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RESEARCH ARTICLE

A comparative study of two formal semantics

of the SIGNAL language
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Abstract SIGNAL is a part of the synchronous languages

family, which are broadly used in the design of safety-critical

real-time systems such as avionics, space systems, and nu-

clear power plants. There exist several semantics for SIG-

NAL, such as denotational semantics based on traces (called

trace semantics), denotational semantics based on tags (called

tagged model semantics), operational semantics presented by

structural style through an inductive definition of the set of

possible transitions, operational semantics defined by syn-

chronous transition systems(STS), etc. However, there is lit-

tle research about the equivalence between these semantics.

In this work, we would like to prove the equivalence be-

tween the trace semantics and the tagged model semantics, to

get a determined and precise semantics of the SIGNAL lan-

guage. These two semantics have several different definitions

respectively, we select appropriate ones and mechanize them

in the Coq platform, the Coq expressions of the abstract syn-

tax of SIGNAL and the two semantics domains, i.e., the trace

model and the tagged model, are also given. The distance

between these two semantics discourages a direct proof of e-

quivalence. Instead, we transform them to an intermediate

model, which mixes the features of both the trace semantics

and the tagged model semantics. Finally, we get a determined

and precise semantics of SIGNAL.

Keywords synchronous language, SIGNAL, trace seman-

tics, tagged model semantics, semantics equivalence, Coq

E-mail: {Zhibin.Yang, bodeveix, f ilali}@irit. f r

1 Introduction

Safety-critical real-time systems such as avionics, space sys-

tems, and nuclear power plants, are also considered as re-

active systems [1], because they always interact with their

environments continuously. The environment can be some

physical devices to be controlled, a human operator, or oth-

er reactive systems. These systems receive from the envi-

ronment input events, and compute the output information,

which are finally returned to the environment. The arrival

time of events may be different, and the computation need-

s time. Synchronous method is an important choice to de-

sign these systems, which relies on the synchronous hypothe-

sis [2]. Firstly, the computation time is abstracted as zero, that

lets system behaviors be divided into a discrete sequence of

instants. At each instant, the system does input-computation-

output, which takes zero time. Secondly, the different ar-

rival time of events are abstracted as the relative order be-

tween events. Even of the physical time is abstracted, the

inherent functional properties are not changed, so we can say

this method focuses on functional behaviors at a platform-

independent level.

There are several synchronous languages, such as ESTER-

EL [3], LUSTRE [4], SIGNAL [5] and QUARTZ [6]. Syn-

chronous languages can be considered as different implemen-

tations of the synchronous hypothesis. As a main difference

from other synchronous languages, SIGNAL naturally con-

siders a mathematical time model, in term of a partial order

relation, to describe multi-clocked systems without the neces-



sity of a global clock. This feature permits the description of

globally asynchronous locally synchronous systems (GAL-

S) [7, 8] conveniently.

There exist several semantics for SIGNAL, such as de-

notational semantics based on traces (called trace semantic-

s) [9–11], denotational semantics based on tags which are el-

ements of a partially ordered dense set (called tagged model

semantics) [10,12], operational semantics presented by struc-

tural style through an inductive definition of the set of possi-

ble transitions [5, 10], operational semantics defined by syn-

chronous transition systems (STS) [13]. The differences be-

tween the trace semantics and the tagged model semantics

are: logical time is represented by a totally ordered set (the

set of natural integers N) or a partially ordered set; absence of

events is explicitly specified (by the ⊥ symbol) or not. Addi-

tionally, Nowak proposes a co-inductive semantics for mod-

eling SIGNAL in the Coq proof assistant [14, 15]. However,

there is little research about the equivalence between these

semantics. The trace semantics and the tagged model seman-

tics are more commonly used, so we would like to prove the

equivalence between them, to get a determined and precise

semantics of the SIGNAL language.

The rest of the paper is organized as follows. Section 2

introduces the basic concepts of the SIGNAL language. The

abstract syntax of SIGNAL and its Coq expression is given

in Section 3. Section 4 presents the definitions of the two

semantics domains, i.e., the trace model and the tagged mod-

el. Section 5 gives the two formal semantics and their Coq

specifications. The proof of the semantics equivalence is pre-

sented in Section 6. Section 7 discusses the related work, and

Section 8 gives some concluding remarks.

2 An Introduction to SIGNAL

Signals As declared in the synchronous hypothesis, the be-

haviors of a reactive system are divided into a discrete se-

quence of instants. At each instant, the system does input-

computation-output, which takes zero time. So, the inputs

and outputs are sequences of values, each value of the se-

quence being present at some instants. Such a sequence is

called a signal. Consequently, at each instant, a signal may

be present or absent (denoted by ⊥). In SIGNAL, signals

must be declared before being used, with an identifer (i.e.,

signal variable or the name of signal) and an associated type

for their values such as integer, real, complex, boolean, event,

string, etc.

Example 1 Three signals named input1, input2, output

are shown as follows.

input1 1 ⊥ 3 ⊥ · · ·

input2 ⊥ 5 7 9 · · ·

output ⊥ ⊥ 10 ⊥ · · ·

Abstract Clock The set of instants where a signal takes

a value is the abstract clock of the signal. Two signals are

synchronous if they are always present or absent at the same

instants, which means they have the same abstract clock.

In the example given above, the abstract clock of input1,

input2 and output, denoted respectively ˆinput1, ˆinput2 and

ˆoutput, are defined by different set of logical instants.

Moreover, SIGNAL can specify the relations between the

abstract clocks of signals in two ways: implicitly or explicit-

ly.

Primitive Constructs SIGNAL uses several primitive

constructs to express the relations between signals, includ-

ing relations between values and relations between abstract

clocks. Moreover, the primitive constructs can be classified

into two families: monoclock operators (for which all sig-

nals involved have the same abstract clock) and multiclock

operators (for which the signals involved may have different

clocks).

• Monoclock operators, including instantaneous func-

tion and delay. The instantaneous function x :=

f (x1, · · · , xn) applied on a set of inputs x1, · · · , xn will

produce the output x, while the delay operator x :=

x1 $ init c sends a previous value of the input to the

output with an initial value c.

• Multiclock operators, including undersampling and de-

terministic merging. The undersampling operator x :=

x1 when x2 is used to check the output of an input at the

true occurrence of another input, while the deterministic

merging operator x := x1 de f ault x2 is used to select be-

tween two inputs to be sent as the output, with a higher

priority to the first input.

Notice that, these operators specify the relations between

the abstract clocks of the signals in an implicit way.

In the SIGNAL language, the relations between values and

the relations between abstract clocks, of the signals, are de-

fined as equations, and a process consists of a set of equation-

s. Two basic operators apply to processes, the first one is the

composition of different processes, and the other one is the

local declaration in which the scope of a signal is restricted

to a process.

Example 2 Let us consider a simple process Count [12].

It accepts an input signal reset and delivers the integer output



signal val. The local variable counter is initialized to 0 and s-

tores the previous value of the signal val. When an input reset

occurs, the signal val is reset to 0. Otherwise, the signal val

takes an increment of the variable counter. The process Par-

allelCount is the composition of two Count processes. Here,

the program is not deterministic.

process ParallelCount = (! integer x1, x2; )

(| x1 := Count(r)

| x2 := Count(r)

|) where event r;

process Count = (? event reset; ! integer val; )

(| counter := val $1 init 0

| val := (0 when reset) de f ault (counter + 1)

|) where integer counter;

end;

end;

Extended Constructs SIGNAL also provides some oper-

ators to express control-related properties by specifying clock

relations explicitly, such as clock synchronization, set op-

erators on clocks (union, intersection, difference) and clock

comparison.

• Clock synchronization, the equation x1 ˆ= x2 ˆ= · · · ˆ=xn

specifies that signals x1, x2, · · · , xn are synchronous.

• Set operators on clocks, such as the equation x:= x1 ˆ +

x2 defines the clock of x as the union of the clocks of

signals x1 and x2, the equation x:= x1 ˆ * x2 defines the

clock of x as the intersection of the clocks of signals x1

and x2, the equation x:= x1 ˆ - x2 defines the clock of x

as the difference of the clocks of signals x1 and x2.

• Clock comparison, such as the statement x1 ˆ < x2 speci-

fies a set inclusion relation between the clocks of signals

x1 and x2, the statement x1 ˆ > x2 specifies a set contain-

ment relation between the clocks of signals x1 and x2.

3 Abstract Syntax of SIGNAL and its Coq Ex-

pression

In this section, we first give a brief introduction of the theo-

rem prover Coq, then, we give the abstract syntax of SIGNAL

and its Coq expression.

3.1 A Brief Introduction of Coq

Coq [16] is a theorem prover based on the Calculus of Induc-

tive Constructions which is a variant of type theory, follow-

ing the "Curry-Howard Isomorphism" paradigm, enriched

with support for inductive and co-inductive definitions of data

types and predicates. From the specification perspective, Co-

q offers a rich specification language to define problems and

state theorems. From the proof perspective, proofs are devel-

oped interactively using tactics, which can reduce the work-

load of the users. Moreover, the type-checking performed by

Coq is the key point of proof verification.

Here, we try to give an intuitive introduction to the Co-

q terminologies which are used in this paper. In the spirit

of "Curry-Howard Isomorphism" paradigm, types may rep-

resent programming data-types or logical propositions. So,

the Coq objects used in this paper can be sorted into two cat-

egories: the Type sort and the Prop sort:

• Type is the sort for data types and mathematical struc-

tures, i.e. well-formed types or structures are of type

Type. Data types can be basic types such as nat,

bool, nat → nat, etc., and can be inductive structures,

record and co-inductive structures (for infinite objects,

as for example infinite sequences). We use Fixpoint and

CoFixpoint definitions to define functions over inductive

and to co-inductive data types.

• Prop is the sort for propositions, i.e. well-formed propo-

sitions are of type Prop. We can define new predicates

using inductive, record (for conjunctions of properties)

or co-inductive definitions.

