M. Leonard, . Adleman, W. Hendrik, and . Lenstra, Finding irreducible polynomials over finite fields, Proceedings of the eighteenth annual ACM symposium on Theory of computing, pp.350-355, 1986.

K. Aoki, J. Franke, T. Kleinjung, K. Arjen, D. A. Lenstra et al., A Kilobit Special Number Field Sieve Factorization, Advances in Cryptology?ASIACRYPT 2007, pp.1-12, 2007.
DOI : 10.1007/978-3-540-76900-2_1

S. Bai, Polynomial selection for the number field sieve, 2011.

S. Bai, C. Bouvier, A. Kruppa, and P. Zimmermann, Better polynomials for GNFS, Mathematics of Computation, vol.85, issue.298, 2014.
DOI : 10.1090/mcom3048

URL : https://hal.archives-ouvertes.fr/hal-01089507

R. Barbulescu, Algorithmes de logarithmes discrets dans les corps finis, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00925228

R. Barbulescu and P. Gaudry, Algebraic ) improvements to the number field sieve for non-prime finite fields, Aurore Guillevic, and François Morain

R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, Improving NFS for the Discrete Logarithm Problem in Non-prime Finite Fields, Advances in Cryptology -EUROCRYPT 2015, pp.129-155, 2015.
DOI : 10.1007/978-3-662-46800-5_6

URL : https://hal.archives-ouvertes.fr/hal-01112879

R. Barbulescu and C. Pierrot, Abstract, LMS Journal of Computation and Mathematics, vol.17, issue.A, pp.230-246
DOI : 10.1017/CBO9781139856065

S. L. Paulo, M. Barreto, and . Naehrig, Pairing-friendly elliptic curves of prime order, Selected areas in cryptography, pp.319-331, 2006.

Y. Bistritz and A. Lifshitz, Bounds for resultants of univariate and bivariate polynomials, Linear Algebra and its Applications, vol.432, issue.8, pp.1995-2005, 2010.
DOI : 10.1016/j.laa.2009.08.012

I. F. Blake, R. Fuji-hara, R. C. Mullin, and S. A. Vanstone, Computing Logarithms in Finite Fields of Characteristic Two, SIAM Journal on Algebraic Discrete Methods, vol.5, issue.2, pp.276-285, 1984.
DOI : 10.1137/0605029

F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography. Designs, Codes and Cryptography, pp.133-141, 2005.
DOI : 10.1007/s10623-004-3808-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. P. Buhler, H. W. Lenstra, C. Jr, and . Pomerance, Factoring integers with the number field sieve, Lecture Notes in Math, vol.32, issue.107, pp.50-94, 1993.
DOI : 10.1109/TIT.1986.1057137

H. Cohen, Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics, 2000.

A. Commeine and I. Semaev, An Algorithm to Solve the Discrete Logarithm Problem with the Number Field Sieve, Public Key Cryptology?PKC 2006, pp.174-190, 2006.
DOI : 10.1007/11745853_12

D. Coppersmith, Modifications to the Number Field Sieve, Journal of Cryptology, vol.6, issue.3, pp.169-180, 1993.
DOI : 10.1007/BF00198464

K. Foster, HT90 and " simplest " number fields, Illinois J. Math, vol.55, issue.4, pp.1621-1655, 2011.

D. Freeman, M. Scott, and E. Teske, A Taxonomy of Pairing-Friendly Elliptic Curves, Journal of Cryptology, vol.2, issue.5, pp.224-280, 2010.
DOI : 10.1007/s00145-009-9048-z

M. Daniel and . Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM Journal on Discrete Mathematics, vol.6, issue.1, pp.124-138, 1993.

A. Joux and R. Lercier, The Function Field Sieve Is Quite Special, Algorithmic Number Theory?ANTS V, pp.431-445, 2002.
DOI : 10.1007/3-540-45455-1_34

URL : https://hal.archives-ouvertes.fr/hal-01102040

A. Joux, R. Lercier, N. Smart, and F. Vercauteren, The Number Field Sieve in the Medium Prime Case, Advances in Cryptology?CRYPTO 2006, pp.326-344, 2006.
DOI : 10.1007/11818175_19

URL : https://hal.archives-ouvertes.fr/hal-01102034

A. Joux and C. Pierrot, The Special Number Field Sieve in $\mathbb{F}_{p^{n}}$, Pairing-Based Cryptography ? Pairing 2013, pp.45-61, 2013.
DOI : 10.1007/978-3-319-04873-4_3

T. Kleinjung, On polynomial selection for the general number field sieve, Mathematics of Computation, vol.75, issue.256, pp.2037-2047, 2006.
DOI : 10.1090/S0025-5718-06-01870-9

T. Kleinjung, Polynomial selection Slides at CADO workshop, 2008.

T. Kleinjung, K. Aoki, J. Franke, K. A. Lenstra, E. Thomé et al., Factorization of a 768-Bit RSA Modulus, Advances in Cryptology?CRYPTO 2010, pp.333-350, 2010.
DOI : 10.1007/978-3-642-14623-7_18

URL : https://hal.archives-ouvertes.fr/inria-00444693

T. Kleinjung, W. Joppe, . Bos, K. Arjen, and . Lenstra, Mersenne Factorization Factory, Advances in Cryptology?ASIACRYPT 2014, pp.358-377, 2014.
DOI : 10.1007/978-3-662-45611-8_19

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Lenstra, H. Lenstra, M. Manasse, and J. Pollard, The number field sieve, The development of the number field sieve, pp.11-42, 1993.
DOI : 10.1109/TIT.1986.1057137

URL : https://hal.archives-ouvertes.fr/inria-00108061

D. V. Matyukhin, On asymptotic complexity of computing discrete logarithms over GF(p), Discrete Mathematics and Applications, vol.13, issue.1, pp.27-50, 2003.
DOI : 10.1515/156939203321669546

A. Miyaji, M. Nakabayashi, and S. Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Trans. on Fundamentals of Electronics, Communic. and Computer Sci, vol.84, issue.5, pp.1234-1243, 2001.

A. Murphy and N. Fitzpatrick, Elliptic curves for pairing applications Cryptology ePrint Archive, Report, vol.302, 2005.

C. Pierrot, The Multiple Number Field Sieve with Conjugation and Generalized Joux-Lercier Methods, Advances in Cryptology -EUROCRYPT 2015, pp.156-170, 2015.
DOI : 10.1007/978-3-662-46800-5_7

URL : https://hal.archives-ouvertes.fr/hal-01056205

J. M. Pollard, The lattice sieve, Lecture Notes in Math, vol.1554, pp.43-49, 1993.
DOI : 10.1090/psapm/042/1095550

O. Schirokauer, Discrete Logarithms and Local Units, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.345, issue.1676, pp.409-423, 1676.
DOI : 10.1098/rsta.1993.0139

O. Schirokauer, Using number fields to compute logarithms in finite fields, Mathematics of Computation, vol.69, issue.231, pp.1267-1283, 2000.
DOI : 10.1090/S0025-5718-99-01137-0

I. Semaev, Special prime numbers and discrete logs in finite prime fields, Mathematics of Computation, vol.71, issue.237, pp.363-377, 2002.
DOI : 10.1090/S0025-5718-00-01308-9

H. Douglas and . Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory, vol.32, issue.1, pp.54-62, 1986.