reference
scenario) and we are in the sub-critical regime. It can be interpreted as follows:
this is the constant to be added to the death rate to get exactly one children per
individual, in other words to make the dynamics critical. One can now focus on the
long term behavior of e´λ˚tgpf, a, tq: this is known as the Sharpe-Lotka theorem.
It states that the long-term age pyramid density for the female population can be
written, up to a renormalizing constant, as

φpf, aq “ e´λ
˚a´

şa
0 µ

f psqds.

Now, from Equations (2.4)-(2.5), it can be shown that e´λ˚tgpm, a, tq converges up
to a normalizing constant to p1 ´ pq

ş

R`
φpf, aqbpaqda, and since gpm, a, t ` aq “

gpm, 0, tqe´
şa
0 µ

mpsqds, we formally get

e´λ
˚pt`aqgpm, a, t` aq “ e´λ

˚tgpm, 0, tqe´λ
˚a´

şa
0 µ

mpsqds,

which converges as tÑ `8 up to a constant to e´λ˚a´
şa
0 µ

mpsqds. In other words, the
age pyramid density for males is given up to a constant by

φpm, aq “ e´λ
˚a´

şa
0 µ

mpsqds.

So the age pyramid for males and female is governed both by mortality and natality,
since the solution λ˚ depends on these two. To conclude, the overall average age
pyramid density is given up to a renormalizing constant by

pφpm, aq ` p1´ pqφpf, aq.

The comparison between the average age pyramid at time 300 years and the
theoretical age pyramid is given in Figure 14.
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Figure 14: Comparison between the theoretical age pyramid and the age repartition
at time 300 for females and males.
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