3.2 The Abstract Syntax of SIGNAL

The semantics of each of the extended constructs is defined

in term of the primitive constructs, so we just consider the

primitive constructs, that is core-SIGNAL. Its abstract syntax

is presented as follows.

P ::= x := f (x1, · · · , xn) instantaneous f unction

|x := x1 $ init c delay

|x := x1 when x2 undersampling

|x := x1 de f ault x2 deterministic merging

|P|P′ composition

|P/x local declaration

To express more complex SIGNAL programs, all the right-

side signal variables of the equations can be replaced by an

expression on signal variables.

Here we give the Coq expression of the abstract syntax

of SIGNAL. It is parameterized by the set XVar of signal

variables, and the set Value of values that can be taken by

the variables. isTrue checks that a value is considered to be

true. mkBool is used to coerce Bool(s) to Value(s). The type

Process is defined using five constructors corresponding to

the constructs of the core-SIGNAL. We give a very abstract

expression of an instantaneous function. The function Pass



takes three parameters: a function f of type ((Index → Val-

ue) → Value) having an indexed set of input parameters, a

variable name of type XVar which contains the left-side vari-

able and an indexed set of variable names of type (Index →

XVar) which denotes the actual parameters of f . Index, for

example 1, · · · , n, represents a set used to index the parame-

ters. Similarly, Pdelay, Pwhen, Pdefault, and Ppar build the

corresponding SIGNAL constructs. However, the local dec-

laration is ignored, to get a simplest criterion for the proof of

semantics equivalence (see Section 5 and Section 6).

Parameter XVar : Type .

Parameter Value : Type .

Parameter i s T r u e : Value → Prop .

Parameter mkBool : Bool → Value .

I n d u c t i v e P r o c e s s : Type :=

Pass : ∀ Index , ( ( Index → Value ) → Value )

→ XVar → ( Index → XVar ) → P r o c e s s

| P d e f a u l t : XVar → XVar → XVar → P r o c e s s

| Pwhen : XVar → XVar → XVar → P r o c e s s

| Pd e l ay : XVar → XVar → Value → P r o c e s s

| Ppar : P r o c e s s → P r o c e s s → P r o c e s s .

4 Semantics Domains

Semantics domains such as the trace model and the tagged

model are introduced in this section. To avoid confusion, we

will treat signal variables and signals (sequence of values)

separately. The naming convention is given as follows:

• { x, x1, x2, . . . , xn, y, . . . } are signal variables.

• { v, v1, v2, . . . , vn, vv, c, . . . } are values, and c represents

a constant value.

• { s, s1, s2, . . . , sn, . . . } are signals.

• { i, i1, i2, . . . , in, j, k, . . . } are indexes.

• { tr, tr1, tr2, . . . , trn, tr′, trs, . . . } are traces.

• { t, t0, t1, . . . , tn, tt, . . . } are tags.

• { b, b1, b2, . . . , bn, b′, tb, . . . } are the behaviors on tag

structures.

The SIGNAL language specifies a system behavior as a

platform-independent model at first. However, it is finally

needed to guarantee a correct physical implementation from

it (i.e., need to deal with physical time). A formal support for

allowing time scalability in design is given in the modeling

environment Polychrony [17] by the so-called stretch-closure

property. This property can be defined both on the trace mod-

el and on the tagged model.

4.1 Trace Model

Let X be a set of signal variables, and let V be the set of

values that can be taken by the variables. The symbol ⊥ (⊥

< V) is introduced to express the absence of valuation of a

variable. Then we denote:

V⊥ = V ∪ {⊥}

The corresponding Coq expression is given as follows:

I n d u c t i v e EValue : Type :=

Val : Value → EValue

| Absence : EValue .

Definition 1 (VSignal) [10] A signal s is a sequence

(si)i∈I of typed values (of V⊥), where I is the set of natural

integers N or an initial segment of N, including the empty

segment.

A signal can be finite. However, we can extend the finite

signal with infinite absences, to get an infinite one. So, in the

Coq expression, a signal is defined as an infinite object.

CoInduct ive VSigna l : Type :=

Vs : EValue → VSigna l → VSigna l .

In the following paragraphs, the definition of traces is giv-

en. Notice that, a signal is just a sequence of values corre-

sponding to a signal variable, while a trace defines the syn-

chronized sequences of values of a set of signal variables.

Definition 2 (Event) [9] Considering X a non-empty sub-

set of X, we call event on X any application

e : X→ V⊥X

• e(x) = ⊥ indicates that variable x has no value in the

event.

• e(x) = v indicates, for v ∈ Vx, that variable x takes the

value v in the event.

The absent event on X (X→ {⊥}), where all the signals are

absent at a logical instant, is denoted ⊥e(X). Moreover, the

set of events on X (X→ V⊥
X

) is denoted εX .

A trace is a sequence of events. For any subset X of X, we

consider the following definition of the set τX of traces on

X.

Definition 3 (Traces) τX is the set of traces on X, de-

fined as the set of applications N→εX where N is the set of

natural integers.

The absent trace on X (N → {⊥e(X)}), i.e., the infinite se-

quence formed by the infinite repetition of ⊥e(X), is denoted

⊥X .

Similarly, a trace can be finite. However, we can extend

the finite sequence with infinite absent events, to get an infi-

nite trace.



Example 3 Let us consider the following equation: x3 :=

x1 ∗ x2. The set of signal variables is X = {x1, x2, x3}. A

possible trace is given as follow:

x1 ⊥ 3 3 ⊥ ⊥ 0 · · ·

x2 ⊥ 5 7 ⊥ ⊥ 9 · · ·

x3 ⊥ 15 21 ⊥ ⊥ 0 · · ·

The trace can be seen as a sequence of events:

{e0 :





















x1 7→ ⊥

x2 7→ ⊥

x3 7→ ⊥





















, e1 :





















x1 7→ 3

x2 7→ 5

x3 7→ 15





















, · · · }

The Coq expression of the definition of traces is given as

follows.

CoInduct ive Trace : Type :=

Tr : ( XVar → EValue ) → Trace → Trace .

As mentioned before, the set of instants where a signal

takes a value is the abstract clock of the signal. Its Coq ex-

pression is given as follows.

CoFixpoint AClock ( x : XVar ) ( t r : T race )

: VSigna l :=

match t r with

Tr s t t r ’ ⇒

match s t x with

Absence ⇒ Vs Absence ( AClock x t r ’ )

| _ ⇒ Vs ( Val ( mkBool t r u e ) )

( AClock x t r ’ )

end

end .

Definition 4 (Sprocess) Given a SIGNAL process, its

trace semantics, denoted as Sprocess, includes a set of sig-

nal variables defining the domain of the process and a set of

traces.

The Coq expression is given as follows:

Record S p r o c e s s : Type :={

sdom : XVar → Prop ;

s t r a c e s : Trace → Prop

} .

Additionally, we give the definition of the stretch-closure

property on the trace model as the definition of compression

of a trace given in [18]. The intuition is to consider a trace

as an elastic with ordered marks on it. If it is stretched, the

marks remain in the same order but have more space (time)

between each other by adding columns of ⊥ (see Fig.1). The

same holds for a set of traces (a behavior), so stretching

gives rise to an equivalence between behaviors (stretch equiv-

alence).

Definition 5 (Stretching) For a given subset X of X, a

trace tr1 is less stretched than another trace tr2, noted tr1 ≤τX

tr2, iff there exists a mapping f : N→ N such as:

Fig. 1 Stretching of a trace following f

• ∀x ∈ X ∀i ∈ N, tr2( f (i))(x) = tr1(i)(x)

• ∀x ∈ X ∀ j ∈ N, tr2( j)(x) = ⊥, i f j < range( f )

• ∀i j ∈ N, i < j⇒ f (i) < f ( j)

The Coq expression is given as follows. trGetEV is used

to get the value (including ⊥) of each signal at each instant of

a trace.

F i x p o i n t t rGetEV t r i x : EValue :=

match i , t r with

O, ( Tr s t t r ’ ) ⇒ s t x

| ( S j ) , ( Tr s t t r ’ ) ⇒ t rGetEV t r ’ j x

end .

Record S t r e t c h i n g ( t r 1 : Trace ) ( t r 2 : Trace )

: Prop :={

S t r e t c h _ f : n a t → n a t ;

S t r e t c h _ v a l : ∀ x i , t rGetEV t r 1 i x

= t rGetEV t r 2 ( S t r e t c h _ f i ) x ;

S t r e t c h _ b o t : ∀ x j , (∀ i , S t r e t c h _ f j , i )

→ t rGetEV t r 2 j x = Absence ;

S t r e t ch_mono : ∀ i j , i < j

→ S t r e t c h _ f i < S t r e t c h _ f j

} .

Definition 6 (Stretch Equivalence) For a given subset

X of X, two traces tr1 and tr2 are stretch-equivalent, noted

tr1 ≷ tr2, iff there exists another behavior tr3 less stretched

than both tr1 and tr2, i.e., tr1 ≷ tr2 iff ∃tr3 tr3 ≤τX
tr1 and

tr3 ≤τX
tr2.

The Coq expression is given as follows:

I n d u c t i v e S t r e t c h _ E q u i v a l e n c e ( t r 1 : Trace )

( t r 2 : Trace ) : Prop :=

S t r _ E q P r f : ∀ t r 3 : Trace , S t r e t c h i n g t r 3 t r 1

→ S t r e t c h i n g t r 3 t r 2

→ S t r e t c h _ E q u i v a l e n c e t r 1 t r 2 .

Definition 7 (Stretch Closure) For a given trace tr, the

set of all traces that are stretch-equivalent to tr, defines its

stretch closure, noted tr*.

The stretch closure of a set of traces τX , includes all the

traces resulting from the stretch closure of each trace tr ∈ τX ,

i.e.,
⋃

tr∈τX
tr∗.



