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AN ASYMPTOTIC SHAPE THEOREM FOR RANDOM LINEAR

GROWTH MODELS

AURELIA DESHAYES

Abstract. In this note, we generalize the asymptotic shape theorem proved in [Des14a]
for a class of random growth models whose growth is at least and at most linear. In
this way, we obtain asymptotic shape theorems conjectured for several models: the
contact process in a randomly evolving environment [SW08], the oriented percolation
with hostile immigration [GM12b] and the bounded modified contact process [DS00].

1. Introduction

In 1974, Harris [Har74] introduced the classical contact process as an interacting parti-
cle system modeling the spread of a population through the grid Z

d. This process has been
well studied and it satisfies in particular a shape theorem. Since then, a lot of extensions
appeared in the literature: two stage contact process by Krone [Kro99], boundary modi-
fied contact process by Durett and Schinazi [DS00], contact process in randomly evolving
environment by Broman [Bro07], Remenik [Rem08], Steif and Warfheimer [SW08], con-
tact process with aging by the author [Des14a] etc. All these processes are linear random
growth models in the sense that we can exhibit a quantity of interest At taking values in
P(Zd) and deterministic compact sets A− and A+ such that, for t large enough,

tA− ⊂ At ⊂ tA+.

The first inclusion traduces the at least linear growth and the second one the at most
linear growth. These models have also others characteristics like attractivity, phase tran-
sition phenomenon etc. Here, we want to show that they satisfy asymptotic shape results
i.e. there exists a deterministic set B such that At

t
converges to B in a sense to precise

and we want to highlight their common properties which lead to a general asymptotic
shape theorem. In order to do that we introduce a general class of random growth models
including the above mentioned contact process extensions and a related good quantity,
the essential hitting time σ, which allows us to use the same techniques that the ones
involved in [Des14a] to prove an asymptotic shape theorem. Indeed, as the standard con-
tact process itself, its extensions are non permanent models: the extinction is possible
and the hitting times can be infinite so that the standard integrability conditions are
not satisfied. On the other hand, if we condition the model to survive, then stationarity
and subadditivity properties can be lost. The quantity σ overcome such lacks: it turns
out that this function σ satisfies adequate stationarity properties as well as the almost-
subaddivity conditions involved in Kesten and Hammersley’s theorem (see [Kes73] and
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[Ham74]), a well-known extension of Kingman’s seminal result. We will define precisely
all the quantities involved but we will refer to [Des14a] for proofs working in the same
way.

We obtain a general asymptotic shape theorem for a class of random linear growth
models and deduce asymptotic shape theorems conjectured for several models: the con-
tact process in a randomly evolving environment [SW08], the oriented percolation with
hostile immigration [GM12b] and the bounded modified contact process [DS00].

2. A class of random linear growth models

2.1. Notations and definitions.

2.1.1. State space. We will work on interacting particle systems on Z
d. For x and y in

Z
d, we say that x and y are neighbors, and we denote by x ∼ y, if

∑d
i=1 |xi − yi| = 1.

We denote by Tx the spatial translation operator of vector x ∈ Z
d.

Let S be a finite totally ordered set which will represent the possible state (or type)

of a particle x ∈ Z
d. We denote by SZd

the set of mappings ξ : Zd 7→ S which can also
be seen as the set of partitions of Zd in |S| subsets:

ξ ∈ SZ
d ⇔

{

ξ : Z
d → S
x → ξ(x);

and we denote by SZd

f the subset of functions with finitely many coordinates non equal

to minS (often 0). Let C(SZd

) be the set of continuous functions from SZd

to R and

C0(SZd

) the subset of functions depending on only finitely many coordinates of ξ. The

set SZd

will be our state space of configurations.

2.1.2. Markov process and property of interest. We work with a time space T which can
be discrete (T = N) or continuous (T = R+). Let (ξt)t∈T be a stationary Markov process

taking values in SZd

and let (P ) be a property of interest about elements of S. We define
the process (At) taking values in P(Zd) by, for t ∈ T ,

At = {x ∈ Z
d, ξt(x) satisfies (P )};

the quantity At represents the set of points which satisfies the property (P ) at time t.
We can also write, for t ∈ T and x ∈ Zd, At(x) = g(ξt(x)) where g is the indicator

function corresponding to the property (P ); we extend At = g(ξt) in the natural way.
One should notice that the process (At) is not necessarily Markovian.

