
HAL Id: hal-01155164
https://hal.archives-ouvertes.fr/hal-01155164

Submitted on 26 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Safety-Level Aware Bin-Packing Approach for Control
Functions Assignment

Mohamed Benazouz, Jean-Marc Faure

To cite this version:
Mohamed Benazouz, Jean-Marc Faure. Safety-Level Aware Bin-Packing Approach for Control Func-
tions Assignment. The 15th IFAC/IEEE/IFIP/IFORS Symposium on Information Control Problems
(INCOM 2015), May 2015, Ottawa, Canada. �hal-01155164�

https://hal.archives-ouvertes.fr/hal-01155164
https://hal.archives-ouvertes.fr

Safety-Level Aware Bin-Packing Approach
for Control Functions Assignment

Mohamed BENAZOUZ Jean Marc FAURE

mohamed.benazouz@ens-cachan.fr jean-marc.faure@ens-cachan.fr
LURPA, ENS Cachan, France,

Abstract: The assignment of functions to controllers is a crucial step when building an
operational control system architecture. We identified this problem as a Multiple Choice Vector
Bin-Packing with Conflicts that is a generalization of the one-dimensional Bin-Packing problem.
Such problems are known to be strongly NP-Hard and exact techniques to solve them are too
time and/or space consuming because of the combinatorial explosion. Therefore, in this paper,
we propose a fast First-Fit Decreasing based heuristic that derives an optimized number of
controllers in polynomial time. The objective is to minimize the global cost of controllers while
satisfying safety constraints. We show through experiments that the adopted approach allows
us to obtain values that are in average very close to the optimum.

Keywords: Control Function, Bin-Packing Problem, Multiple Choice, Conflicts, NP-hard
Problem.

1. INTRODUCTION AND RELATED WORKS

The operational control architecture of a production sys-
tem is composed of a set of physical devices (e.g. Pro-
grammable Logic Controllers, industrial computers) that
performs the necessary tasks (or functions) to control the
plant.

In order to build this architecture, control functions must
first be assigned to the physical controllers while satisfying
several architectural and safety constraints. Afterwards,
the resulting architecture must go through a validation
process in which performances, such as response time (see.
Meunier et al. (2007)) and availability are checked. In fact,
the behavior of the control system is highly impacted by
assignment decisions.

According to risks incurred in case of failure, functions
are classified in different safety-level classes. Controllers of
different criticality factor are then provided. The higher
the safety-level of the function the greater the criticality
factor of the controller hosting it must be. Then, functions
of each class can only be assigned to some safety compat-
ible controllers.

When assigning functions, we should also consider that
controllers have limited capacity in terms of resources
such as cpu, memory, and inputs/outputs... Besides, some
functions are associated with separation constraints. A
separation constraint between a pair of funtions indicates
that they must not be assigned to the same controller.
This is usually due to safety reasons and fault-tolerance
considerations. For instance, in order to increase the avail-
ability of some critical processes, their associated functions
are made redundant. Therefore, these redundant functions

? This work was supported by Cluster CONNEXION program
(COntrôle commande Nucléaire Numérique pour l′EXport et la
rénovatION).

must not be assigned to the same controller as otherwise,
if the controller hosting them fails, the task they perform
will no longer be available which may have disastrous
consequences.

The high complexity of operational architecture design
leads designers to have recourse to an exploration process.
The architecture designer iterates over several variations
by changing functions assignment decisions until a satisfac-
tory solution that meets all requirements is found. Due to
their potentially excessive run-times, exact techniques are
discarded in such an exploration process. Fast and scalable
heuristics can be of great help in this decision process as
they provide a sufficiently fast evaluation tools to allow
going through several designs.

In this paper, we seek to minimize the global cost of the ar-
chitecture such that previously mentioned constraints are
satisfied. Our assignment problem generalizes more than
a variant of the Bin-Packing problem (in short BP). This
combinatorial problem consists of packing items of differ-
ent sizes into the minimum possible number of identical
bins with a given capacity. In its multi-dimensional variant
known as Vector Bin-Packing (in short VBP), items and
bins are multi-dimensional. Dimensions may correspond
in our case to cpu and memory consumption, number of
inputs/outputs.

