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 

Abstract—Image super-resolution (SR) aims to recover 

high-resolution images from their low-resolution counterparts for 

improving image analysis and visualization. Interpolation 

methods, widely used for this purpose, often result in images with 

blurred edges and blocking effects. More advanced methods such 

as total variation (TV) retain edge sharpness during image 

recovery. However, these methods only utilize information from 

local neighborhoods, neglecting useful information from remote 

voxels. In this paper, we propose a novel image SR method that 

integrates both local and global information for effective image 

recovery. This is achieved by, in addition to TV, low-rank 

regularization that enables utilization of information throughout 

the image. The optimization problem can be solved effectively via 

alternating direction method of multipliers (ADMM). 

Experiments on MR images of both adult and pediatric subjects 

demonstrate that the proposed method enhances the details in the 

recovered high-resolution images, and outperforms methods such 

as the nearest-neighbor interpolation, cubic interpolation, 

iterative back projection (IBP), non-local means (NLM), and 

TV-based up-sampling.  

 
Index Terms— Image enhancement, spatial resolution, image 

sampling, matrix completion, sparse learning  

 

I. INTRODUCTION 

IGH-resolution (HR) medical images provide rich 

structural details that are critical for accurate image 

post-processing and pathological assessment of bodily organs 

[1-10]. However, image resolution is limited by factors such as 

imaging hardware, signal to noise ratio (SNR), and time 

constraints. Image SNR is proportional to voxel size and the 
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square root of the number of averages in the voxel. Reducing 

the voxel size from 2×2×2 mm3 to 1×1×1 mm3 will require 64 

averages for similar SNR [11]. This requires significantly 

longer scanning time, which may not be practical clinically. 

A possible alternative approach to this problem is image 

post-processing. For this, interpolation methods (nearest 

neighbor, linear, and spine) are generally employed due to their 

simplicity. However, as pointed out in [1], interpolation 

methods generally blur the sharp edges, introduce blocking 

artifacts in lines, and are unable to recover fine details. In view 

of this, we take a super-resolution (SR) approach for resolution 

enhancement of LR images [3]. Interpolation methods are not 

considered as SR methods since they do not consider the image 

degradation process (e.g., blurring, and down-sampling). 

Multi-frame SR algorithms reconstruct a HR image from 

multiple LR images [12, 13]. These LR images are typically 

acquired repeatedly with slightly shifted field of view (FOV). 

In this paper, we propose a single-frame SR algorithm that 

requires the acquisition of only one LR image. A number of 

methods have been proposed for single-image SR [3]. For 

example, iterative back-projection (IBP) was proposed to 

estimate the HR image by back projecting the difference 

between the LR image simulated based on the estimated HR 

image via imaging blur and the input LR image [14]. This 

process is repeated to minimize the energy of the difference. 

Non-local means (NLM) is a method proposed to take 

advantage of image self-similarity [15]. Specifically, the input 

LR image is first denoised and the similar patches are used to 

reconstruct to a HR image. A correction step is then applied to 

ensure that the down-sampled HR image is close to the 

denoised LR image. The reconstruction and correction steps are 

iterated in a multi-scale manner. In another work, NLM was 

employed to enhance the resolution of a single LR T2 image 

with the guidance from an HR T1 image [16].  

Matrix completion algorithms have recently been shown to 

be effective in estimating missing values in a matrix from a 

small sample of known entries [17-19]. For instance, it has been 

applied to the famous Netflix problem where one needs to infer 

user preference for unrated movies based on only a small 

number of rated movies [20]. Matrix completion methods 

assume that the recovered matrix has low rank and then uses 

this property as a constraint or regularization to minimize the 

difference between the given incomplete matrix and the 

estimated matrix. Candes et al. proved that, low-rank matrices 

can be perfectly recovered from a small number of given entries 
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under some conditions [18]. In image processing, one 

advantage of matrix completion is that the remote information 

from the whole image can be utilized in image recovery. 

Besides, matrix completion has been widely applied to 

image/video in-painting and decoding problems. However, 

low-rank regularization is limited when the matrix to be 

recovered contain rows or columns that are entirely missing. As 

shown in Fig. 1, although voxels occluded by the words “Low 

Rank” can be recovered very well, the voxels masked by white 

horizontal and vertical lines cannot be recovered. In this case, 

each missing row or column will be simply filled by an 

arbitrary combination of other known rows or columns to meet 

the low rank requirement. This precludes the application of 

low-rank regularization to SR problem where missing values 

for many rows and columns need to be recovered in the process 

of recovering a HR image from a LR image.  