Let δmin be the minimal non trivial configuration of the process (ξt) such that A0 =
g(δmin) is not empty (i.e. someone in δmin satisfies (P )). A such configuration δmin exists
because S is totally ordered and it is unique modulo translation. For every x ∈ Z

d, we
denote by

τ = inf{t > 0, Aδmin

t = ∅},
t(x) = inf{t > 0, x ∈ Aδmin

t }.
Starting from δmin, τ is the first time when no one satisfies (P ) and t(x) is the first time
when x satisfies (P ).
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For x ∈ Z
d and t ∈ T we denote by Tx the spatial translation and by θt the temporal

one. For t ∈ T , let

Ht =
⋃

s≤t

At = {x ∈ Z
d, t(x) ≤ t}

be the set of points which have satisfied (P ) before time t.

2.1.3. Interacting particle system.

Definition. Let (ξt) be a Markov process taking values in SZd

and (P ) a property of
interest. We say that (ξt, P ) belongs to the class C if it satisfies the following conditions:

(1) The generator A of (ξt) satisfies, for every f ∈ C0(SZd

) and every configuration

ξ ∈ SZd

,

A(f)(ξ) =
∑

x∈Zd

∑

s∈S

c(x, ξ, s)
(

f(ξ(x,s))− f(ξ)
)

where, for all x ∈ Z
d and ξ, ξ(x,s) is the configuration ξ where ξ(x) is replaced

by s. c(x, ξ, s) ≥ 0 is the intensity for a jump ξ → ξ(x,s) and depends on ξ only
through {ξ(y), y ∼ x} and ξ(x) and we take c(x, ξ, s) = 0 if s = ξ(x).

(2) The process (ξt) is additive in the following sense: for all f, g ∈ SZ
d

, ξf∨gt =

ξft ∨ ξgt ; moreover, {At = ∅} in an absorbing state.

The first condition implies that (ξt) is a nearest neighbor interacting particle system;
this definition was introduced by Harris in [Har74] but today the term NNI represents a
larger class of interacting particle systems (including for example the exclusion process
which does not satisfy this first condition). We can find the general definition of NNI
particle systems and the proof of their existence in [Lig05].

Harris [Har78] introduced a graphical representation of additive processes which make
possible to work with a percolation view on a diagram of Poisson processes impacts
(see [Des14a] for an example of such construction).

2.1.4. Random linear growth models. We define the class of models with which we are
going to work:

Definition. We say that (ξt, P ) belongs to the class CL if it satisfies the following con-
ditions:

(1) we have P(τ = +∞) > 0
(2) there exist C1, C2,M1,M2 > 0 such that for all t > 0 and x ∈ Z

d

P

(

∃x ∈ Z
d : t(x) ≤ t and ‖x‖1 ≥ M1t

)

≤ C1 exp(−C2t),(AML)

P (t < τ < ∞) ≤ C1 exp(−C2t),(SC)

P (t(x) ≥ M2‖x‖+ t, τ = ∞) ≤ C1 exp(−C2t).(ALL)

The second condition means that the growth of the set of points satisfying (P ) is
at most linear (AML), at least linear (ALL) and, if the extinction time τ is finite,
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then it is small (SC for small clusters in analogy with percolation vocabulary). Since
P(τ = +∞) > 0, we will work with the probability conditioned to survive: P = P(.|τ = +∞).

2.2. Examples.

2.2.1. Classical contact process. For x ∈ Z
d, ξ ∈ {0, 1}Zd

and k ∈ N:

c(x, ξ, 0) = 11ξ(x)=1

c(x, ξ, 1) = 11ξ(x)=0 × λ
∑

y∼x

11ξ(y)=1.

We consider P the property ’to be alive’ and we get back to the already known asymptotic
shape theorem for At = ξt. In the following we denote by λc the critical value for classical
contact process.

Next examples are extensions of the classical contact process from the literature; we
give here definitions with the notations of our context. They belong to class C by con-
struction. Several authors have worked hard to show that they belong to the class CL.