When considering separation constraints, the problem
becomes a VBP with conflicts. This problem combines the
VBP and the Vertex Coloring problem.We are then given
a conflict graph in which each vertex corresponds to a
conflicting item. A pair of conflicting items that cannot be
assigned to the same bin are represented by an edge in the
conflict graph between the two corresponding vertices.

The conflict-free version of our problem, i.e. without con-
sidering separation constraints, can be seen as an instance
of a Multiple-Choice VBP (MVBP) (see. Patt-Shamir

and Rawitz (2012)). In this variant of the Bin-Packing
problem, different types of bins with differents costs and
characteristics are provided, and items have different in-
carnations depending on these types. Due to safety con-
straints, we address a special case of the MVBP in which a
function would have no incarnation for incompatible types
of controllers.

Both the Bin-Packing and the Vertex Coloring problems
are strongly NP-hard (see. Garey and Johnson (1979)).
Thus, as a generalization of these two problems, the control
functions assignement problem we address in this paper
is also strongly NP-hard. Real instances we are aiming
at may have around ten thousand functions and need
hundreds of controllers with a number of functions per
controller that may exceed 40. Such instances are beyond
the solving capacity of exact algorithms for which we
can already find instances of two hundred items that are
still open, i.e. for which no optimal solution is known
(see. Brandão and Pedroso (2013a)). On the other hand,
for such instances with high number of items per bin,
heuristics provide good solutions because the waste in bins
tends to be smaller.

Contribution The principal contribution of this paper
is a safety-level aware vector bin-packing approach that
mimimizes the cost of an operational control architecture
by assigning functions to safety compatible controllers
while satisfying resource and separation constraints. This
is accomplished as follows. First, a main strategy, that
indicates an order into which functions must be treated,
is detailed. This order is specified according to functions
safety-level classes and to the costs of their compatible
controllers.

At each step of the order, a bin-packing algorithm is called
to assign functions. We propose a heuristic that is an
improved version of the First-Fit Decreasing algorithm (in
short FFD). The FFD, that is a greedy algorithm, has
been proven to be a powerful fast heuristic to solve the
one-dimentional bin-packing problem. The version pro-
posed was developed specifically to manage the multi-
dimensional and the conflicts aspects in accordance with
our main strategy. The FFD operates by first sorting
functions which may greatly impact the results. We pro-
pose three different sortings that alternate between giving
priority to resource constraints satisfaction and conflicts
resolving.

Finally, we run several experiments in order to prove the
accuracy of our ordering strategy and our adapted version
of the FFD.

Related works In Lemattre et al. (2011), authors pro-
pose a technique based on the verification of a reachability
property on a network of communicating automata to
model the assignment problem. However, this technique
is meant more to find a feasible solution that satisfies
constraints than to obtain an optimized one. Besides,
controllers are considered of the same cost no matter their
integrity level.

As mentioned before, the problem we address in this paper
is one of several variants of bin-packing problem. Despite

the extremely rich literature in this field, we were not able
to find works that consider jointly both the multiple-choice
of bins and the conflicting items when solving a vector
bin-packing problem. In Brandão and Pedroso (2013a)
and Brandão and Pedroso (2013b), authors propose an
exact technique based on an Arc-Flow formulation that
represents all the feasible packing solutions of a problem in
a compact graph. Different arc-flow models are then built
using this formulation for the VBP, the one-dimensional
BP with conflicts and the MVBP. Though it seems possible
to combine these models in order to build an arc-flow
model for our specific problem and for general MVBP with
conflicts, we will be quickly limited by the instances that
can be treated using such formulation. In fact, in addition
to the size of our real instances that may exclude the use of
any exact methods, this arc-flow technique is very sensitive
to the number of items per bin (10 items per object is a
maximum limit).

In Patt-Shamir and Rawitz (2012), a polynomial-time
approximation algorithm for the MVBP is proposed whose
approximation ratio depends on the number of dimensions.
On the other hand, VBP with conflicts are hard to
approximate for general graphs of conflicts. Then, in
most of the existing works this variant is considered on
restricted graphs of conflicts. Authors in Epstein et al.
(2008) propose approximations for the 2-dimensional bin-
packing with perfect and bi-partite conflicts graphs. In
our instances specification, separation constraints do not
follow a specified pattern; their conflict graph should then
be considered as general.

