S. Aida, K. Terao, Y. Nishiyama, K. Kakiuchi, and M. Oelgemöller, Microflow photochemistry???a reactor comparison study using the photochemical synthesis of terebic acid as a model reaction, Tetrahedron Letters, vol.53, issue.42, pp.5578-81, 2012.
DOI : 10.1016/j.tetlet.2012.07.143

T. Aillet and K. Loubiere, Photochemical synthesis of a ???cage??? compound in a microreactor: Rigorous comparison with a batch photoreactor, Chemical Engineering and Processing: Process Intensification, vol.64, pp.38-47, 2013.
DOI : 10.1016/j.cep.2012.10.017

URL : https://hal.archives-ouvertes.fr/hal-00881067

A. Allmand, K. W. John, and Y. , CCCCXXIV. The Photolysis of Potassium Ferrioxalate Solutions, 1931.
DOI : 10.1039/jr9310003079

A. E. Cassano, C. A. Martin, R. J. Brandi, and O. M. Alfano, Photoreactor Analysis and Design: Fundamentals and Applications, Industrial & Engineering Chemistry Research, vol.34, issue.7, pp.2155-201, 1995.
DOI : 10.1021/ie00046a001

J. Cornet, A. Marty, and J. Gros, Revised Technique for the Determination of Mean Incident Light Fluxes on Photobioreactors, Biotechnology Progress, vol.13, issue.4, pp.408-423, 1997.
DOI : 10.1021/bp970045c

E. E. Coyle and M. Oelgemöller, Micro-photochemistry: photochemistry in microstructured reactors. The new photochemistry of the future?, Photochemical & Photobiological Sciences, vol.101, issue.11, pp.1313-1335, 2008.
DOI : 10.1039/b808778d

C. G. Hatchard and C. A. Parker, A New Sensitive Chemical Actinometer. II. Potassium Ferrioxalate as a Standard Chemical Actinometer, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.235, issue.1203, pp.518-554, 1956.
DOI : 10.1098/rspa.1956.0102

B. D. Hook, W. Dohle, P. R. Hirst, M. Pickworth, M. B. Berry et al., A Practical Flow Reactor for Continuous Organic Photochemistry, The Journal of Organic Chemistry, vol.70, issue.19, pp.7558-64, 2005.
DOI : 10.1021/jo050705p

J. P. Knowles, D. Luke, K. I. Elliott, and . Booker-milburn, Flow photochemistry: Old light through new windows, Beilstein Journal of Organic Chemistry, vol.8, pp.2025-52, 2012.
DOI : 10.3762/bjoc.8.229

M. D. Lainchbury, I. Marcus, P. M. Medley, P. Taylor, W. Hirst et al., A Protecting Group Free Synthesis of (??)-Neostenine via the [5 + 2] Photocycloaddition of Maleimides, The Journal of Organic Chemistry, vol.73, issue.17, pp.6497-505, 2008.
DOI : 10.1021/jo801108h

T. Lehóczki, É. Józsa, and K. ?sz, Ferrioxalate actinometry with online spectrophotometric detection, Journal of Photochemistry and Photobiology A: Chemistry, vol.251, pp.63-71, 2013.
DOI : 10.1016/j.jphotochem.2012.10.005

S. Mozharov, A. Nordon, D. Littlejohn, C. Wiles, P. Watts et al., Improved Method for Kinetic Studies in Microreactors Using Flow Manipulation and Noninvasive Raman Spectrometry, Journal of the American Chemical Society, vol.133, issue.10, pp.3601-3609, 2011.
DOI : 10.1021/ja1102234

M. Oelgemoeller, Highlights of Photochemical Reactions in Microflow Reactors, Chemical Engineering & Technology, vol.12, issue.7, pp.1144-52, 2012.
DOI : 10.1002/ceat.201200009

C. A. Parker, A New Sensitive Chemical Actinometer. I. Some Trials with Potassium Ferrioxalate, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.220, issue.1140, pp.104-120, 1953.
DOI : 10.1098/rspa.1953.0175

M. Roger and J. Villermaux, Modelling of light absorption in photoreactors part II. Intensity profile and efficiency of light absorption in a cylindrical reactor experimental comparison of five models, The Chemical Engineering Journal, vol.26, issue.2, pp.85-93, 1983.
DOI : 10.1016/0300-9467(83)80002-1

O. Shvydkiv, S. Gallagher, K. Nolan, and M. Oelgemöller, From Conventional to Microphotochemistry: Photodecarboxylation Reactions Involving Phthalimides, Organic Letters, vol.12, issue.22, pp.5170-73, 2010.
DOI : 10.1021/ol102184u

O. Shvydkiv, A. Yavorskyy, S. B. Tan, K. Nolan, N. Hoffmann et al., Microphotochemistry: a reactor comparison study using the photosensitized addition of isopropanol to furanones as a model reaction, Photochemical & Photobiological Sciences, vol.47, issue.9, p.1399, 2011.
DOI : 10.1039/c1pp05024a

A. Sugimoto, T. Fukuyama, Y. Sumino, M. Takagi, and I. Ryu, Microflow photo-radical reaction using a compact light source: application to the Barton reaction leading to a key intermediate for myriceric acid A, Tetrahedron, vol.65, issue.8, pp.1593-98, 2009.
DOI : 10.1016/j.tet.2008.12.063

Y. S. Vaske, M. E. Mimieux, J. P. Mahoney, D. L. Konopelski, W. J. Rogow et al., -??-Lactams from ??-Amino Acids via Compact Fluorescent Light (CFL) Continuous-Flow Photolysis, Journal of the American Chemical Society, vol.132, issue.32, pp.11379-85, 2010.
DOI : 10.1021/ja1050023

Q. Yang, P. L. Ang, M. B. Ray, and S. O. Pehkonen, Light distribution field in catalyst suspensions within an annular photoreactor, Chemical Engineering Science, vol.60, issue.19, pp.5255-68, 2005.
DOI : 10.1016/j.ces.2005.02.067

M. K. Yang, H. Roger, E. W. French, and . Tokarsky, Optical properties of Teflon<sup>??</sup> AF amorphous fluoropolymers, Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.7, issue.3, pp.33010-330101, 2008.
DOI : 10.1117/1.2965541

Q. Yang, S. O. Pehkonen, and M. B. Ray, Evaluation of Three Different Lamp Emission Models Using Novel Application of Potassium Ferrioxalate Actinometry, Industrial Engineering Chemistry Research, vol.43, issue.4, pp.948-55, 2004.

C. S. Zalazar, D. Marisol, C. A. Labas, R. J. Martin, O. M. Brandi et al., The extended use of actinometry in the interpretation of photochemical reaction engineering data, Chemical Engineering Journal, vol.109, issue.1-3, pp.1-367, 2005.
DOI : 10.1016/j.cej.2005.03.011