2.2.2. Contact process in a randomly evolving environment (CPREE). The contact pro-
cess in a randomly evolving environment was introduced by Broman [Bro07] and studied
in particular by Steif and Warfheimer [SW08]. Take T = R+, S = {(0, 0), (0, 1), (1, 0), (1, 1)}.
An element of S represents a pair (type, stage) where type can be favorable (1) or unfa-
vorable (0) and the stage can be alive (1) or dead (0). We can write the jump intensities:

ξ(x) → s c(x, ξ, s)
birth (0, 0) → (0, 1)

∑

x∼y ξt(y)

(type independent) (1, 0) → (1, 1)
∑

x∼y ξt(y)

death (0, 1) → (0, 0) δ0
(type dependent) (1, 1) → (1, 0) δ1

(0, 0) → (1, 0) γp
evolution (0, 1) → (1, 1) γp
of type (1, 0) → (0, 0) γ(1− p)

(1, 1) → (0, 1) γ(1− p)

with 0 ≤ δ1 < δ0, p ∈ [0, 1] and γ ≥ 0 four parameters of the system.
Let (P ) =’to be alive’. The process (At) represents the set of alive points regardless

of their type (favorable or unfavorable) and corresponds to the process (Ct) in Steif and
Warfheimer’s article [SW08]. Here, δmin is the configuration where 0 is in state (0, 1) and
all the others are in state (0, 0). Using the Steif-Warfheimer construction and a restart
argument like the one in section 5.3 in [Des14a], it is easy to see that the controls (AML),
(SC) and (ALL) are satisfied, so (ξt, P ) belongs to C ∩ CL.

2.2.3. Contact process with aging (CPA). We introduced the contact process with aging
in [Des14a] where the dynamics are detailed; in this article we made a precise construction
which allows us to consider a general case where a particle has an integer age. In the
present context we have to suppose S finite so we can consider an aging contact process
with a maximal age N . Then take T = R+ and S = {0, . . . , N}.
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Let (P ) =’to be alive’. The process (At) represents the set of alive points regardless of
their age. Here, δmin = δ0 is the configuration where all particles are dead except 0 which
is alive with age 1. From the results obtained in [Des14a], (ξt, P ) belongs to C ∩ CL.

2.2.4. Dependent oriented percolation (DOP). In [GM12b], Garet and Marchand intro-
duced a dependent oriented percolation model where fertile bacterium (represented by
a type 1 particle) is submerged in a population of immune cells (type 2 particle) that
are going to impede its development. The immune cells are not very fertile but benefit
from a constant immigration process. Take T = N and S = {0, 1, 2}. The system is
described by a discrete time Markov chain depending on 3 parameters p, q, α ∈ (0, 1).
Firstly, between time n and time n+ 1/2, each particle attempts to infect its neighbors:
it succeeds with probability p if it is a type 1 particle, and with probability q if it is
a type 2 particle (squeezing a type 1 particle if there is one). Secondly, between time
n + 1/2 and time n + 1, there is an immigration of type 2 particles on each site with
probability α > 0 (again eventually squeezing a type 1 particle). Let (P ) =’to be of
type 1’. The process (At), denote by (η1,t) in [GM12b], represents alive fertile particles.
Here, δmin = δ0 where all particles are dead except 0 which is alive and fertile (of type 1).
Theorem 1.2 of [GM12b] assure that the controls (AML), (SC) and (ALL) are satisfied if
the process survives (that is if α is smaller than a non trivial value αc(p, q)). So, (ξt, P )
belongs to C ∩ CL.

2.2.5. Boundary modified contact process (BMCP). Durrett and Schinazi [DS00] intro-
duced a Boundary Modified Contact Process where particles can be infected, susceptible
that has never been infected (state −1) and susceptible that as been previously infected.
Take T = R+, S = {−1, 0, 1} and the jump intensities as follows:

c(x, η, 1) =

{

λeN1(x, η) if η(x) = −1,

λiN1(x, η) if η(x) = 0,
and c(x, η, 0) = 1 if η(x) = 1.

The quantities λe and λi are two non negative parameters of the system. The process
(At) represents infected particles at time t. Here, δmin is the la configuration where all site
are susceptible never infected (i.e. in state −1) except site 0 which is infected (state 1).
We think that the renormalization work done by Durrett and Schinazi in [DS00] makes
possible to obtain the controls (AML), (SC and (ALL) thanks to restart techniques (like
in section 5.3 of [Des14a]) for λi > max(λc, λe).

For contact processes (with aging, boundary modified, in a randomly evolving envi-
ronment), t(x) is the first time when the particle x is alive regardless its age, type or
memory. For dependent oriented percolation, t(x) is the first time when the particle x is
one of type 1 alive

2.3. Results. In this note, we give the elements to show the following general asymptotic
shape theorem.

Theorem 1. Let (ξt) be a Markov process taking values in SZd

and (P ) an associated
property of interest. If (ξt, P ) belongs to classes C and CL then there exists a norm µ on
R
d such that for all ε > 0, P(.|τ = +∞) almost surely, for all t large enough,

(1− ε)Bµ ⊂ G̃t

t
⊂ (1 + ε)Bµ,
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with G̃t = {x ∈ Z
d, t(x) ≤ t}+ [0, 1]d and Bµ the unit ball associated to µ.