The Coq expression is given as follows:

I n d u c t i v e S t r e t c h _ C l o s u r e ( t r s : T race → Prop )

: T race → Prop :=

S t r e t c h _ c l : ∀ t r 1 t r 2 : Trace , t r s t r 1

→ S t r e t c h _ E q u i v a l e n c e t r 1 t r 2

→ S t r e t c h _ C l o s u r e t r s t r 2 .

Definition 8 (Stretch-Closed) A SIGNAL process is

stretch-closed, iff, for all tr′ ∈ S process.straces and for all

tr ∈ τX , tr ≷ tr′ ⇒ tr ∈ S process.straces

4.2 Tagged Model

Lee and Sangiovanni-Vincentelli proposed the tagged-signal

model [19] to compare various models of computation. It is a

denotational approach where a system is modeled as a set of

behaviors. Behaviors are sets of events. Each event is a value-

tag pair. Complex systems are derived through the parallel

composition of sub-systems, by taking the intersection of the

sets of behaviors. After that, the tagged-signal model is also

used to express the semantics of the SIGNAL language [10,

12], because this model can represent the feature of multi-

clock naturally.

We reuse the sets X and V defined in Section 4.1.

Definition 9 (Tag Structure) A tag structure is a tuple

(T, ≤), where:

• T is the set of tags.

• ≤ is a partial order on T.

The Coq expression is given as follows. Tag represents a

set of tags, tle is a partial order, and tlt is defined as a strict

partial order.

Record TAG: Type :={

Tag : Type ;

t l e : Tag → Tag → Prop ;

t p o : o r d e r Tag t l e ;

t l t t 1 t 2 := t l e t 1 t 2 ∧ t 1 , t 2 ;

} .

Definition 10 (Tagged Event) [10] A tagged event e on

a given tag structure (T, ≤) is a pair (t, v) ∈ T × V.

Example 4 A tag structure associated with events is given

in Fig.2. Sharing the same tag among different events repre-

sents the events are synchronous at that logical instant.

A totally ordered set of tags C ∈ T is called a chain, and

min{C} denotes the minimum element of C. In addition, we

denote by CT the set of all chains on (T, ≤).

Definition 11 (TSignal) A signal on a tag structure (T,

≤) is a partial function s ∈ C ⇀ V which associates values

with the tags that belong to a chain C.

Let the set of signals on (T, ≤) be noted S T . Here, we give

two signals as an example (see Fig.3).

Fig. 2 A tag structure with events

Fig. 3 Two signals of the tag structure in Fig.2

The Coq expression is given as follows. The type Tsig-

nal_from is used to construct a chain from a tag t. Tsignal

represents the set of signals. "@<" is the notation for the

strict partial order tlt.

CoInduct ive T s i g n a l _ f r o m {G:TAG} ( t : Tag G ) : Type :=

Tend : T s i g n a l _ f r o m t

| Tnext : ∀ tn , t @< t n → Value

→ T s i g n a l _ f r o m t n → T s i g n a l _ f r o m t .

I n d u c t i v e T s i g n a l G: Type :=

Tempty : T s i g n a l G

| Tfrom : ∀ ( t : Tag G) , Value

→ T s i g n a l _ f r o m t → T s i g n a l G.

Definition 12 (Behavior) Given a tag structure (T, ≤), a

behavior b on X ⊆ X is a function b ∈ X → S T that associates

each variable x ∈ X with a signal s on (T, ≤).

Notice that, here signal variables and signals are treated

separately, and the behaviors on tag structures give the map-

ping between them.

The Coq expression is given as follows. In the type Tbe-

havior, each variable is associated with a signal.

D e f i n i t i o n T b e h a v i o r (G:TAG) :=

XVar → T s i g n a l G.

We denote by B|X the set of behaviors of domain X ⊆ X

on (T, ≤). Given a behavior b ∈ B|X , we write vars(b) and

tags(b(x)) (x ∈ vars(b)) to denote the signal variables consid-

ered in b and the set of tags associated with the signal variable

x. 0|X expresses the association of X with empty signal.

Definition 13 (Tprocess) Given a SIGNAL process, its

tagged model semantics, denoted as Tprocess, includes a set

of signal variables and a set of behaviors on tag structures.

The Coq expression is given as follows:

Record T p r o c e s s (G:TAG) :={

tdom : XVar → Prop ;



t b e h a v i o r s : T b e h a v i o r G → Prop

} .

Remark 1 The logical time used in the trace model is

a totally ordered set, and the absence of events is explicitly

specified, while the logical time used in the tagged model

is a partially ordered set, and the absence of events is not

specified. Moreover, a tag structure may correspond to a set

of traces.

Additionally, we give the definition of the stretch-closure

property on the tagged model [10, 12]. The intuition is to

consider a signal as an elastic with tags on it. If it is stretched,

tags remain in the same order but have more space (time)

between each other (see Fig.4). The same holds for a set

of elastics: a behavior. If elastics are equally stretched, the

partial order between tags is unchanged.

Fig. 4 Stretching of a behavior composed of two signals following f

Definition 14 (Stretching) For a given domain X ⊆ X, a

behavior b1 is less stretched than another behavior b2, noted

b1 ≤B|X b2, iff there exists a mapping f : tags(b1)→ tags(b2)

following b1 and b2 are isomorphic:

• ∀x ∈ vars(b1), f (tags(b1(x))) = tags(b2(x))

• ∀x ∈ vars(b1) ∀t ∈ tags(b1(x)), b1(x)(t) = b2(x)( f (t))

• ∀t1, t2 ∈ tags(b1), t1 < t2 ⇒ f (t1) < f (t2)

• ∀C ∈ CT ,∀t ∈ C, t ≤ f (t)

The Coq expression is given as follows. tags_ f rom and

tags are used to get the tags of a given signal, btags repre-

sents the tags of all the signals in a given behavior, while

tval_ f rom and tval are used to get the value at each tag of a

signal. "@<=" is the notation of tle.

I n d u c t i v e t a g s _ f r o m {G} ( t t 0 : Tag G)

: T s i g n a l _ f r o m t 0 → Prop :=

i n _ c u r r : ∀ t i h v i s ’ , t= t i

→ t a g s _ f r o m t t 0 ( Tnext t 0 t i h v i s ’ )

| i n _ n e x t : ∀ t i h v i s ’ , t a g s _ f r o m t t i s ’

→ t a g s _ f r o m t t 0 ( Tnext t 0 t i h v i s ’ ) .

I n d u c t i v e t a g s {G} t : T s i g n a l G → Prop :=

i n _ f i r s t : ∀ t 0 v0 s ’ , t 0= t

→ t a g s t ( Tfrom G t 0 v0 s ’ )

| i n_ f rom : ∀ t 0 v0 s ’ , t a g s _ f r o m t t 0 s ’

→ t a g s t ( Tfrom G t 0 v0 s ’ ) .

I n d u c t i v e b t a g s {G} ( b : T b e h a v i o r G)

( dom : XVar → Prop ) t : Prop :=

b t a g s P r f : ∀ x , dom x → t a g s t ( b x )

→ b t a g s b dom t .

Record t S t r e t c h i n g {G1 G2 :TAG}

( b1 : T b e h a v i o r G1 ) ( b2 : T b e h a v i o r G2 )

( dom : XVar → Prop ) : Prop :={

t S t r e t c h _ f : Tag G1 → Tag G2 ;

t S t r e t c h _ t a g s : ∀ t 2 x , dom x

→ t a g s t 2 ( b2 x )

→ ∃ t1 , t a g s t 1 ( b1 x )

∧ t 2= t S t r e t c h _ f t 1 ;

t S t r e t c h _ v a l : ∀ t x v , dom x

→ t v a l ( b1 x ) t v

→ t v a l ( b2 x ) ( t S t r e t c h _ f t ) v ;

t S t r e t c h _ m o n o : ∀ t 1 t 2 : Tag G1 ,

b t a g s b1 dom t 1

→ b t a g s b1 dom t 2 → t 1 @< t 2

→ t S t r e t c h _ f t 1 @< t S t r e t c h _ f t 2 ;

t S t r e t c h _ i n c r : ∀ t , t @<= t S t r e t c h _ f t

} .

Definition 15 (Stretch Equivalence) For a given domain

X ⊆ X, two behaviors b1 and b2 are stretch-equivalent, noted

b1 ≷ b2, iff there exists another behavior b3 less stretched than

both b1 and b2, i.e., b1 ≷ b2 iff ∃b3 b3 ≤B|X b1 and b3 ≤B|X b2.

The Coq expression is given as follows.

I n d u c t i v e t S t r e t c h _ E q u i v a l e n c e {G1 G2 :TAG}

( b1 : T b e h a v i o r G1 ) ( b2 : T b e h a v i o r G2 )

( dom : XVar → Prop ) : Prop :=

t S t r E q : ∀ G3 ( b3 : T b e h a v i o r G3 ) ,

t S t r e t c h i n g b3 b1 dom

→ t S t r e t c h i n g b3 b2 dom

→ t S t r e t c h _ E q u i v a l e n c e b1 b2 dom .

Definition 16 (Stretch Closure) For a given behavior b,

the set of all behaviors that are stretch-equivalent to b, defines

its stretch closure, noted b*.

The stretch closure of a set of behaviors B|X includes all the

behaviors resulting from the stretch closure of each behavior

b ∈ B|X , i.e.,
⋃

b∈B|X b∗.

The Coq expression is given as follows.

I n d u c t i v e t S t r e t c h _ C l o s u r e {G:TAG}

( t b : T b e h a v i o r G → Prop ) ( dom : XVar

→ Prop ) : T b e h a v i o r G → Prop :=

t S t r e t c h _ c l :∀ b1 b2 , t b b1

→ t S t r e t c h _ E q u i v a l e n c e b1 b2 dom

→ t S t r e t c h _ C l o s u r e t b dom b2 .