The limitation of low-rank regularization in SR problem 

could be remedied by imposing the additional local spatial 

consistency. Although local information may not be useful in 

applications such as the Netflix problem, where different rows 

(e.g., users) can be considered independently, it is valuable in 

recovering images. One possible choice is total variation (TV) 

[21], defined as the integral of the absolute gradients of the 

image. Recently, TV has been applied to avoid the ringing and 

smearing caused by interpolation [22].  

In this paper, we propose a novel low-rank total variation 

method, referred to as LRTV, for recovering a HR image from a 

LR image. Our method 1) explicitly models the blurring effects 

when an image is down-sampled, 2) combines both low-rank 

and TV regularizations for more effective image recovery, and 

3) works for 3D or 4D images by a tensor formulation [19]. A 

preliminary version of this work was presented at a conference 

[23]. The work is significantly extended in this article with 

more methodological details, validations, and discussions. 

Experiments on MR images of both adults and pediatric 

subjects are conducted, and the proposed method is compared 

to various interpolation methods, as well as the NLM and 

TV-based up-sampling methods.  

II. METHOD  

We first describe how image degradation processes such as 

blurring and down-sampling effects are modeled. We then 

describe the solution for the inverse problem of recovering the 

HR image from the LR image, using low-rank and TV 

regularization.  

A. Super-Resolution Image Reconstruction Framework 

As illustrated in Fig. 2, the acquired image is affected by 

factors such as motion blur, field inhomogeneity, acquisition 

time, and noise.  

The observation model could be mathematically formulated 

as: 

𝑇 = 𝐷𝑆𝑋 + 𝑛 (1) 

where T denotes the observed LR image, D is a down-sampling 

operator, S is a blurring operator, X is the HR image that we 

want to recover, and n represents the observation noise. In the 

case of single-image SR, the HR image can be estimated using 

this observation model by minimizing the following cost 

function: 

𝑋̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑋

‖𝐷𝑆𝑋 − 𝑇‖2 (2) 

This is a data fidelity term for penalizing the difference 

between the degraded HR image X and the observed LR image 

T. Since this is an ill-posed inverse problem, regularization 

terms are added to stabilize the solution. The cost function is 

thus rewritten as: 

𝑋̂ = 𝑎𝑟𝑔 min
𝑋

‖𝐷𝑆𝑋 − 𝑇‖2 + 𝜆ℜ(𝑋) (3) 

where ℜ(𝑋) is the regularization term often defined based on 

prior knowledge. The parameter λ is used to balance the 

contributions of the fidelity term and the regularization term. 

 

B. Low-Rank Total-Variation (LRTV) Method  

The proposed LRTV method is formulated as follows: 

𝑋̂ = 𝑎𝑟𝑔 min
𝑋

‖𝐷𝑆𝑋 − 𝑇‖2 + 𝜆𝑟𝑎𝑛𝑘𝑅𝑎𝑛𝑘(𝑋) + 𝜆𝑡𝑣𝑇𝑉(𝑋)(4) 

where the regularization can be separated into low-rank and 

total variation terms. 𝜆𝑟𝑎𝑛𝑘  and 𝜆𝑡𝑣  are the respective tuning 

parameters for those two terms. 

 
Fig. 1. Recovering the missing values using low-rank matrix completion [14]. 
The red arrows mark the horizontal and vertical lines that the algorithm fails to 

recover.  

  

 
Fig. 2. Observation model in MR image acquisition process.  
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1) Low-Rank Regularization. The rank of a matrix is a 

measure of nondegenerateness of the matrix, calculated by the 

maximum number of linearly independent rows or columns in 

the matrix. The low-rank property implies that some rows or 

columns in the matrix can be linearly represented by other rows 

or columns, indicating redundant information in the matrix. 