We can immediately deduce asymptotic shape theorems for the above examples. In
each statement, we denote by Bµ the unit ball associated to the norm µ and P the
probability conditioned to the survival of the property (P ) starting from the configuration
δmin.

First we recall theorems already proved.

Theorem 2 (Asymptotic shape theorem for CPA). Let (ξt) a contact process with aging.
If (ξt) is supercritical, then there exists a norm µ on R

d such that for all ε > 0, P almost
surely, and for all t large enough

(1− ε)Bµ ⊂ H̃t

t
⊂ (1 + ε)Bµ,

where H̃t = Ht + [0, 1]d with Ht the set of points born before t, regardless of their age.

We deduce from Theorem 2 an asymptotic shape theorem for Krone’s model [Kro99]
which is a particular case of the contact process with aging.

Now we announce theorems previously conjectured.

Theorem 3 (Asymptotic shape theorem for CPREE). Let (ξt) a contact process in a
randomly evolving environment. If p > pc (critical value for bond percolation on Z

d),

then there exists a norm µ on R
d such that for all ε > 0, P

(

. |τ∅,{0} = +∞
)

almost
surely, for all t large enough,

(1− ε)Bµ ⊂ H̃t

t
⊂ (1 + ε)Bµ,

where H̃t = Ht + [0, 1]d with Ht the set of points born before t, regardless of their type.

Theorem 4 (Asymptotic shape theorem for DOP). Let (ηt) a dependent oriented per-
colation. If p > −→pc (critical value for oriented bond percolation on Z

d × N), q < −→pc
and α ∈ (0, αc(p, q)), then there exists a norm µ on R

d such that for all ε > 0,

P( . |τ0,∅1 = +∞) almost surely, for all t large enough,

(1− ε)Bµ ⊂ H̃t

t
⊂ (1 + ε)Bµ,

where H̃t = Ht + [0, 1]d with Ht the set of sites where particles of type 1 are before t.

Theorem 5 (Asymptotic shape theorem for BMCP). Let (ηt) a contact process boundary
modified. If λi > max(λc, λe) and subject to that there exist C1, C2,M1,M2 > 0 such that
for all t > 0 and x ∈ Z

d

P

(

∃x ∈ Z
d : t(x) ≤ t and ‖x‖1 ≥ M1t

)

≤ C1 exp(−C2t),

P (t < τ < ∞) ≤ C1 exp(−C2t),

P (t(x) ≥ M2‖x‖+ t, τ = ∞) ≤ C1 exp(−C2t),

où τ = inf{t > 0,∀x ∈ Z
d, ηt(x) ≤ 0} et t(x) = inf{t > 0, ηt(x) = 1}, then there exists

a norm µ on R
d such that for all ε > 0, P( . |τ = +∞) almost surely, for all t large
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enough,

(1− ε)Bµ ⊂ H̃t

t
⊂ (1 + ε)Bµ,

where H̃t = Ht + [0, 1]d with Ht the set of particles of type 1 born before t.

From now, (ξt, P ) belongs to C∩CL. In Section 3 we introduce the essential hitting time,
a quantity that has good properties regarding to the dynamical system. In Section 4 we
prove the Theorem 1 thanks subadditive ergodic theorems applied to the essential hitting
time.

3. Essential hitting time

3.1. Definition. With non permanent models like contact process extensions, the hitting
times can be infinite (because extinction is possible) and if we condition on the survival,
we can lose independence, stationarity and even subadditivity properties required by
Kingman theory.

We are inspired by the construction of Garet and Marchand [GM12a] for contact
process in random environment to build the essential hitting time for a model which
belongs to C ∩ CL.

We set u0(x) = v0(x) = 0 and we define by induction two sequences of stopping times
(un(x))n and (vn(x))n as follows.

• Suppose that vk(x) is defined. We set

uk+1(x) = inf{t ≥ vk(x) : x ∈ Aδmin

t }.
If vk(x) is finite, then uk+1(x) is the first time after vk(x) where the site x satisfies
(P ); otherwise, uk+1(x) = +∞.

• Suppose that uk(x) is defined, with k ≥ 1. We set vk(x) = uk(x) + τx ◦ θuk(x).
If uk(x) is finite, then the time τx ◦ θuk(x) is the (possibly infinite) extinction
time of (P ) starting at time uk(x) from the configuration δmin ◦ Tx; otherwise,
vk(x) = +∞.