Definition 17 (Stretch-Closed) A SIGNAL process is

stretch-closed, iff, for all b′ ∈ T process.tbehaviors and for

all b ∈ B|X , b ≷ b′ ⇒ b ∈ T process.tbehaviors

5 Two Formal Semantics

Primitive constructs of the SIGNAL language specify the re-

lations between signals at the syntax level. The trace seman-

tics and the tagged model semantics are both denotational

style. They interpret and define precisely the relations be-

tween values and the relations between clocks of signals in

their semantics domains. In this paper, the semantics ignores

the local declaration of signal variables to get a simplest cri-

terion for the proof of semantics equivalence.

5.1 Trace Semantics

There are several definitions of the trace semantics of SIG-

NAL [9–11], we select [10] as the reference paper semantics

and mechanize it in Coq. Most of the Coq expressions are

close to the paper semantics, but some expressions are not,

so we need to justify the equivalence between them. We also

refer to the Coq expressions of Nowak [14, 15].

Here, each single signal is observed in the reference pa-

per semantics, while the corresponding trace with signal vari-

ables x, x1, . . . , xn is directly used in the Coq expressions.

The difference between them has been given in Section 4.1.

The mapping between them is done at the end (i.e., the defi-

nition Process2Sprocess).

Trace Semantics 1 (Instantaneous function) The trace

semantics of the instantaneous function is defined as follows:

∀τ ∈ N

sτ =

{

⊥ i f s1τ = . . . = snτ = ⊥

f (s1τ, . . . , snτ) i f s1τ , ⊥ ∧ . . . ∧ snτ , ⊥

At each instant τ, the signals are either all present or all

absent, i.e., they are synchronous, denoted as s ˆ = s1 ˆ = · · · ˆ

= sn. sτ gets the value of f (s1τ, . . . , snτ) when the signals are

all present. The function f includes different mathematical

operations, such as arithmetic operations, boolean operations,

etc.

The corresponding Coq expression is given as follows.

CoInduct ive S a s s i g n m e n t x Index ( f : ( Index →

Value ) → Value ) ( x i : Index → Var )

: Trace → Prop :=

SassU : ∀ s t t r , (∀ i , s t ( x i i ) = Absence )

→ s t x = Absence

→ S a s s i g n m e n t x Index f x i t r

→ S a s s i g n m e n t x Index f x i ( Tr s t t r )

| SassP : ∀ v s t t r , ( ∀ i , s t ( x i i ) = Val ( v i ) )

→ s t x=Val ( f v )

→ S a s s i g n m e n t x Index f x i t r

→ S a s s i g n m e n t x Index f x i ( Tr s t t r ) .

Trace Semantics 2 (Delay) The trace semantics of the de-

lay construct is defined as follows:

− (∀τ ∈ N) s1τ = ⊥ ⇔ sτ = ⊥

− {k | s1k , ⊥} , ∅ ⇒ smin{k|s1k,⊥} = c

− (∀τ ∈ N) s1τ , ⊥ ∧ {k > τ | s1k , ⊥} , ∅

⇒ smin{k>τ|s1k,⊥} = s1τ

Here, we make the definition of the trace semantics of De-

lay in [10] more precise. min(S) denotes the minimum of

a non-empty set of naturals. Similarly to the instantaneous

function, the delay construct also requires signals s and s1

have the same clock, denoted as s ˆ= s1. Given a logical in-

stant τ, s takes the most recent value of s1 except the one at

τ. Initially, s takes the value c.

The Coq expression is given as follows.

CoInduct ive Sd e l ay x x1 c : Trace → Prop :=

SdelayU : ∀ s t t r , s t x1 = Absence

→ s t x = Absence

→ Sd e l ay x x1 c t r

→ Sd e l ay x x1 c ( Tr s t t r )

| Sde layP : ∀ s t v t r , s t x1 = Val v

→ s t x = Val c

→ Sd e l ay x x1 v t r

→ Sd e l ay x x1 c ( Tr s t t r ) .

Trace Semantics 3 (Undersampling) The trace semantics

of the undersampling construct is defined as follows:

∀τ ∈ N

sτ =

{

s1τ i f s2τ = true

⊥ otherwise

Here, s and s1 have the same type and s2 is a boolean sig-

nal. The clock of s is the intersection of the clock of s1 and

the clock of s2, denoted as s=s1 ˆ * [s2], while [s2] represents

the true occurrences of s2. Given a logical instant τ, sτ gets

the value of s1τ when s2τ is true, else gets the value ⊥.

The Coq expression is given as follows.

CoInduct ive Swhen ( x x1 x2 : XVar ) : T race→Prop :=

SwhenT : ∀ s t v b t r , i s T r u e b

→ s t x = Val v → s t x1 = Val v

→ s t x2 = Val b → Swhen x x1 x2 t r

→ Swhen x x1 x2 ( Tr s t t r )

| SwhenF : ∀ s t b t r , ¬ i s T r u e b

→ s t x = Absence → s t x2 = Val b

→ Swhen x x1 x2 t r

→ Swhen x x1 x2 ( Tr s t t r )

| SwhenU : ∀ s t t r , s t x = Absence

→ s t x2 = Absence

→ Swhen x x1 x2 t r

→ Swhen x x1 x2 ( Tr s t t r ) .



Trace Semantics 4 (Deterministic merging) The trace

semantics of the deterministic merging construct is defined

as follows:
∀τ ∈ N

sτ =

{

s1τ i f s1τ , ⊥

s2τ otherwise

Here, signals s, s1 and s2 have the same type. The clock of

s is the union of the clocks of s1 and s2, denoted as s = s1 ˆ +

s2. Given a logical instant τ, sτ gets the merge of the values

of s1τ and s2τ, and the value of s1τ has a higher priority.

The Coq expression is given as follows.

CoInduct ive S d e f a u l t ( x x1 x2 : Var ) : Trace→Prop :=

S d e f a u l t U : ∀ s t t r , s t x = Absence

→ s t x1 = Absence

→ s t x2 = Absence

→ S d e f a u l t x x1 x2 t r

→ S d e f a u l t x x1 x2 ( Tr s t t r )

| S d e f a u l t 1 : ∀ s t v t r , s t x = Val v

→ s t x1 = Val v

→ S d e f a u l t x x1 x2 t r

→ S d e f a u l t x x1 x2 ( Tr s t t r )

| S d e f a u l t 2 : ∀ s t v t r , s t x = Val v

→ s t x1 = Absence

→ s t x2 = Val v

→ S d e f a u l t x x1 x2 t r

→ S d e f a u l t x x1 x2 ( Tr s t t r ) .

Finally, we apply these semantics rules to a SIGNAL

process, to get a complete semantics of the process, that

is Sprocess (defined in Section 4.1). SPassignment, SPde-

lay, SPwhen and SPdefault, used to construct the corre-

sponding Sprocess on the semantics rule Sassignment, Sde-

lay, Swhen and Sdefault respectively, while the function Pro-

cess2Sprocess is used to combine them as one Sprocess. We

also give the semantics of processes composition, that is SP-

prod.

Program D e f i n i t i o n SPass ignmen t x Ind f x i :=

{ |

sdom y := y=x ∨ ∃ i , y=x i i ;

s t r a c e s t r := S a s s i g n m e n t x Ind f x i t r

| } .

Program D e f i n i t i o n SPde lay x x1 c :=

{ |

sdom y := y=x ∨ y=x1 ;

s t r a c e s t r := S d e l ay x x1 c t r

| } .

Program D e f i n i t i o n SPwhen x x1 x2 :=

{ |

sdom y := y=x ∨ y=x1 ∨ y=x2 ;

s t r a c e s t r := Swhen x x1 x2 t r

| } .

Program D e f i n i t i o n S P d e f a u l t x x1 x2 :=

{ |

sdom y := y=x ∨ y=x1 ∨ y=x2 ;

s t r a c e s t r := S d e f a u l t x x1 x2 t r

| } .

Program D e f i n i t i o n SPprod p1 p2 :=

{ |

sdom y := sdom p1 y ∨ sdom p2 y ;

s t r a c e s t r := s t r a c e s p1 t r

∧ s t r a c e s p2 t r

| } .

F i x p o i n t P r o c e s s 2 S p r o c e s s ( p : P r o c e s s )

: S p r o c e s s :=

match p with

Pa ss Ind f x x i ⇒ SPass ignmen t x Ind f x i

| Pwhen x x1 x2 ⇒ SPwhen x x1 x2

| Pd e l ay x x1 c ⇒ SPde lay x x1 c

| P d e f a u l t x x1 x2 ⇒ S P d e f a u l t x x1 x2

| Ppar p1 p2

⇒ SPprod ( P r o c e s s 2 S p r o c e s s p1 )

( P r o c e s s 2 S p r o c e s s p2 )

end .

Example 5 The trace semantics of the process Parallel-

Count (example 2) is a set of traces, and two possible traces

are given as follows. Here, we just consider the external visi-

ble signals (the local declarations are hidden).

tr1 :
x1 1 ⊥ 2 ⊥ 0 1 ⊥ 2 ⊥ 3 ⊥ 0 ⊥ . . .

x2 ⊥ 1 ⊥ 2 0 ⊥ 1 ⊥ 2 ⊥ 3 0 ⊥ . . .

tr2 :
x1 0 1 2 ⊥ 0 1 2 ⊥ 3 0 ⊥ . . .

x2 0 ⊥ ⊥ 1 0 ⊥ ⊥ 1 ⊥ 0 ⊥ . . .

Property 1 For all SIGNAL processes, the trace seman-

tics is stretch-closed.

5.2 Tagged Model Semantics

Similarly, there are several definitions of the tagged model

semantics of SIGNAL [10,12], we select [10] as the reference

paper semantics and mechanize it in Coq.

Here, signal variables x, x1, . . . , xn are used in the refer-

ence paper semantics, while the tag structure with signals

s, s1, . . . , sn is used in the Coq expressions. The relation be-

tween them has been shown in Section 4.2. The mapping

between them is done at the end (i.e., the definition Pro-

cess2Tprocess).