Low-rank prior can be used in matrix completion when only a 

subset of elements is known [18]. Since the rank of a matrix 𝑋 

is a nonconvex function of 𝑋 , a common approach is to 

approximate it using the trace norm ‖𝑋‖𝑡𝑟, which leads to a 

convex optimization problem. Recently, Liu et al. extended the 

low-rank regularization to higher dimensional images and 

further referred to as tensor completion [19]. Basically, a 

N-dimensional image 𝑋 can be seen as a high-order tensor. 

Since it is an NP-hard problem to compute the rank of a 

high-order tensor 1 , the rank is then approximated as the 

combination of trace norms of all matrices unfolded along each 

dimension: 

 𝑅𝑎𝑛𝑘(𝑋) = ∑ 𝛼𝑖
𝑁
𝑖=1 ‖𝑋(𝑖)‖

𝑡𝑟
 (5) 

where N is the number of image dimensionality. In this study, 

we use 3D MR images and thus 𝑁 = 3.  {𝛼𝑖}𝑖=1
𝑁  are parameters 

satisfying 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖
𝑁
𝑖=1 = 1. 𝑋(𝑖) is the unfolded X along 

the i -th dimension: 𝑢𝑛𝑓𝑜𝑙𝑑𝑖(𝑋) = 𝑋(𝑖) . For example, a 3D 

image with size of 𝑈 × 𝑉 × 𝑊 can be unfolded into three 2D 

matrices, with sizes of 𝑈 × (𝑉 × 𝑊), 𝑉 × (𝑊 × 𝑈), and 𝑊 ×

(𝑈 × 𝑉), respectively. ‖𝑋(𝑖)‖
𝑡𝑟

 is the trace norm of the matrix 

X(i).  

2) Total-Variation Regularization. Total variation was 

proposed as a regularization approach to remove noise and 

handle proper edges in images [21]. It is defined as the integral 

of the absolute gradients of an image: 𝑇𝑉(𝑋) = ∫|∇𝑋|𝑑𝑥𝑑𝑦𝑑𝑧. 

Minimizing TV will enforce local spatial consistency in image 

recovery, remove noise, and preserve edges.  

C. LRTV Optimization  

We use the alternating direction method of multipliers 

(ADMM) algorithm to solve the cost function in Eq. (4). 

ADMM is proven to be efficient for solving optimization 

problems with multiple non-smooth terms in the cost function 

[24]. First, we introduce 𝑁  redundant variables {𝑀𝑖}𝑖=1
𝑁  to 

simulate X in each dimension i, by requiring that the unfolded 

𝑋 along the i-th dimension 𝑋(𝑖) should be equal to the unfolded 

𝑀𝑖  along this dimension 𝑀𝑖(𝑖) . The new cost function is as 

follows: 

𝑚𝑖𝑛
𝑋,{𝑀𝑖}𝑖=1

𝑁
‖𝐷𝑆𝑋 − 𝑇‖2 + 𝜆𝑟𝑎𝑛𝑘 ∑ 𝛼𝑖

𝑁
𝑖=1 ‖𝑀𝑖(𝑖)‖

𝑡𝑟
+

𝜆𝑡𝑣𝑇𝑉(𝑋), subject to 𝑋(𝑖) = 𝑀𝑖(𝑖), 𝑖 = 1, … , 𝑁 (6) 

Based on ADMM in [24], the augmented Lagrangian of the 

above cost function is written in below, where {𝑈𝑖}𝑖=1
𝑁  are 

Lagrangian parameters: 

𝑚𝑖𝑛
𝑋,{𝑀𝑖}𝑖=1

𝑁 ,{𝑌𝑖}𝑖=1
𝑁

‖𝐷𝑆𝑋 − 𝑇‖2 + 𝜆𝑟𝑎𝑛𝑘 ∑ 𝛼𝑖
𝑁
𝑖=1 ‖𝑀𝑖(𝑖)‖

𝑡𝑟
+

 
1 http://en.wikipedia.org/wiki/Tensor_rank_decomposition 

𝜆𝑡𝑣𝑇𝑉(𝑋) + ∑ 𝑈𝑖(𝑋(𝑖) − 𝑀𝑖(𝑖))𝑁
𝑖=1 + ∑

𝜌

2
‖𝑋 − 𝑀𝑖‖

2𝑁
𝑖=1 (7) 

We further set 𝑌𝑖 = (1/𝜌)𝑈𝑖, and combine the last two linear 

and quadratic terms for simplicity: 