The paper is organized as follows: our notations and
problem constraints are presented in the next Section 2.
A Mixed Integer Linear Program (in short MILP) that
models our problem is also proposed. Then, our safety-level
FFD based approach is detailed in Section 3. Section 4 is
dedicated to experiment results. We conclude in Section 5.

2. PROBLEM FORMULATION

For the sake of comprehension, and without impacting
the generality, we will limit our formulation to the 2-
dimensional VBP case.

Let us consider a set of functions F and a set of controllers
C. Each function fi ∈ F is characterized by its

• inouti : the number of its inputs and outputs,
• cpui : its cpu consumption, and
• sli : its safety level with sli ∈ {A,B,C,NC}.

A function fi with sli = A (resp. B,C,NC) is said to be
of class A (resp. B,C,NC).

On the other hand, each controller Cj ∈ C is characterized
by its

• INOUTj : its capacity in terms of inputs/outputs.
• CPUj : its processing capacity,
• CFj : its criticality factor with CFj ∈ {0, 1, 2},
• COSTj : its cost.

A controller Cj with CFj = 0 (resp. 1,2) is said to be of
category 0 (resp. 1,2). Controllers with smaller criticality
factor identifier are safer and more reliable. The cost of
a controller is proportional to its characteristics. Since in

our case, all controllers are considered to have the same
processing capacity CPU , i.e.

∀Cj ∈ C, CPUj = CPU,

and the same capacity of inputs/outputs INOUT , i.e.

∀Cj ∈ C, INOUTj = INOUT,

the cost of a controller depends only on its criticality
factor. The safer it is, the more expensive it is.

For safety reasons, functions must be assigned to con-
trollers according to their safety levels. A controller of

• category 0 can only host A-class and B-class func-
tions,
• category 1 can only host B-class and C-class func-

tions,
• category 2 can only host C-class and NC-class func-

tions.

A loose upper bound on the number of controllers of each
category can then be derived. Let us define by FA (resp.
FB , FC ,FNC) the set of A-class (resp. B,C,NC) functions
such that F = FA ∪ FB ∪ FC ∪ FNC . Then, as we seek
to minimize the cost of controllers, we need at most |FA|
(resp. |FB |, |FC |+|FNC |) controllers of category 0 (resp. 1,
2). In fact, if we consider the solution that consists in each
controller hosting only one function, functions of FA would
be packed in controllers of category 0, those of FB would
be packed into controllers of category 1, and functions of
FC and FNC would be packed into controllers of category
2.

Using this loose upper bound and following safety con-
straints, we can construct S, the set of couples (fi, Cj) ∈
F × C such that the class of fi is incompatible with the
category of Cj .

Besides, as an input of our problem we are given a list L
of pairs of functions (fi, fi′) such that fi is in conflict with
fi′ .

Let us consider also the following Boolean variables

• xij that should take the value 1 iff the function fi is
assigned to controller Cj , and
• Uj that should take the value 1 iff the controller Cj

is used, i.e. hosting at least one function.

Then, our assignment problem can be modelled by the
following Mixed Integer Linear Program (in short MILP):

minimize
∑
Cj∈C

COSTj · Uj subject to

∀fi ∈ F,
∑
Cj∈C

xij = 1 (1)

∀Cj ∈ C,
∑
fi∈F

inouti · xij ≤ INOUT (2)

∀Cj ∈ C,
∑
fi∈F

cpui · xij ≤ CPU (3)

∀(fi, Cj) ∈ F× C, xij ≤ Uj (4)
∀Cj ∈ C,∀(fi, fi′) ∈ L, xij + xi′j ≤ 1 (5)
∀(fi, Cj) ∈ S, xij = 0 (6)
∀(fi, Cj) ∈ F× C, xij ∈ {0, 1} (7)
∀Cj ∈ C, Uj ∈ {0, 1} (8)

This MILP minimizes the global cost of used controllers.
Constraint (1) models the fact that a function must

be assigned to one and only one controller. Constraints
(2) and (3) satisfy the limited capacity of controllers
in terms of CPU and INOUT resources. Constraint (4)
indicates whether a controller is used or not. Constraint
(5) ensures the separation of conflicting functions, i.e.
their assignment to different controllers. Constraint (6)
ensures the compatibility of the classes of functions with
the categories of controllers to which they are assigned.