Tagged Model Semantics 1 (Instantaneous function)

The tagged model semantics of the instantaneous function is

defined as follows:

Jx := f (x1, · · · , xn)K =
{b ∈ B|x,x1,··· ,xn

|tags(b(x)) = tags(b(x1)) = · · · = tags(b(xn))

= C ∈ CT and ∀t ∈ C, b(x)(t) = J f K(b(x1)(t), · · · , b(xn)(t))}

The semantics of the instantaneous function is the set of

behaviors b. The tags of each signal involved in b represent

the same chain C, i.e., all the signals are synchronous. When



the signals are all present, at each tag of C, the output signal

gets the corresponding value.

The corresponding Coq expression is given as follows. T-

SA_T is used to express the relation between values, while

TSA_S represents all the signals are synchronous. tval_from

and tval represent that, given a signal of a tag structure G and

a tag of the signal, we can get the corresponding value. tsync

means two signals are synchronous.

I n d u c t i v e t v a l _ f r o m {G} ( t 0 : Tag G ) :

T s i g n a l _ f r o m t 0 → Tag G → Value → Prop :=

t v _ c u r r : ∀ t h v s t t vv , t= t t → v=vv

→ t v a l _ f r o m t 0 ( Tnext t 0 t h v s ) t t vv

| t v _ n e x t : ∀ t h v s t t vv ,

t v a l _ f r o m t s t t vv →

t v a l _ f r o m t 0 ( Tnext t 0 t h v s ) t t vv .

I n d u c t i v e t v a l {G} : T s i g n a l G → Tag G →

Value → Prop :=

t v _ f i r s t : ∀ t v s t t vv , t= t t → v=vv

→ t v a l ( Tfrom G t v s ) t t vv

| t v_ f rom : ∀ t 0 v s t t vv ,

t v a l _ f r o m t 0 s t t vv →

t v a l ( Tfrom G t 0 v s ) t t vv .

D e f i n i t i o n t s y n c {G} ( s1 s2 : T s i g n a l G ) : Prop :=

∀ t , t a g s t s1 ↔ t a g s t s2 .

Record TSass ignment {G} s Index ( f : ( Index

→ Value ) → Value ) ( s i : Index → T s i g n a l G)

: Prop :={

TSA_T : ∀ t d v , ( ∀ i ,

t v a l ( s i i ) t ( d i ) )

→ t v a l s t v → v = f d ;

TSA_S : ∀ i , t s y n c ( s i i ) s

} .

Tagged Model Semantics 2 (Delay) The tagged model

semantics of the delay construct is defined as follows:

Jx := x1$ init cK =
{0|x,x1

}∪

{b ∈ Bx,x1
| tags(b(x)) = tags(b(x1)) = C ∈ CT \{∅};

b(x)(min(C)) = c;

∀t ∈ C\min(C), b(x)(t) = b(x1)(predC(t))}

Similarly to the instantaneous function, the tags of each

signal represent the same chain C. When the signals are both

present, x gets the value c at the initial tag of C, and for all

the other tags t ∈ C, x gets the value carried by x1 at the

predecessor of t.

The Coq expression is given as follows. TSY0 and TSYN

are used to express the relation between values, while TSYL

represents the signals are synchronous. tfirst s t represents

that t is the first tag of a given signal s, and tnext s1 t1 t2

means t2 is the next tag of t1 of a given signal s1 (it has the

same meaning as t1 = predC(t2)).

I n d u c t i v e t f i r s t {G} : T s i g n a l G → Tag G

→ Prop :=

t f _ p r f : ∀ t v s t t , t= t t

→ t f i r s t ( Tfrom G t v s ) t t .

I n d u c t i v e t n e x t _ f r o m {G} ( t 0 : Tag G ) :

T s i g n a l _ f r o m t 0 → Tag G → Tag G

→ Prop :=

t n f 0 : ∀ t h v s t 1 t2 , t 1= t 0 → t 2= t

→ t n e x t _ f r o m t 0 ( Tnext t 0 t h v s ) t 1 t 2

| t n f i : ∀ t h v s t 1 t2 , t n e x t _ f r o m t s t 1 t 2

→ t n e x t _ f r o m t 0 ( Tnext t 0 t h v s ) t 1 t 2 .

I n d u c t i v e t n e x t {G} : T s i g n a l G → Tag G

→ Tag G → Prop :=

t n n : ∀ t v s t 1 t2 , t n e x t _ f r o m t s t 1 t 2

→ t n e x t ( Tfrom G t v s ) t 1 t 2 .

Record TSdelay {G} ( s s1 : T s i g n a l G) c : Prop :={

TSY0 : ∀ t , t f i r s t s t → t v a l s t c ;

TSYN: ∀ t 1 t 2 v , t n e x t s1 t 1 t 2

→ t v a l s1 t 1 v → t v a l s t 2 v ;

TSYL : t s y n c s s1

} .

Tagged Model Semantics 3 (Undersampling) The

tagged model semantics of the undersampling construct is de-

fined as follows:

Jx := x1 when x2K =
{b ∈ B|x,x1,x2

|tags(b(x)) = {t ∈ tags(b(x1))

∩tags(b(x2))|b(x2)(t) = true} = C ∈ CT

and ∀t ∈ C, b(x)(t) = b(x1)(t)}

The set of tags of x is the intersection of the set of tags

associated with x1 and the set of tags at which x2 carries the

value true. Moreover, at each tag of x, the value held by x is

the value of x1.

The Coq expression is given as follows. Here, we give all

the cases. tnval s t means it is absent at the tag t of a given

signal s.

D e f i n i t i o n t n v a l {G} s ( t : Tag G ) : Prop :=

¬∃ v , t v a l s t v .

Record TSwhen {G} ( s s1 s2 : T s i g n a l G ) : Prop :={

TSW_T: ∀ t v b , t v a l s1 t v

→ t v a l s2 t b → i s T r u e b

→ t v a l s t v ;

TSW_F : ∀ t b , t v a l s2 t b

→ ¬ i s T r u e b → t n v a l s t ;

TSW_U1 : ∀ t , t n v a l s1 t → t n v a l s t ;

TSW_U2 : ∀ t , t n v a l s2 t → t n v a l s t

} .

Tagged Model Semantics 4 (Deterministic merging)

The tagged model semantics of the deterministic merging

construct is defined as follows:

Jx := x1 de f ault x2K =
{b ∈ B|x,x1,x2

|tags(b(x)) = tags(b(x1)) ∪ tags(b(x2)) = C ∈ CT

and ∀t ∈ C, b(x)(t) = b(x1)(t) i f t ∈ tags(b(x1)) else b(x2)(t)}



The set of tags of x is the union of the tags of x1 and

x2. The value taken by x is that of x1 at any tag when x1 is

present. Otherwise, it takes the value of x2 at its tags, which

do not belong to the tags of x1.

The Coq expression is given as follows.

Record T S d e f a u l t {G} ( s s1 s2 : T s i g n a l G ) : Prop :={

TSD0 : ∀ t v , t v a l s t v →

( t v a l s1 t v ∨ t n v a l s1 t ∧ t v a l s2 t v ) ;

TSD1 : ∀ t v , t v a l s1 t v → t v a l s t v ;

TSD2 : ∀ t v , t n v a l s1 t →

t v a l s2 t v → t v a l s t v

} .

Finally, we apply these semantics rules to a SIGNAL pro-

cess, to get a complete semantics of the process, that is T-

process (defined in Section 4.2). Tassignment, Tdelay, Twhen

and Tdefault, used to construct the corresponding Tprocess

on the semantics rule TSassignment, TSdelay, TSwhen and

TSdefault respectively, while the function Process2Tprocess

is used to combine them as one Tprocess. The semantics of

processes composition is defined in Tpar.

D e f i n i t i o n Tass ignmen t {G} x Index ( f : ( Index

→ Value ) → Value ) ( x i : Index → XVar )

: T p r o c e s s G:=

{ |

tdom y := y=x ∨ ∃ i , y=x i i ;

t b e h a v i o r s b := TSass ignment ( b x ) Index f

( fun i ⇒ ( b ( x i i ) ) )

| } .

D e f i n i t i o n Tde lay {G} ( x x1 : XVar ) c

: T p r o c e s s G:=

{ |

tdom y := y=x ∨ y=x1 ;

t b e h a v i o r s b := TSdelay ( b x ) ( b x1 ) c

| } .

D e f i n i t i o n Twhen {G} x x1 x2 : T p r o c e s s G:=

{ |

tdom y := y=x ∨ y=x1 ∨ y=x2 ;

t b e h a v i o r s b := TSwhen ( b x ) ( b x1 ) ( b x2 )

| } .

D e f i n i t i o n T d e f a u l t {G} x x1 x2 : T p r o c e s s G:=

{ |

tdom y := y=x ∨ y=x1 ∨ y=x2 ;

t b e h a v i o r s b := T S d e f a u l t ( b x ) ( b x1 ) ( b x2 )

| } .

D e f i n i t i o n Tpar {G} ( p1 p2 : T p r o c e s s G) :=

{ |

tdom y := tdom p1 y ∨ tdom p2 y ;

t b e h a v i o r s b := t b e h a v i o r s p1 b

∧ t b e h a v i o r s p2 b

| } .

F i x p o i n t P r o c e s s 2 T p r o c e s s G ( p : P r o c e s s )

: T p r o c e s s G:=

match p with

Pass Ind f x x i ⇒ Tass ig nmen t x Ind f x i

| Pd e l ay x x1 c ⇒ Tde lay x x1 c

| Pwhen x x1 x2 ⇒ Twhen x x1 x2

| P d e f a u l t x x1 x2 ⇒ T d e f a u l t x x1 x2

| Ppar p1 p2 ⇒ Tpar ( P r o c e s s 2 T p r o c e s s G p1 )

( P r o c e s s 2 T p r o c e s s G p2 )

end .

Example 6 The tagged model semantics of the process

ParallelCount (example 2) is a set of behaviors, and two ex-

amples are shown in Fig.5. Similarly, we just consider the

external visible signals.

Fig. 5 The tag structures of two possible behaviors of the process Parallel-

Count

Property 2 [12] For all SIGNAL processes, the tagged

model semantics is stretch-closed.