𝑚𝑖𝑛
𝑋,{𝑀𝑖}𝑖=1

𝑁 ,{𝑌𝑖}𝑖=1
𝑁

‖𝐷𝑆𝑋 − 𝑇‖2 + 𝜆𝑟𝑎𝑛𝑘 ∑ 𝛼𝑖
𝑁
𝑖=1 ‖𝑀𝑖(𝑖)‖

𝑡𝑟
+

𝜆𝑡𝑣𝑇𝑉(𝑋) + ∑
𝜌

2

𝑁
𝑖=1 (‖𝑋 − 𝑀𝑖 + 𝑌𝑖‖2 − ‖𝑌𝑖‖2) (8) 

According to ADMM [24], we break Eq. (8) into three 

sub-problems below that could be solved by iteratively 

updating the variables. In the below, k  denotes the current 

iteration step. 

Subproblem 1: Update 𝑋(𝑘+1) by minimizing: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑋

‖𝐷𝑆𝑋 − 𝑇‖2 +𝜆𝑡𝑣𝑇𝑉(𝑋) + ∑
𝜌

2

𝑁
𝑖=1 ‖𝑋 − 𝑀𝑖

(𝑘)
+

𝑌𝑖
(𝑘)

‖
2
 (9) 

This subproblem can be solved by gradient descent, where 

the gradient of TV term is obtained from the associated 

Euler-Lagrange equation [22]. 

Subproblem 2: Update {𝑀𝑖
(𝑘+1)

}
𝑖=1

𝑁

 by minimizing: 

𝑚𝑖𝑛
{𝑀𝑖}𝑖=1

𝑁
𝜆𝑟𝑎𝑛𝑘 ∑ 𝛼𝑖

𝑁

𝑖=1
‖𝑀𝑖(𝑖)‖

𝑡𝑟

+ ∑
𝜌

2

𝑁

𝑖=1
‖𝑋(𝑘+1) − 𝑀𝑖 + 𝑌𝑖

(𝑘)
‖

2
 

 (10) 

which can be solved using a close-form solution according to 

[17]: 

𝑀𝑖 = 𝑓𝑜𝑙𝑑𝑖 [𝑆𝑉𝑇𝜆𝑟𝑎𝑛𝑘𝛼𝑖 𝜌⁄ (𝑋(𝑖)
(𝑘+1)

+ 𝑌𝑖(𝑖)
(𝑘)

)] (11) 

where foldi(∙)  is the inverse operator of unfoldi(∙) , i.e., 

foldi(Mi(i)) = Mi. SVT(∙) is the Singular Value Thresholding 

operator [17] using λrankαi ρ⁄  as the shrinkage parameter. 

Subproblem 3: Update {Yi
(k+1)

}
i=1

N

 by: 

𝑌𝑖
(𝑘+1)

= 𝑌𝑖
(𝑘)

+ (𝑋(𝑘+1) − 𝑀𝑖
(𝑘+1)

) (12) 

Algorithm 1. Low-Rank Total Variation (LRTV) for MR Image 

Super-Resolution 

Input:    Low-resolution image T; 

Output:   Reconstructed high-resolution image X; 

Initialize: 𝑋 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑇)a, 𝑀𝑖 = 0, 𝑌𝑖 = 0, i = 1,2,3  

Repeat 

1.  Update X based on Eq. (9); 

2.  Update M based on Eq. (11); 

3.  Update Y based on Eq. (12); 

4.  Until difference in the cost function (Eq. (8)) is less than ε; 

End 
a The 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(∙)  operator is implemented by nearest-neighbor 

interpolation. 
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III. EXPERIMENTAL RESULTS 

A. Low-Rank Approximation for Brain Images  

We first evaluated whether brain images can be sufficiently 

characterized using their low-rank approximation. We selected 

a representative 2D axial slice from the T1 MR phantom in 

Brainweb 2 , which has a size of 181×181 with in-plane 

resolution of 1 mm (Fig. 3). We then performed singular value 

decomposition (SVD) on this image and obtain 174 non-zero 

singular values. As shown in Fig. 3, singular values decrease 

dramatically, with most values being close to zero. Next, we 

remove the small singular values and use the top 30, 60, 90, and 

120 singular values to reconstruct the image. Note that the 

number of used singular values equals to the rank of the 

recovered image, implying that the recovered image is a 

low-rank approximation of the original image. The 

reconstructed images are shown in Fig. 3 for visual inspection 

and the difference maps between original and reconstructed 

images are also provided. Signal-to-noise ratio (SNR) in 

decibels (dB) is used to evaluate the quality of reconstruction: 

𝑆𝑁𝑅 = 20 ∗ 𝑙𝑜𝑔10(‖𝑓‖ ‖𝑓 − 𝑔‖⁄ ), where f is the original HR 

image and g is the recovered HR image. 

