FA$\mu$ST: speeding up linear transforms for tractable inverse problems

Abstract : In this paper, we propose a technique to factorize any matrix into multiple sparse factors. The resulting factorization, called Flexible Approximate MUlti-layer Sparse Transform (FAµST), yields reduced multiplication costs by the matrix and its adjoint. Such a desirable property can be used to speed up iterative algorithms commonly used to solve high dimensional linear inverse problems. The proposed approach is first motivated, introduced and related to prior art. The compromise between computational efficiency and data fidelity is then investigated, and finally the relevance of the approach is demonstrated on a problem of brain source localization using simulated magnetoencephalography (MEG) signals.
Type de document :
Communication dans un congrès
European Signal Processing Conference (EUSIPCO), Aug 2015, Nice, France
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01156478
Contributeur : Luc Le Magoarou <>
Soumis le : mercredi 27 mai 2015 - 14:12:09
Dernière modification le : mercredi 2 août 2017 - 10:09:05
Document(s) archivé(s) le : mardi 15 septembre 2015 - 07:02:41

Fichier

EUSIPCO_current.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01156478, version 1

Citation

Luc Le Magoarou, Rémi Gribonval, Alexandre Gramfort. FA$\mu$ST: speeding up linear transforms for tractable inverse problems. European Signal Processing Conference (EUSIPCO), Aug 2015, Nice, France. 〈hal-01156478〉

Partager

Métriques

Consultations de
la notice

1747

Téléchargements du document

265