Property 1 and Property 2 represent that a SIGNAL pro-

cess can be used at different time scales because its semantics

is closed for the stretch-equivalence relation.

6 The Proof of the Semantics Equivalence

The trace semantics and the tagged model semantics are very

different models, so the equivalence between them (Theorem-

s S2Teq and T2Seq) is established through an intermediate

model. The global idea is sketched in Fig.6.

The intermediate model M is generic and parameterized

by:

1) mdom, the domain of M, such as a set of traces, a set of

behaviors on a tag structure;

2) mget m x i v, is true in domain m if variable x gets the ith

non-absent value v;



Fig. 6 Proof’s plan

3) msync m x1 x2 i1 i2, represents whether the variables x1

and x2 are synchronized or not at the ith
1

non-absent value

and the ith
2

non-absent value respectively.

With these three functions, it is possible to give a seman-

tics of SIGNAL, that is Uprocess(M). The difference between

the trace semantics and the intermediate model is that the lat-

ter just considers non-absent values, while the difference be-

tween the tagged model semantics and the intermediate mod-

el is that the latter uses a totally ordered set to express logical

time. In other words, the intermediate model mixes the fea-

tures of both the trace semantics and the tagged model seman-

tics. Here, Uprocess(M) is just a general expression, because

the domain is unknown. However, we give a general mapping

between two intermediate models (M1toM2), and give a ba-

sic theorem to prove the equivalence between them (Theorem

TFR12).

The trace semantics and the tagged model semantics

are considered as instances of the intermediate model, so

we transform them to their instance and prove the equiva-

lence (Theorems Ssem_def1, Ssem_def2, Tsem_def1 and T-

sem_def2).

Finally, we consider the relation between the two in-

stances. The mapping M1toM2 is refined as m_str2tag and

m_tag2str, and the Theorem TFR12 is reused.

6.1 Intermediate Model

Firstly, we give the definition of the intermediate model. m-

dom represents the domain of the model. In this model, we

introduce two observers, mget which gives the (finite or in-

finite) sequence of values taken by each variable, and msync

which defines the synchronization points of any couples of

variables.

Record Model : Type :={

mdom : Type ;

mget : mdom → XVar → n a t → Value → Prop ;

msync : mdom → XVar → XVar → n a t

→ n a t → Prop

} .

Secondly, we define a semantics of SIGNAL using this

model, which is a predicate over m ∈ mdom. Here, signal

variables x, x1, . . . , xn are used both in the mathematical mod-

el and the Coq expressions.

Intermediate Model 1 (Instantaneous function) The in-

termediate model of the instantaneous function is defined as

follows:

Jx := f (x1, · · · , xn)K(m) =

− ∀i ∈ N,∀v1 · · · vn v ∈ V, mget m x1 i v1 ∧ mget m x2 i v2

∧ · · · ∧ mget m xn i vn ∧ mget m x i v

⇒ v = f (v1, . . . , vn)

− ∀i ∈ N, msync m x1 x i i ∧ msync m x2 x i i ∧ . . .

∧ msync m xn x i i

All signals are synchronous and the ith non-absent val-

ues of each signal satisfy the functional constant v =

f (v1, . . . , vn).

The Coq expression is given as follows, Uass_T represents

the relation between values and Uass_S means all signals are

synchronous.

Record Uass ignment {M} (m: mdom M) Index

( f : ( Index → Value ) → Value ) ( x : XVar )

( vp : Index → XVar ) : Prop :={

Uass_T : ∀ d v i ,

(∀ p , mget m ( vp p ) i ( d p ) )

→ mget m x i v → v = f d ;

Uass_S : ∀ p i , msync m ( vp p ) x i i

} .

Intermediate Model 2 (Delay) The intermediate model of

the delay construct is defined as follows:

Jx := x1$ init cK(m) =

− mget m x 0 c

− ∀i ∈ N,∀v1 v2 ∈ V, mget m x1 i v1 ∧ mget m x1 (i + 1) v2

⇒ mget m x (i + 1) v1

− ∀i ∈ N, msync m x x1 i i

The two signals x and x1 are synchronous. mget m x 0 c

represents the first non-absent value of x is the initial value

c, and the (i + 1)th non-absent value of x is the ith non-absent

value of x1, provided it has an (i + 1)th value.

The Coq expression is given as follows.



Record Udelay {M} (m: mdom M) x x1 c : Prop :={

Udelay_0 : ∀ v , mget m x 0 v → v=c ;

Udelay_S : ∀ v1 v2 i , mget m x1 i v1

→ mget m x1 ( S i ) v2

→ mget m x ( S i ) v1 ;

Udelay_s : ∀ i , msync m x x1 i i

} .

Intermediate Model 3 (Undersampling) The intermedi-

ate model of the undersampling construct is defined as fol-

lows:

Jx := x1 when x2K(m) =

− ∀i ∈ N,∀v ∈ V, mget m x i v⇒

(∃i1 i2 ∈ N,msync m x x1 i i1 ∧ msync m x x2 i i2
∧ mget m x1 i1 v ∧ mget m x2 i2 true)

− ∀i1 i2 ∈ N,∀v ∈ V, msync m x1 x2 i1 i2
∧ mget m x1 i1 v ∧ mget m x2 i2 true

⇒ (∃i ∈ N,msync m x x1 i i1 ∧ mget m x i v)

Here, x is defined in the position i if and only if there are

two synchronized positions i1 and i2 at which x1 and x2 are

defined, and such as the value of x2 is true. In such a case,

the ith non-absent value of x is the ith
1

non-absent value of x1.

The Coq expression is given as follows.

Record Uwhen {M} (m: mdom M) x x1 x2 : Prop :={

Uwhen_v : ∀ i v , mget m x i v →

∃ i 1 i2 , msync m x x1 i i 1

∧ msync m x x2 i i 2

∧ mget m x1 i 1 v

∧ ∃ b , mget m x2 i 2 b

∧ i s T r u e b ;

Uwhen_v12 : ∀ i 1 i 2 b v ,

msync m x1 x2 i 1 i 2

→ mget m x1 i 1 v → mget m x2 i 2 b

→ i s T r u e b

→ ∃ i , msync m x x1 i i 1 ∧ mget m x i v

} .

Intermediate Model 4 (Deterministic merging) The in-

termediate model of the deterministic merging construct is

defined as follows:

Jx := x1 de f ault x2K(m) =

− ∀i ∈ N,∀v ∈ V, mget m x i v⇒

((∃i1 ∈ N,msync m x x1 i i1 ∧ mget m x1 i1 v)∨

(¬(∃i1 ∈ N,msync m x x1 i i1)∧

(∃i2 ∈ N,msync m x x2 i i2 ∧ mget m x2 i2 v)))

− ∀i i1 ∈ N,∀v ∈ V, msync m x x1 i i1 ∧ mget m x1 i1 v

⇒ mget m x i v

− ∀i i2 ∈ N,∀v ∈ V, (¬(∃i1 ∈ N,msync m x x1 i i1)

∧ msync m x x2 i i2 ∧ mget m x2 i2 v⇒ mget m x i v

Here, either the ith position of x is synchronized with some

position of x1, or else it is synchronized with some position

of x2. In both cases, the value of x at the ith position is the

value of the synchronized one.

The Coq expression is given as follows.

Record U d e f a u l t {M} (m: mdom M) x x1 x2 : Prop :={

U d e f a u l t _ v : ∀ i v , mget m x i v →

( ( ∃ i1 , msync m x x1 i i 1

∧ mget m x1 i 1 v ) ∨

(¬ (∃ i1 , msync m x x1 i i 1 )

∧ ∃ i2 , msync m x x2 i i 2

∧ mget m x2 i 2 v ) ) ;

U d e f a u l t _ v 1 : ∀ i i 1 v , msync m x x1 i i 1

→ mget m x1 i 1 v → mget m x i v ;

U d e f a u l t _ v 2 : ∀ i i 2 v ,

(¬ (∃ i1 , msync m x x1 i i 1 )

→ msync m x x2 i i 2

→ mget m x2 i 2 v → mget m x i v

} .

In addition, we apply these semantics rules to a process to

get a complete semantics, that is Uprocess. We also give the

semantics of processes composition.

F i x p o i n t Uprocess {M} ( p : P r o c e s s ) (m: mdom M)

: Prop :=

match p with

Pa ss Ind f x x i ⇒ Uass ignment m Ind f x x i

| Pd e l ay x x1 c ⇒ Udelay m x x1 c

| Pwhen x x1 x2 ⇒ Uwhen m x x1 x2

| P d e f a u l t x x1 x2 ⇒ U d e f a u l t m x x1 x2

| Ppar p1 p2 ⇒ Uprocess p1 m

∧ Uprocess p2 m

end .

Thirdly, we give a general mapping between two interme-

diate models (M1toM2). We use a function s1tos2 to express

the mapping from a set of elements of the domain of M1 (de-

noted as S 1) to a set of elements of the domain of M2. It relies

on a function m2tom1 mapping one element of the domain of

M2 to one element of the domain of M1, such as from one

trace to one behavior on a tag structure.

s1tos2(S 1) = {e2 ∈ mdom(M2)|m2tom1(e2) ∈ S 1}

get12 and sync12 define the properties of m2tom1, i.e., the

same variable of two models has the same value at the same

value index (same mget), and has the same synchronous rela-

tions (same msync).

Record M1toM2 M1 M2: Type :={

m2tom1 : mdom M2 → mdom M1;

g e t 1 2 : ∀ m2 x i v , mget m2 x i v

↔ mget ( m2tom1 m2) x i v ;

sync12 : ∀ m2 x1 x2 i 1 i2 ,

msync m2 x1 x2 i 1 i 2

↔ msync ( m2tom1 m2) x1 x2 i 1 i 2 ;

s 1 t o s 2 : (mdom M1 → Prop ) → (mdom M2 → Prop )

:= fun s1 ⇒ fun e2 ⇒ s1 ( m2tom1 e2 )

} .