For solvers that may be more efficient on MILPs without
Boolean constraints, the domain of variables xij in (7) and
Uj in (8) can be relaxed to N. In fact, the minimization
objective and the set of contraints (1) and (4) bind their
values to 0 or 1.

3. OUR APPROACH

At first, we present our assignment strategy to manage
safety compatibilities between functions and controllers in
order to reduce the cost of the global architecture. Then,
we detail our packing algorithm.

3.1 Safety-Level Management

To manage safety constraints, we adopted the following
strategy that specifies an order in which functions are
assigned to compatible controllers.

Algorithm 1 Main Strategy Algorithm

1: Pack functions of class A into controllers of category 0
2: Pack functions of class NC into controllers of category

2
3: Pack functions of class B into remaining space of

already used controllers of category 0, otherwise use
new controllers of category 1

4: Pack functions of class C into remaining space of
already used controllers of category 1 or 2, otherwise
use new controllers of category 2

This packing order is driven by the cost minimization
objective. In fact, since functions of class A can only
be packed into controllers of category 0, we proceed by
packing them first. This has for result to set definitely
the number of controllers of category 0 to its minimum
possible as, first, they are the most expensive controllers
and, second, all the remaining functions can be assigned
to cheaper ones. Then, we pack functions of class NC
to controllers of category 2. The obtained number of
controllers is a lower bound on the number of controllers
of this category. Now that these two classes are packed,
we resume by packing functions of class B. We use first
the remaining resources in already created controllers of
category 0 at step 1, and if it is not sufficient, we create new
controllers of category 1 as they are cheaper. Finally, we
pack functions of class C into the available space provided
by already created controllers at step 2 and 3 and by
creating new controllers of category 2 if necessary.

Note that steps (1) and (2) involve different classes of
functions and different categories of controllers. Therefore,
these two first steps can be interchanged and even paral-
lelized. As for the last two steps, it is important to proceed
as detailed in the specified order to follow the objective
of minimizing the cost of controllers. Indeed, if we pack

functions of class C first, it would be difficult to determine
whether new created controllers should be of category 2 or
1 in anticipation of the possible assignment of functions of
class B into these controllers.

We should mention that at this level, the proposed order
of packing does not specify the underlying algorithm used
to assign functions to controllers, that is detailed in the
next subsection.

3.2 First-Fit Decreasing Assignment Approach

The first-fit packing algorithm (see. Algorithm 2) consists
of going through the list of functions (line 1) and for each
function to assign it to the first encountered controller in
which it can fit in (lines 2 to 7). If there is no already
created controller in which the function can fit in, then we
create a new controller and we assign the function to it
(lines 8 to 11).

Algorithm 2 First-Fit Algorithm

1: for All functions fi/i ∈ {1, 2, ..., n} do
2: for All controllers Cj/j ∈ {1, 2, ...} do
3: if fi fits in Cj then
4: Assign fi to Cj

5: Break the inner loop to assign the next function
6: end if
7: end for
8: if fi does not fit in any available controller then
9: Call Create New Controller (fi)

10: Assign fi to the new controller
11: end if
12: end for

Note that each time a function is assigned to a controller,
we need to update the remaining resources of this con-
troller (lines 4 and 10).

In the decreasing variant of this algorithm (see. Algorithm
3), the functions are first sorted in a non-increasing order
following their characteristics (line 1) before they are
packed (line 2), which corresponds to the simple policy
that consists of packing big items first in the original
algorithm.

Algorithm 3 First-Fit Decreasing Algorithm (FFD)

1: Sort functions in a non-increasing order
2: Call First-Fit Algorithm

Now, in our case, this leaves several questions to be
answered. We need to define the fitting in conditions,
which are detailed in the next subsection. Besides, we
need to specify the policy of controllers creation (See
Subsection 3.4). Finally, since we are in a conflicting and
multidimensional context, we have to define how functions
are sorted (See Subsection 3.5).