We have u0(x) = v0(x) ≤ u1(x) ≤ v1(x) ≤ . . . ≤ ui(x) ≤ vi(x) . . . We then define K(x)
to be the first step when vk or uk+1 becomes infinite:

K(x) = min{k ≥ 0 : vk(x) = +∞ or uk+1(x) = +∞}.
K(x) has a sub-geometric tail. In particular, K(x) is almost surely finite. It allows us
to define the following quantities.

Definition. For x ∈ Z
d, we call essential hitting time of x by the property (P ) the

quantity σ(x) = uK(x). We define the operator θ̃x on Ω by setting:

(1) θ̃x =

{

Tx ◦ θσ(x) if σ(x) < +∞,

Tx otherwise.

Thanks to controls (AML), (SC) and (ALL), we can obtain that, for x ∈ Z
d \ {0}, P

is invariant under the action of θ̃x. Besides, under P, σ(y) ◦ θ̃x is independent from σ(x)
and its law is the same as the law of σ(y). We refer to [Des14a] for proofs of the previous

properties about K(x) and θ̃x (and to chapter 7 of [Des14b] for more details).
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3.2. Bad growth points. In order to apply the techniques used in Section 7 of [Des14a]
to control σ, we introduce the general box of bad growth point for a model in C ∩ CL.
For every x ∈ Z

d, L > 0 and t > 0, we introduce the event

Ey(x, t) = {Hy
t 6⊂ y +BM1t} ∪ {t/2 < τy < +∞} ∪ {τy = +∞, inf{s ≥ 2t : x ∈ Ay

s} > κt}.
traducing the fact that a point y has bad growth with respect to the spatio-temporal point
(x, t). Let νy the counting measure of all events occurring at y during [0, L]. Thanks to
Harris representation, νy can be expressed with Poisson processes. This measure allows
us to count the number of bad growth points by

NL(x, t) =
∑

y∈x+BMt+2

∫ L

0
11Ey(x,t) ◦ θs dνy(s).

For technical reasons, we add 0 in the measure ν and we modify Ey(x, t) by

Ẽy(x, t) = Ey(x, t) ∪ {νy[0, t/2] = 0}(2)

Going back to our examples:

• For DOP (which is a discrete model), ν is the counting measure on N.
• For CPA we consider:

νy = ω1
y + ωγ

y +
∑

e∈Ed:y∈e

ω∞
e + δ0

where ω1
y , ω

γ
y and ω∞

e are the Poisson processes respectively giving the possible
death times at y, the possible maturations and the possible birth times through
e.

• For CPREE, we consider:

νy = ω0
y + ω1

y +
∑

e∈Ed:y∈e

ωe + δ0,

where ω0
y is the Poisson process associated to type 0 deaths, ω1

y the one associated
to type 1 deaths and ωe the one associated to births.

With this definitions we can show the following properties.

Lemma 6. Let x ∈ Z
d and t ≥ 2. If L, s are positive integers such that NL(x, t) ◦ θs = 0

and ui(x) ∈ [s+ t, s+ L], then vi(x) = +∞ ou ui+1(x)− ui(x) ≤ κt.
Besides, for any t > 0, s ∈ N and x ∈ Z

d, the following inclusion holds:

{τ = +∞}
∩ {∃u ∈ x+BM1t+2, τ

u ◦ θs = +∞, u ∈ As}(3)

∩
{

NK(x)κt(x, t) ◦ θs = 0
}

(4)

∩
⋂

1≤i<K(x)

{vi(x)− ui(x) < t}(5)

⊂ {τ = +∞} ∩ {σ(x) ≤ s+K(x)κt} .
Then, following the same proof lines that [Des14a], and choosing κ = 3M1(1 +M2),

where M1 and M2 are the constants respectively given in (AML) and (ALL), we control
the probability that a space-time box contains no bad growth point.
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Lemma 7. There exist A,B > 0 such that for all L > 0, x ∈ Z
d and t > 0 one has

P (NL(x, t) ≥ 1) ≤ A exp(−Bt).

3.3. Subadditivity and difference between σ and t. In the same way, the following
controls are still available.

Proposition 8. (I) There exists A,B > 0 such that for all x, y ∈ Z
d,

∀t > 0 P

(

σ(x+ y)−
(

σ(x) + σ(y) ◦ θ̃x
)

≥ t
)

≤ A exp
(

−B
√
t
)

.