Moreover, a basic theorem in which two intermediate

models are equivalent is proven. This theorem states that the



transformation of the M2 semantics of a SIGNAL process p

is the M1 semantics of p.

Theorem TFR12 :

∀ M1 M2 ( p : P r o c e s s ) ( t 1 2 : M1toM2 M1 M2) ,

∀ (m2 : mdom M2) , Uprocess (M:=M2) p m2

↔ s 1 t o s 2 t 1 2 ( Uprocess (M:=M1) p ) m2 .

6.2 The Relation between the Trace Semantics and the In-

termediate Model

Notice that, the semantics defined by intermediate model

(Uprocess) is generic, because mget and msync are abstract

observers. Here, we focus on the relation between the trace

semantics and the intermediate model, so we set the domain

as a trace. The observers mget and msync also need to be

refined, that are trGet and trSync.

The predicate trGet tr i x v is satisfied if the ith non-absent

value of x is v.

I n d u c t i v e t r G e t : T race → n a t → XVar

→ Value → Prop :=

t r g 0 : ∀ x s t t r v , s t x = Val v

→ t r G e t ( Tr s t t r ) 0 x v

| t rgU : ∀ i x s t t r v , s t x = Absence

→ t r G e t t r i x v

→ t r G e t ( Tr s t t r ) i x v

| t rgN : ∀ i x s t t r v , s t x , Absence

→ t r G e t t r i x v

→ t r G e t ( Tr s t t r ) ( S i ) x v .

In order to define trSync, we introduce the auxiliary pred-

icate trGetp. trGetp tr i x j is satisfied if the ith non-absent

value of x is at the instant j of the trace tr.

I n d u c t i v e t r G e t p : Trace → n a t → XVar

→ n a t → Prop :=

t r g p 0 : ∀ x s t t r , s t x , Absence

→ t r G e t p ( Tr s t t r ) 0 x 0

| t rgpU : ∀ i x s t t r j , s t x = Absence

→ t r G e t p t r i x j

→ t r G e t p ( Tr s t t r ) i x ( S j )

| t rgpN : ∀ i x s t t r j , s t x , Absence

→ t r G e t p t r i x j

→ t r G e t p ( Tr s t t r ) ( S i ) x ( S j ) .

Then, we say that x1 and x2 synchronize at value index i1

and i2 if the ith
1

non-absent value of x1 and the ith
2

non-absent

value of x2 occur at the same instant.

D e f i n i t i o n t r S y n c x1 x2 ( t r : T race ) ( i 1 i 2 : n a t )

: Prop :=

∀ j , t r G e t p t r i 1 x1 j ↔ t r G e t p t r i 2 x2 j .

We construct the corresponding intermediate model in-

stance using the observers trGet and trSync.

D e f i n i t i o n s t r I n s t a n c e : Model :=

{ |

mdom:= Trace ;

mget t r x i v := t r G e t t r i x v ;

msync t r x1 x2 i 1 i 2 := t r S y n c x1 x2 t r i 1 i 2

| } .

Finally, we prove the equivalence between the trace se-

mantics and its corresponding intermediate model instance.

Theorem Ssem_def1 : ∀ p t r ,

s t r a c e s ( P r o c e s s 2 S p r o c e s s p ) t r

→ Uprocess (M:= s t r I n s t a n c e ) p t r .

Theorem Ssem_def2 : ∀ p t r ,

Uprocess (M:= s t r I n s t a n c e ) p t r

→ s t r a c e s ( P r o c e s s 2 S p r o c e s s p ) t r .

Example 7 We construct the intermediate model instance

of the trace tr1 shown in the example 5 (see Fig.7).

Fig. 7 The intermediate model instance of a trace

• trGet tr1 = {(0, x1, 1), (1, x1, 2), (2, x1, 0), (3, x1, 1),

. . . , (0, x2, 1), (1, x2, 2), (2, x2, 0), (3, x2, 1), . . . }

• trSync tr1 = {(x1, x2, 2, 2), (x1, x2, 6, 6), . . . }

6.3 The Relation between the Tagged Model Semantics and

the Intermediate Model

Here, we set the domain as a behavior on a tag structure. The

observers mget and msync are refined as tGet and tSync.

In order to define tGet and tSync, we introduce the auxil-

iary predicates tGett_from and tGett. tGett s i t is satisfied if

the ith tag of the signal s is t.

I n d u c t i v e t G e t t _ f r o m {G} ( t 0 : Tag G ) :

T s i g n a l _ f r o m t 0 → n a t → Tag G → Prop :=

t g t n 0 : ∀ t 1 h d s t , t= t 1

→ t G e t t _ f r o m t 0 ( Tnext t 0 t 1 h d s ) 0 t

| t g t n S : ∀ t 1 h d s i t ,

t G e t t _ f r o m t 1 s i t →

t G e t t _ f r o m t 0 ( Tnext t 0 t 1 h d s ) ( S i ) t .

I n d u c t i v e t G e t t {G} : T s i g n a l G → n a t

→ Tag G → Prop :=

t g t 0 : ∀ d t s , t G e t t ( Tfrom G t d s ) 0 t

| t g t S : ∀ t 0 d s i t , t G e t t _ f r o m t 0 s i t →

t G e t t ( Tfrom G t 0 d s ) ( S i ) t .

The predicate tGet s i v is satisfied if the value on the ith

tag of the signal s is v.



I n d u c t i v e t G e t {G} s i v : Prop :=

t G e t _ p r f : ∀ t : Tag G, t G e t t s i t

→ t v a l s t v → t G e t s i v .

Then, we say that x1 and x2 synchronize at tag index i1 and

i2 if they share the same tag.

I n d u c t i v e tSync {G} x1 x2 ( b : T b e h a v i o r G)

i 1 i 2 : Prop :=

t S y n c P r f : (∀ t , t G e t t ( b x1 ) i 1 t

↔ t G e t t ( b x2 ) i 2 t )

→ tSync x1 x2 b i 1 i 2 .

We construct the corresponding intermediate model in-

stance using the observers tGet and tSync.

D e f i n i t i o n t a g I n s t a n c e G: Model :=

{ |

mdom:= T b e h a v i o r G;

mget b x i v := t G e t ( b x ) i v ;

msync b x1 x2 i 1 i 2 := tSync x1 x2 b i 1 i 2

| } .

Finally, we prove the equivalence between the tagged

model semantics and its corresponding intermediate model

instance.

Theorem Tsem_def1 : ∀ G p b ,

t b e h a v i o r s ( P r o c e s s 2 T p r o c e s s G p ) b

→ Uprocess (M:= t a g I n s t a n c e G) p b .

Theorem Tsem_def2 : ∀ G p b ,

Uprocess (M:= t a g I n s t a n c e G) p b

→ t b e h a v i o r s ( P r o c e s s 2 T p r o c e s s G p ) b .

Example 8 We construct the intermediate model instance

of the tag structure G1 shown in the example 6 (see Fig.8).

Fig. 8 The intermediate model instance of a tag structure

• tGet G1 = {(x1, 0, 1),(x1, 1, 2), (x1, 2, 0), (x1, 3, 1), . . . ,

(x2, 0, 1), (x2, 1, 2), (x2, 2, 0), (x2, 3, 1), . . . }

• tSync G1 = {(x1, x2, 2, 2), (x1, x2, 6, 6), . . . }

6.4 The Equivalence between the Trace Semantics and the

Tagged Model Semantics

We refine the definition of mapping (M1toM2) as m_str2tag

and m_tag2str. In other words, m_str2tag and m_tag2str are

defined as instances of M1toM2.

In m_str2tag, the function m2tom1, i.e., from a behavior

on a tag structure to a trace, is constructed by a mathemat-

ical transformation (transformation 1) which is close to the

topological sort algorithm [20], and it is used in the defini-

tion of the function s1tos2, i.e., from the set of traces to a set

of behaviors.

Lemma m _ s t r 2 t a g :

∀ G, M1toM2 s t r I n s t a n c e ( t a g I n s t a n c e G ) .

D e f i n i t i o n S p r o c e s s 2 T p r o c e s s G ( p : S p r o c e s s ) :=

{ |

tdom := sdom p ;

t b e h a v i o r s := s 1 t o s 2 ( m _ s t r 2 t a g G) ( s t r a c e s p )

| } .

Transformation 1 Let us consider the mapping from a

behavior on a tag structure to a trace. It must visit the tags

of each signal following their chain order and must be fair(all

the tags of all the signals must be eventually visited). For

that, we use a variant of topological sort algorithm and the

finiteness of the set signal variables.

• Step0: consider the first tag of each signal, i.e., the tag

index on each signal is 0, denoted as the vector of tag

indexes:
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• Step1: select any signal such as:

- no other signal will synchronize in the strict future with

its current position.

- it has a minimal index compared to indexes of such

signals.

• Step2: get the current tag of the chosen signal.

• Step3: add to the target trace the values of the signal

variables for that tag, while the values of other signals

variables are noted ⊥.

• Step4: increment the index of all the signals of which

current tag is the chosen tag, namely their tag index will

be added 1, for example
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• Step5: repeat step1, step2, step3 and step4.

The transformation stops if there does not exist any vari-

ables with an associated tag at its current tag index. In this



case, the resulting trace is finite. Otherwise, the transforma-

tion builds an infinite trace.

Example 9 According to transformation 1, the tag struc-

ture G1 in the example 6 can be mapped to a set of traces

(different arrangement of values), and the trace tr1 shown in

the example 5 belongs to this set (see Fig. 9).

Fig. 9 Mapping from a tag structure to a trace

The tag index on each signal is noted on the tag structure

explicitly. The transitions of the vector of tag indexes of tr1

and tr2 are given respectively as follows.
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In m_tag2str, the function m2tom1, i.e., from a trace to a

behavior on a tag structure, is constructed by another math-

ematical transformation (transformation 2), and it is used in

the definition of the function s1tos2, i.e., from a set of behav-

iors to a set of traces.