3.3 Fitting in conditions

A function fi fits in a controller Cj if and only if the
following conditions are satisfied

• the class sli is compatible with the category CLj .

• the controller Cj has enough remaining cpu and
inouts resources to perform fi.

• fi is not in conflict with any already assigned function
fi′ to the controller Cj .

Several ways exist to check quickly the last condition. One
way is to keep for each function a list of controllers to
which a conflicting function has already been assigned.
These lists are updated as we advance in the assignment
process. Then, if a controller satisfies the two first fitting
in conditions but belong to this list, it is excluded.

3.4 Controllers Creation Policy

The policy to set the category of a new created controller
is defined in Algorithm 4.

Algorithm 4 Create New Controller (fi)

1: if fi is of Class A then
2: Create a new controller of category 0
3: else if fi is of Class B then
4: Create a new controller of category 1
5: else if fi is of Class C then
6: Create a new controller of category 2
7: else if fi is of Class NC then
8: Create a new controller of category 2
9: end if

The consistency of this policy with our cost minimization
objective is ensured by the order in which functions of
different classes are packed as presented in Subsection 3.1.
If another order is specified this policy is no more relevant.

3.5 Sorting Criteria

In the original version of the bin-packing problem, items
are sorted based on their unique dimension, their size.
Given the additional set of constraints that we treat, sev-
eral criteria can be adopted to sort functions. The generic
idea in that case is to aggregate subsets of characteristics
of an object to get only one characteristic that represents
them. In one sense, this will have for effect to reduce the
multidimensional problem into a mono-dimensional one for
which we can apply the original version of the algorithm.

We adopted two agregators whereby functions are sorted
according to:

• maxResources : the relative maximum of their num-
ber of inouts and their cpu consumption
max(cpui

CPU , inouti
INOUT).

• meanResources : the relative mean of their number of
inouts and their cpu consumption cpui

CPU + inouti
INOUT .

It is necessary to use relative values instead of absolute
ones as in the general case dimensions are not of the same
nature. Note also that these aggregators present the ad-
vantage of being easily extensible to multiple dimensions.
Nonetheless, they present in our case the disadvantage of
giving priority to resolving resources constraints and ig-
nore the conflicting aspect of our problem, which may lead
to an overestimation of necessary number of controllers.
This can be highlighted by the following example.

Let us suppose that at the end of an assignment process
two last functions fi, fi′ remain such that fi > fi′
according to both previously defined sorting criteria. We
suppose also that there exists only two controllers Cj and
Cj′ with j > j′ that offer enough resources to host fi and
fi′ but cannot host both of them at the same time.

Then, according to Algorithm 3, fi is assigned first to Cj .
Now, if we suppose that a conflicting function with fi′
is already assigned to Cj′ , then we will need to create a
new controller to assign fi′ while a better solution would
have been to assign fi′ to Cj and fi to Cj′ . In order to
overcome such a case we considered another aggregator
that sorts functions according to

• nbrConflicts : their number of conflicts +(cpui

CPU +
inouti
INOUT)/2.

Following this criterion, the more a function has conflicts
with other functions the more it is preferable to assign it
first. Functions with no conflicts will be assigned at last.

The impact of these different criteria will be more dis-
cussed through experiments in the next section.

4. EXPERIMENT RESULTS

In this section, we study the impact of our decisions on
obtained results. Usually, when solving NP-hard combi-
natorial problems, we are very concerned with algorithms
run-times. Nonetheless, since run-times and scalability are
not a problem for a greedy algorithm such as the FFD, we
are more concerned about the quality of solutions.

Apart from the overestimation that may result from the
underlying packing algorithm used (FFD in our case), our
strategy to manage safety-level constraints described in
Subsection 3.1 may result in an overstimation of the re-
quired number of controllers of category 1 and 2. Category
0 is discarded as explained before.

In order to evaluate the accuracy of our results we decided
to compare them with optimal solutions. Since exact
techniques are unable to solve the problem at full scale
(∼10000 functions and ∼600 controllers), the comparison
was made on the basis of samples of reduced size.