  The results show that, by using the top 60 singular values, the 

reconstructed image has high SNR (34.0db), although small 

edge information in the brain boundary is lost. When using the 

top 90 or 120 singular values (out of 174), the resulting image 

does not show visual differences with respect to the original 

image. For the 3D Brainweb image with size 181×217×181, it 

has three ranks for its three unfolded matrices that are less than 

its longest image size 217. These ranks are relatively low in 

comparison to the total number of elements, suggesting brain 

images could be represented using their low-rank 

approximations with a relatively high SNR.  

 
2 http://www.bic.mni.mcgill.ca/brainweb/ 

B. Experimental Settings  

We applied our method to a set of down-sampled and blurred 

3D brain images and evaluated whether our method can 

successfully recover the original high-resolution images. To do 

that, we use HR images as ground truth, and simulate LR 

images as shown in Fig. 4. Blurring was implemented using a 

Gaussian kernel with a standard deviation of 1 voxel. The 

blurred image was then down-sampled by averaging every 8 

voxels (to simulate the partial volume effect), resulting in half 

of the original resolution. The quality of reconstruction of all 

methods from the input LR images was evaluated by comparing 

with their corresponding original HR images. 

A number of comparison methods were also employed, 

including nearest-neighbor interpolation (NN), spline 

interpolation (Spline), IBP based up-sampling [14], NLM 

based up-sampling [15], and TV based up-sampling [22]. The 

estimated HR images from all methods were compared with the 

original HR image for accuracy of image recovery by using 

SNR. Note that, for NLM, we used the implementation made 

available by the authors3. TV-based up-sampling is realized by 

setting 𝜆𝑟𝑎𝑛𝑘 = 0  and 𝜌 = 0  in the proposed method and 

solving only the subproblem 1. Other methods were 

implemented by in-house tools. 

Parameters were optimized based on a small dataset, 

consisting of 5 adult and 5 pediatric images as described in the 

Real Data Evaluation section. In particular, {αi}i=1
3  are weights 

to combine unfolded matrices along each spatial dimension in 

rank computation. All dimensions are assumed to be equally 

important, i.e., 𝛼1 = 𝛼2 = 𝛼3 = 1/3. The difference between 

iterations was measured by ‖𝑋𝑘 − 𝑋𝑘−1‖ ‖𝑇‖⁄ , and the 

program was stopped when this difference is less than 𝜀 =
1𝑒 − 5 . Since TV is a major component of the proposed 

method, we first optimized TV by setting 𝜆𝑇𝑉 from a group of 

candidate values (Fig. 5). We thus chose 𝜆𝑇𝑉 = 0.01. Then, we 

optimized the proposed method by employing the same 𝜆𝑇𝑉 

while setting 𝜆𝑟𝑎𝑛𝑘 from a wide range of candidate values (Fig. 

5). We chose the rank regularization as 𝜆𝑟𝑎𝑛𝑘 = 0.01. As for 

 
3 https://sites.google.com/site/pierrickcoupe/ 

 
Fig. 3. Low-rank approximations of brain images. Top row shows the original 

image, singular-value plot, and zoomed singular-value plot of indices from 141 
to 181. Bottom row shows the four reconstructed images and their differences 

with the original image by using top 30, 60, 90, and 120 singular values, 

respectively. 

 
Fig. 5. Parameter optimization based on ten images. SNR was used to evaluate 
the reconstruction performance.  

 

 
Fig. 4. Simulation of low-resolution image from high-resolution image. 
 

http://www.bic.mni.mcgill.ca/brainweb/
https://sites.google.com/site/pierrickcoupe/
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the input arguments, the blurring kernel (such as Gaussian 

distribution with 1 voxel standard deviation) was used in IBP, 

TV, and the proposed method. On the other hand, the default 

parameters in NLM implementation were used [15]. Both NN 

and Spline do not have any free parameters that require tuning. 