Lemma m _ t a g 2 s t r :

∀ G, M1toM2 ( t a g I n s t a n c e G) s t r I n s t a n c e .

D e f i n i t i o n T p r o c e s s 2 S p r o c e s s G ( p : T p r o c e s s G) :=

{ |

sdom := tdom p ;

s t r a c e s := s 1 t o s 2 ( m _ t a g 2 s t r G) ( t b e h a v i o r s p )

| } .

In order to map the infinite traces on the tag structure, we

must suppose that infinite chains exist, one of these chains

will be chosen to map all the traces. So, we have the follow-

ing hypothesis.

Hypothesis 1 A tag structure always has at least an infi-

nite chain.

The Coq definition is given as follows.

CoInduct ive h a s I n f i n i t e C h a i n F r o m {G}

( t : Tag G ) : Type :=

NextTag : ∀ t1 , t @< t 1

→ h a s I n f i n i t e C h a i n F r o m t 1

→ h a s I n f i n i t e C h a i n F r o m t .

I n d u c t i v e h a s I n f i n i t e C h a i n G: Type :=

F i r s t T a g : ∀ ( t : Tag G) ,

h a s I n f i n i t e C h a i n F r o m t

→ h a s I n f i n i t e C h a i n G.

Hypothes i s i n f c h : ∀ G, h a s I n f i n i t e C h a i n G.

Transformation 2 Let us consider the mapping from a

trace to a behavior on a tag structure. An infinite chain of

the target tag structure is noted by the tags {ti | i = 0, 1, · · · }

which correspond to instants ( j = 0, 1, · · · ) of the trace.

• Step0: start from the first instant of the trace, find the

first position which has non-absent value, if the position

cannot be found, then return an empty chain.

• Step1: note the variable-value pair on the corresponding

tag of the infinite chain.

• Step2: from the current position, find the next position

which has non-absent value, if the position cannot be

found, then return the chain which is ended at the current

position.

• Step3: repeat Step1 and Step2.

Finally, each signal variable will get a sub-chain.

Example 10 According to transformation 2, the trace tr1

shown in the example 5 is mapped to an infinite chain with

non-absent values, which has the same observers tGet and

tSync with the tag structure G1 in the example 6 (see Fig.10).

Fig. 10 Mapping from a trace to a tag structure

Finally, we prove the theorems S2Teq and T2Seq based on

all the definitions and theorems as above.



In the direction from the trace semantics to the tagged

model semantics, we can get a corresponding tag struc-

ture using the mapping Sprocess2Tprocess, that is Spro-

cess2Tprocess G (Process2Sprocess p), then we prove

it is equivalent with the tagged model semantics Pro-

cess2Tprocess, namely, they have the same observers tGet

and tSync.

Record TPeq {G:TAG} ( p1 p2 : T p r o c e s s G ) : Type :={

TPd : ∀ y : XVar , tdom p1 y ↔ tdom p2 y ;

TPb : ∀ ( b1 : T b e h a v i o r G) ( b2 : T b e h a v i o r G) ,

(∀ y , b1 y = b2 y )

→ ( t b e h a v i o r s p1 b1

↔ t b e h a v i o r s p2 b2 )

} .

Theorem S2Teq :∀ G ( p : P r o c e s s ) ,

TPeq ( S p r o c e s s 2 T p r o c e s s G

( P r o c e s s 2 S p r o c e s s p ) )

( P r o c e s s 2 T p r o c e s s G p ) .

In the direction from the tagged model semantics to the

trace semantics, we can get a corresponding trace using the

mapping Tprocess2Sprocess, that is Tprocess2Sprocess G

(Process2Tprocess G p), then we prove it is equivalent with

the trace semantics Process2Sprocess, namely, they have the

same observers trGet and trSync.

Record SPeq ( p1 p2 : S p r o c e s s ) : Prop :=

{

SPd : ∀ y , sdom p1 y ↔ sdom p2 y ;

SPs : ∀ t r , s t r a c e s p1 t r ↔ s t r a c e s p2 t r

} .

Theorem T2Seq :∀ G ( p : P r o c e s s ) ,

SPeq ( T p r o c e s s 2 S p r o c e s s G

( P r o c e s s 2 T p r o c e s s G p ) )

( P r o c e s s 2 S p r o c e s s p ) .

6.5 Discussion

As mentioned before, the observers mget and msync are used

in the equivalence between two different semantic models.

Moreover, local signal variables are ignored in the formal de-

velopment to get a simplest criterion for comparing models.

Here, we discuss the possible properties of mget and msync

on the same semantics model, either on the trace semantics

or on the tagged model semantics.

Remark 2 The SIGNAL semantics is not closed for

mget/msync equivalence when the SIGNAL programs have

local declarations, as explained in the following example.

Example 11 Let us consider another process Sampler:

process S ampler = (! integer x1, x2; )

(| y := not y $ init true

| x1 := 1 when y

| x2 := 2 when not y

|) where boolean y;

end;

The trace model is considered here. Similarly, we just con-

sider the external visible signals. We give two traces having

the same observers mget and msync. However, tr1 belongs to

the trace semantics of Sampler, while tr2 does not. The initial

value of the local variable y is true, so x1 should always get

values at first.

x1 1 ⊥ 1 ⊥ 1 ⊥ · · ·

tr1 : x2 ⊥ 2 ⊥ 2 ⊥ 2 · · ·

x1 ⊥ 1 ⊥ 1 ⊥ 1 · · ·

tr2 : x2 2 ⊥ 2 ⊥ 2 ⊥ · · ·

Remark 3 The SIGNAL semantics is closed for mget/m-

sync equivalence when the SIGNAL programs don’t have

local declarations, because the semantic constraints are ex-

pressed only through mget and msync.

So, we should not confuse the property of the observers

mget and msync with the property of stretch closure.

7 Related Work

The formal semantics of the SIGNAL language has a long-

time research, and the contributors describe the semantics

using different models. The reference manual of SIGNAL

V4 [9] gives the definitions of event and trace, and defines

the trace semantics. The trace model is a convenient one to

be comprehended, so it is always used to interpret the ba-

sic concepts of SIGNAL [10, 11, 21]. Lee and Sangiovanni-

Vincentelli proposes the tagged-signal model [19] to compare

various models of computation, such as Kahn process net-

works, sequential processes, data flow, event structures, etc.

It is a denotational approach where a system is modeled as a

set of behaviors. Behaviors are set of events and each event is

a value-tag pair. [10] and [12] refine the definitions of event,

chain, behavior on tags, and give the tagged model seman-

tics of SIGNAL. [22] introduces an algebra of tag structures,

which is a variation of the tagged-signal model, to define par-

allel composition of heterogeneous reactive systems formal-

ly. Morphisms between tag structures can be used to repre-

sent design transformations from tightly-synchronized spec-

ifications to loosely-synchronized implementation architec-

tures such as loosely time triggered architecture (LTTA) and



globally asynchronous locally synchronous (GALS). In [10],

they also give a structured operational semantics of SIGNAL

through an inductive definition of the set of possible transi-

tions. [13] proposes a synchronous transition systems (STS)

model to present the operational semantics of SIGNAL, and

presents the translation validation method to verify the com-

piler from SIGNAL to sequential C-code. [23] defines the

properties of endochrony and isochrony on the STS seman-

tics model, to guarantee correct-by-construction deployment

from the synchronous programs to GALS.

Meanwhile, there are some work about mechanization of

the semantics of the synchronous languages. Nowak pro-

poses a co-inductive semantics for modeling SIGNAL in

the Coq proof assistant [14, 15]. In [24], a semantics of

Lucid-Synchrone, an extension of LUSTRE with higher-

order stream functions, is given in Coq. [25] specifies the

semantics of QUARTZ in HOL, and proves the equivalence

between different semantics.

However, there has been little research about the equiva-

lence between different semantics of SIGNAL. [14] defines a

translation scheme of the trace semantics of SIGNAL to the

logical framework of Coq, but they don’t consider the seman-

tics equivalence, the stretch-closure property is also exclud-

ed. They conduct some case studies to apply the approach

SIGNAL-Coq, such as the steam-boiler problem [15], and

the correctness of an implementation of SIGNAL protocol

for LTTA [26].

8 Conclusion and Future Work

In this paper, we have studied the equivalence between two

denotational semantics of SIGNAL, the trace semantics and

the tagged model semantics. The former is easier to be com-

prehended, so it is often used to explain the basic concepts of

SIGNAL. However, the latter can represent the multi-clock

and distributed features more naturally. These two seman-

tics have several different definitions respectively. We select

appropriate ones as the reference paper semantics and mech-

anize them in the Coq platform. The distance between these

two semantics discourages a direct proof of equivalence. In-

stead, we have transformed them to an intermediate model,

which mixes the features of both the trace semantics and the

tagged model semantics. Thus we have established the exis-

tence of a bijection between the trace and the tagged seman-

tics domain such that the trace semantics of SIGNAL can be

obtained from its tagged model semantics and vice versa. We

prove the equivalence between the SIGNAL semantics by in-

troducing two observers mget and msync, which introduces

an equivalence relation weaker than the stretching relation.

A feedback from our formal development, besides stretch-

equivalence, the SIGNAL semantics satisfies the mget/msync

equivalence if the SIGNAL programs don’t have local decla-

rations.

In the future, we plan to consider the local declarations in

the intermediate model. Furthermore, we can use this frame-

work to compare the definitions of SIGNAL properties such

as endochrony, isochrony defined on variants of semantics

models or on the syntax.

The synchronous hypothesis simplifies system specifica-

tion and verification, however, the problem of deriving a cor-

rect physical implementation from it does remain. In par-

ticular, the target architecture has a distributed feature, such

as multi-core systems. In order to exploit the emerging multi-

core processors, thanks to the theory of weakly endochronous

systems [27], there are several research to synthesize multi-

threaded code from the synchronous specifications [28, 29].

However, one needs to prove the semantics preservation from

the SIGNAL specifications to the multi-threaded code. The

results of this paper will be useful for this challenging prob-

lem.
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