One thousand samples of 200 functions each were gener-
ated. Those samples were obtained according to charac-
teristics provided in a specification of anonymized data
that specifies by mean of intervals and their proportions:
cpu loads, number of inouts, number of functions by class,
number of conflicting functions and for each conflicting
function its number of conflicts. However, due to the
reduced size of samples, the number of conflicting func-
tions as well as their number of conflicts were reduced
with regard to the factor 10000 to 200. Otherwise, all
the functions would have been in conflict with the others
and assignment solutions would be obvious. We expect the
generator to deliver representative samples for our analysis
so as to allow us to derive estimations on real instances.

We considered that a controller of a certain category
is twice more expensive than a controller of the below
category. As for optimal solutions, they were obtained by
solving the MILP proposed in Section 2 using the CPLEX
solver IBM-ILOG (2014).

4.1 First-Fit Decreasing accuracy

First, we decided to check our choice of the FFD heuristic
as an underlying packing technique to our global safety-
level aware strategy presented in Subsection 3.1. In order
to isolate the effect of our global strategy to integrate the
safety aspect, the only solution was to check the FFD
on the number of controllers of category 0 obtained. In
fact, the computation of the number of controllers for the
other categories involves at least three steps of the main
algorithm 1.

In 97.3% of samples, the FFD algorithm using the three
criteria described in Subsection 3.5 allowed us to compute
the exact number of controllers of category 0. This perfor-
mance is closely related to the large number of functions
per controller in our instances which allows reducing the
waste in controllers.

The criterion that prioritizes conflicts resolution allowed
by itself obtaining 96.8% while the other two criteria do
not exceed 55% each. However, at this stage, it was to early
to decide definitely whether to prune or not those criteria
that give priority to resources over conflicts resolution.
Therefore, we decided to deep our analysis on the impact
of sorting criteria and their interaction with our global
strategy.

4.2 Impact of Sorting Criterion

In this subsection, the impact of sorting criteria on the
obtained architecture cost is evaluated. In a first experi-
ment, the same criterion was kept through all the steps of
Algorithm 1.

We adopted three indicators for the comparison of these
criteria

• NbrOptimal : The number of optimal solutions ob-
tained.

• AvgRelInc : The average relative increase in cost.
• MaxRelInc : The maximum relative increase in cost.

The second indicator is an average value over the thousand
samples whereas the third indicator highlights the worst
case performance.

Table 1. Comparison of sorting criteria
(values in %)

Criterion NbrOptimal AvgRelInc MaxRelInc

maxResources 18.8 5.87 26.66
meanResources 20.7 5.53 24.14
nbrConflicts 56.2 1.92 14.28

Best solution 59.8 1.63 13.79

Contrary to our expectations for a good lead of mean-
Resources criterion over maxResources criterion, results
reported in Table 1 show that sorting functions according
to their relative mean of resources performs slightly better
than the relative maximum of resources. However, all the
indicators confirm that sorting according to the number
of conflicts far outperforms maxResources and meanRe-
sources sortings. Nonetheless, these last should not be
discarded as it is shown by the Best solution row that keeps
for each sample the best solution obtained amongst the

three. In fact, some additional exact solutions (less than
4%) are provided exclusively by those criteria. In other
terms, for some instances, it is better to give priority to
resources over conflicts when sorting.

Seeking to improve these results, we allowed combining
sorting criteria in a second experiment, i.e. to change
the sorting criterion between the subsequent steps of
the main algorithm 1. This would result in 34 = 81
possible combination when the three criteria are used.
Nevertheless, due to the reduced running time of the FFD
heuristic (less than 10 milliseconds per combination), we
could afford it. Results are reported in Table 2.

Table 2. Combining criteria (values in %)

Combined criteria NbrOptimal AvgRelInc MaxRelInc

maxRes. & meanRes. 31.2 4.28 21.43
maxRes. & nbrConfl. 65.8 1.38 13.33
meanRes. & nbrConfl. 65.9 1.34 13.33
All three criteria 67.9 1.24 13.33

All indicators have improved which proves that within
the same sample, different classes of functions may need
different sortings. For some samples, different sortings
result in the same number of controllers until a certain
step of Algorithm 1 but may result in different numbers of
controllers in the subsequent steps.