Moreover, for p ≥ 1, there exists Mp > 0 such that for all x, y ∈ Z
d,

E[(σ(x+ y)− (σ(x) + σ(y) ◦ θ̃x))p+] ≤ Mp.

(II) P almost surely, it holds that lim
‖x‖→+∞

|σ(x) − t(x)|
‖x‖ = 0.

(III) There exist A,B,C > 0 such that

∀x ∈ Z
d,∀t > 0, P (σ(x) ≥ C‖x‖+ t) ≤ A exp(B

√
t).

Moreover, for p ≥ 1, there exists a constant C(p) > 0 such that

∀x ∈ Z
d, E[σ(x)p] ≤ C(p)(1 + ‖x‖)p.

(IV) For every ǫ > 0, P-a.s., there exists R > 0 such that

∀x, y ∈ Z
d, (‖x‖ ≥ R and ‖x− y‖ ≤ ǫ‖x‖) =⇒ (|σ(x)− σ(y)| ≤ Cǫ‖x‖) .

4. Proof of the asymptotic shape theorem

Thanks to the almost subadditive theorem of Kesten and Hammersley (see [Ham74]
and [Kes73]), we obtained a general asymptotic shape theorem on some random variables
(σ(x))x∈Zd .

Theorem 9 (Theorem 39 of [Des14a]). Let (Ω,F ,P) be a probability space. Let (σ(x))x∈Zd

be random variables with finite second moments and such that, for every x ∈ Z
d, σ(x)

and σ(−x) have the same distribution. Let (s(y))y∈Zd and (r(x, y))x,y∈Zd be collections
of random variables such that:

Hyp 1: ∀x, y ∈ Z
d, σ(x + y) ≤ σ(x) + s(y) + r(x, y) with s(y) having the same law as

σ(y), and being independent from σ(x),
Hyp 2: ∀x, y ∈ Z

d, ∃Cx,y and αx,y < 2 such that
∀n, p,E[r(nx, py)2] ≤ Cx,y(n+ p)αx,y ,

Hyp 3: ∃C > 0 such that ∀x ∈ Z
d, P(σ(nx) > Cn‖x‖) n→∞−−−→ 0,

Hyp 4: ∃K > 0 such that ∀ǫ > 0,P − p.s ∃M such that (‖x‖ ≥ M and ‖x − y‖ ≤
K‖x‖) ⇒ ‖σ(x) − σ(y)‖ ≤ ǫ‖x‖,

Hyp 5: ∃c > 0 such that ∀x ∈ Z
d, P(σ(nx) < cn‖x‖) n→∞−−−→ 0.

Then there exists µ : Zd → R
+ such that

lim
‖x‖→∞

σ(x)− µ(x)

‖x‖ = 0 a.s.
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Moreover, µ can be extended to a norm on R
d and we have the following asymptotic shape

theorem: for all ǫ > 0, P almost surely, for all t large enough,

(1− ǫ)Bµ ⊂ G̃t

t
⊂ (1 + ǫ)Bµ,

where G̃t = {x ∈ Z
d : σ(x) ≤ t}+ [0, 1]d and Bµ is the unit ball for µ.

We now deduce the expected asymptotic shape theorem for the hitting time t:

Proposition 10. There exists a norm µ on R
d such that almost surely under P,

lim
‖x‖→+∞

t(x)− µ(x)

‖x‖ = 0,

and for every ǫ > 0, P-a.s., for every large t,

(1− ǫ)Bµ ⊂ H̃t

t
⊂ (1 + ǫ)Bµ

where H̃t = {x ∈ Z
d/t(x) ≤ t}+ [0, 1]d and Bµ is the unit ball for µ.

Theorem 1 is contained is the previous result.

Proof. First, we use Theorem 9 to show that σ satisfies an asymptotic shape theorem. We
check the hypotheses of Theorem 9 using the controls of Proposition 8. Thanks to (III),

σ has finite second moment required. We take s(y) = σ(y) ◦ θ̃x. The hypotheses 1 and

2 are satisfied thanks to properties of θ̃x and (I). The hypothesis 3 is the at least linear
growth (III) and the hypothesis 5 is immediately checked thanks to the at most linear
growth (AML): P(σ(nx) < M2n‖x‖) ≤ P(t(nx) < M2n‖x‖) ≤ A

ρ
exp(−BM2n‖x‖).

Finally, the hypothesis 4 is the control (IV). We deduce the result for t from the result
for σ thanks to (II). �
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