We evaluate the performance of the proposed and 

comparison methods by comparing the recovered HR images 

with the original HR image. Besides SNR, we also employ 

another image quality measurement named Structural 

Similarity Index (SSIM), which is considered to be correlated 

with the quality perception of the human visual system (HVS) 

[25]. SSIM has been used in many image SR studies [15, 

26-28]. SSIM is defined as: 

𝑆𝑆𝐼𝑀(𝑓, 𝑔) =

(2𝜇𝑓𝜇𝑔 + 𝑐1)(2𝜎𝑓𝑔 + 𝑐2) ((𝜇𝑓
2 + 𝜇𝑔

2 + 𝑐1)(𝜎𝑓
2 + 𝜎𝑔

2 + 𝑐1))⁄ , 

where 𝜇𝑓  and 𝜇𝑔  are the mean values respectively in the 

original HR image f and recovered image g, 𝜎𝑓
2 and 𝜎𝑔

2 are the 

variances, σfg  is the covariance of two images, 𝑐1 = (𝑘1𝐿)2 

and 𝑐2 = (𝑘2𝐿)2  with 𝑘1 = 0.01 and 𝑘2 = 0.03, and L is the 

dynamic range of voxel values [25]. SSIM ranges from 0 to 1, 

and 1 means perfect recovery. 

C. Phantom Data Evaluation  

We employed the T1 MR phantom from Brainweb to 

evaluate the recovery performance of the proposed and 

comparison methods in cases of no noise and with noise. The 

phantom has image size of 181×217×181 and spatial resolution 

of 1×1×1 mm3. We downloaded images both without noise and 

with noise at different levels of 1%, 3%, 5%, 7%, and 9% of the 

maximum intensity. The noise in the phantom images has 

Rayleigh statistics in the background and Rician statistics in the 

signal regions. For our experiment, we generated images with 

2×2×2 mm3 resolution using the above-mentioned LR image 

simulation pipeline (Fig. 4), and upsample it again to 1 mm 

isotropic resolution using the proposed and comparison 

methods, respectively.  

Fig. 6 demonstrates the results when using noisy data at level 

of 3% as input image. A typical slice is shown for each of 

coronal, sagittal, and axial views, and the frontal region in 

sagittal view is zoomed up for better visual inspection. 

Compared to the original HR image, results of NN, Spline, IBP, 

and NLM appear blurry. TV provides better image 

reconstruction while the proposed method shows more fine 

details. Fig. 7 shows the SNR and SSIM measurements for all 

methods while changing the noise level from no noise to 9% 

noise level. The proposed method outperforms all other 

comparison methods in all noise levels for both SNR and SSIM. 

Another observation is that, the SNR improvement of the 

proposed method over other methods generally reduces when 

noise level increases, while the SSIM improvement maintains a 

similar level when the noise level increases. 

 
Fig. 6. Illustration of upsampling results for simulated data. LR data with 2×2×2 mm3 resolution was upsampled to 1×1×1 mm3. A typical slice for each of coronal, 

sagittal, and axial views is shown, and a zoom-up of frontal region in sagittal view is also provided.  

 

 
Fig. 7. Results of upsampling on simulate data with different noise levels. (A) 

shows the SNR result, and (B) shows the SSIM result.  
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D. Real Data Evaluation  

We further evaluated the proposed method on two publicly 

available datasets. First, we randomly selected 45 adult subjects 

from ADNI4, with 15 from Alzheimer's disease (AD), 15 from 

mild cognitive impairment (MCI), and 15 from normal controls 

(NC). Their ages were 75±8 years old at MRI scan. T1 MR 

images were acquired with 166 sagittal slices at the resolution 

of 0.95×0.95×1.2 mm3. Second, we also randomly selected 45 

pediatric subjects from NDAR (http://ndar.nih.gov/), with age 

of 11±3 years old at MRI scan. T1 MR images were acquired 

with 124 sagittal slices at the resolution of 0.94×0.94×1.3 mm3. 