Combining maxResources with meanResources enhances
their results, but they stay far behind the nbrConflicts
criterion. However, the addition of any of these resource
based criteria to the nbrConflicts criterion allows obtaining
66% of exact solutions (rows 2 and 3). That is an improve-
ment of 17% in comparison with nbrConflicts row of Table
1. The combination of all three criteria allows us to get 2%
more of exact solutions.

The AvgRelInc indicator does know an improvement of
around 24% (see. Best solution row of Table 1). However,
considering that it was already excellent (below 2% of
relative increase), this improvement is not that noticeable.
As for the MaxRelInc indicator, it has barely improved and
got stuck at 13.33%. The reason will be more discussed in
next subsection.

At this stage, we can affirm that the combination of at least
one resource based sorting (preferably meanResources)
with the conflicting based sorting is mandatory for more
accurate results.

4.3 What would be expected for real scaled instances?

At full scale samples, we expect all the indicators to
get better and our safety-level aware technique to reduce
the gap to the optimum in most cases. Particularly, the
maximum relative increase is more likely to decrease.

In order to derive such conclusion, we analyzed the overes-
timation that results from our heuristic in terms of number
of controllers instead of global cost. We realized that the
registered maximum relative increase of 13.33% is prin-
cipally due to the reduced number of controllers needed
for our small samples. In most of cases, this increase
corresponded to only one additional controller of category

0. Then, in such a case, it is related to the behaviour of the
FFD algorithm. When the number of functions increases,
the needed number of controllers increases. However, the
gap in number of controllers between the heuristic and the
optimum value is more likely to increase at lower pace.
Hence, the maximum relative increase decreases.

This can also be explained by examining the performance
of the original FFD heuristic. In the one-dimensional
bin-packing problem, the FFD has been shown to use
at most (11

9 · Optimal + 1) bins, which in the worst
case corresponds to a maximum relative increase of
(11

9 ·Optimal+1)−Optimal

Optimal = 2
9 + 1

Optimal . Then, the more the

instance needs bins, the more the FFD gets better. We
expect the same behaviour in our case too.

Just to give an order of values, the average optimal value
for the reduced size samples is around 5 controllers per
category. Then, if we consider the same formula as before,
the second part of the maximum relative increase, i.e.

1
Optimal , accounts for around 48% of the overestimation.

When the optimal number of controllers attains hundreds
this amount declines significantly improving by the way
the quality of results.

5. CONCLUSION

In this paper we adopted a simple but effective strategy
to assign functions to safety compatible controllers. Com-
bined with an adapted version of the FFD, it allowed us
to achieve good results while maintaining the run-time
as low as possible. Nonetheless, at this stage, we have
not integrated all the aspects of the operational control
architecture design. The work presented in this paper
constitutes just one step towards the automation of this
complex process.

REFERENCES

Brandão, F. and Pedroso, J.P. (2013a). Bin Packing
and Related Problems: General Arc-flow Formulation
with Graph Compression. Technical Report DCC-2013-
08, Faculdade de Ciências da Universidade do Porto,
Portugal.

Brandão, F. and Pedroso, J.P. (2013b). Multiple-choice
Vector Bin Packing: Arc-flow Formulation with Graph
Compression. Technical Report DCC-2013-13, Facul-
dade de Ciências da Universidade do Porto, Portugal.

Epstein, L., Levin, A., and van Stee, R. (2008). Two-
dimensional packing with conflicts. Acta Inf., 45(3),
155–175.

Garey, M.R. and Johnson, D.S. (1979). Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co.

IBM-ILOG (2014). CPLEX Optimizer.
Lemattre, T., Denis, B., Faure, J.M., Pétin, J.F., and

Salaün, P. (2011). Designing operational control archi-
tectures of critical systems by reachability analysis. In
CASE, 12–18. IEEE.

Meunier, P., Denis, B., and Lesage, J.J. (2007). Tem-
poral performance evaluation of control architecture in
automation systems. Proceedings of 6th EUROSIM
Congress on Modelling and Simulation.

Patt-Shamir, B. and Rawitz, D. (2012). Vector bin packing
with multiple-choice. Discrete Appl. Math., 160(10-11).