Fig. 8 shows the representative image SR results of an adult 

scan (upper panel) and a pediatric scan (lower panel). From left 

to right, the first row of each panel shows the input image, 

original HR image, the results of NN, Spline, IBP, NLM, TV, 

and the proposed LRTV method. The close-up views of 

selected regions are also shown for better visualization. It can 

 
4 http://www.loni.ucla.edu/ADNI 

 
Fig. 8. Results for upsampling an adult image (upper panel) and a pediatric image (lower panel) with different methods. In each panel, the first row shows the input 

image and the results by various methods, while the second row shows the close-up views of selected regions in the first row.  

 

 
Fig. 9. Boxplot of SNR and SSIM results for recovering adult data and pediatric 

data using different methods. The proposed LRTV method significantly 
outperforms all other comparison methods (p<0.01 using two-sample t-tests). 

 

 
Fig. 10. Boxplot of SNR and SSIM results for recovering adult data in groups of 
AD, MCI, and NC.  

 

http://ndar.nih.gov/
file:///F:/Paper/MICCAI2013/www.loni.ucla.edu/ADNI
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be observed that the results of NN and Spline interpolation 

methods show severe blurring artifacts. The contrast is 

enhanced in the results of IBP, NLM, and TV up-sampling 

methods, while the proposed LRTV method best preserves 

edges and achieves the highest SNR values. 

Quantitative results on the images of 45 adults and 45 

pediatric subjects are shown in Fig. 9. Note that the original 

images were used as ground truth and the input was LR image 

simulated following the pipeline of Fig. 4. The proposed 

method significantly outperforms all comparison methods 

(p<0.01 using two-sample t-tests). Results on adult subjects 

demonstrate less variance and higher accuracy than those on 

pediatric subjects, which may be because the image quality is 

higher in the matured brain and also clearer gyri/sulci patterns 

appear in the adult images. No significant difference was found 

between the adult subjects of AD, MCI, and NC, as shown in 

Fig. 10.  

In addition, we applied our method directly to images with 

typical imaging resolution. Fig. 11 shows the results of a typical 

AD subject for visual inspection, along with the close-up views 

of selected representative regions. As it can be observed, the 

proposed method recovers fine details and also preserves image 

edges. 

E. Computational Time  

All programs were run in Linux environment on a standard 

PC using a single thread of an Inter® Xeon® CPU (E5630 1.6 

GHz). Interpolation methods are computationally efficient as it 

takes around 2 seconds for NN and 10 seconds for Spline for 

one 3D image. For the up-sampling methods, IBP takes 1 min, 

NLM takes 16 mins, TV takes 5 mins, and the proposed method 

takes about 30 mins.  

IV. DISCUSSION  

We have presented a novel super-resolution method for 

recovering high-resolution image from a single low-resolution 

image. For the first time, we show that combining low-rank and 

total-variation regularizations is a viable solution to the SR 

problem. This combination brings together global and local 

information for effective recovery of the high-dimensional 

image. Experimental results indicate that the proposed method 

is able to remedy the partial volume effect and recover the fine 

brain structure details from both adult and pediatric images. 

Quantitative comparisons show that the proposed method 

outperforms other popular methods such as the interpolation 

methods based on NN and Spline, and the up-sampling 

methods based on IBP, NLM, and TV.   

 
Fig. 11. Upsampling of an image from a typical AD subject. The resolution was thus increased from 0.95×0.95×1.2 mm3 to 0.475×0.475×0.6 mm3. The first row 
shows the reconstructed results and other rows show the close-up views of the regions selected from the first row.  
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The proposed method is computationally expensive 

compared with other methods. The major reason is that the 

program spends most of the time solving TV, which is 

implemented using gradient decent [22] in MATLAB. In future 

work, we will implement a faster TV solver, such as [29], and 

also accelerate the program using C++. On the other hand, we’d 

like to clarify that our main purpose is to show that the 

TV-based MR image reconstruction can be improved by 

combining low-rank regularization. When a better TV solver is 

available, the performance of the proposed method could also 

be improved. 

The proposed method is mainly developed for single-image 

SR. In the future, we will extend the proposed method to use 

multiple LR images [12, 13], training datasets [30], and also for 

more applications such as 4D image recovery in functional 

MRI or diffusion MRI. The code for the proposed method will 

be released at our website5. 
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