W. Brown and L. Chow, A new calcium phosphate setting cement, J Dent Res, vol.62, p.672, 1983.

M. Bohner, Design of ceramic-based cements and putties for bone graft substitution, European Cells and Materials, vol.20, pp.1-12, 2010.
DOI : 10.22203/eCM.v020a01

A. Sugawara, K. Asaoka, and S. Ding, Calcium phosphate-based cements: clinical needs and recent progress, J. Mater. Chem. B, vol.6, issue.1122, pp.1081-1090, 2013.
DOI : 10.1039/C2TB00061J

C. Combes, R. Bareille, and C. Rey, Calcium carbonate???calcium phosphate mixed cement compositions for bone reconstruction, Journal of Biomedical Materials Research Part A, vol.24, issue.195
DOI : 10.1002/jbm.a.30795

URL : https://hal.archives-ouvertes.fr/hal-00467129

M. Ginebra, C. Canal, M. Espanol, D. Pastorino, and E. Montufar, Calcium phosphate cements as drug delivery materials, Advanced Drug Delivery Reviews, vol.64, issue.12, pp.1090-110, 2012.
DOI : 10.1016/j.addr.2012.01.008

URL : http://hdl.handle.net/2117/16815

U. Joosten, A. Joist, T. Frebel, B. Brandt, S. Diederichs et al., Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: Studies in vitro and in vivo, Biomaterials, vol.25, issue.18, pp.4287-95, 2004.
DOI : 10.1016/j.biomaterials.2003.10.083

W. Liu, C. Wong, M. Fong, W. Cheung, R. Kao et al., Gentamicin-loaded strontium-containing hydroxyapatite bioactive bone cement-An efficient bioactive antibiotic drug delivery system, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.24, issue.17 Suppl, pp.397-406, 2010.
DOI : 10.1002/jbm.b.31730

S. Hesaraki and R. Nemati, Cephalexin-loaded injectable macroporous calcium phosphate bone cement, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.86, issue.2, pp.342-52, 2009.
DOI : 10.1002/jbm.b.31222

P. Jiang, S. Patel, U. Gbureck, R. Caley, and L. Grover, Comparing the efficacy of three bioceramic matrices for the release of vancomycin hydrochloride, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.29, pp.51-59, 2010.
DOI : 10.1002/jbm.b.31557

S. Serraj, P. Micha?¨lescomicha?¨lesco, J. Margerit, B. Bernard, and P. Boudeville, Study of a hydraulic calcium phosphate cement for dental applications, Journal of Materials Science: Materials in Medicine, vol.13, issue.1, pp.125-156, 2002.
DOI : 10.1023/A:1013619510136

P. Micha?¨lescomicha?¨lesco, M. Kouassi, E. Briak, H. Armynot, A. Boudeville et al., Antimicrobial activity and tightness of a DCPD?CaO-based hydraulic calcium phosphate cement for root canal filling, J Biomed Mater Res B Appl Biomater, vol.74, pp.760-767, 2005.

U. Gbureck, O. Knappe, L. Grover, and J. Barralet, Antimicrobial potency of alkali ion substituted calcium phosphate cements, Biomaterials, vol.26, issue.34, pp.6880-6886, 2005.
DOI : 10.1016/j.biomaterials.2005.05.035

A. Lansdown, A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Devices, Advances in Pharmacological Sciences, vol.274, issue.15, pp.1-16, 2010.
DOI : 10.1016/j.envres.2007.05.006

Q. Feng, J. Wu, G. Chen, F. Cui, T. Kim et al., A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus, Journal of Biomedical Materials Research, vol.3, issue.4, pp.662-670, 2000.
DOI : 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

E. Berbari, A. Hanssen, M. Duffy, J. Steckelberg, D. Ilstrup et al., Risk Factors for Prosthetic Joint Infection: Case???Control Study, Clinical Infectious Diseases, vol.27, issue.5, pp.1247-54, 1998.
DOI : 10.1086/514991

A. Lansdown, Silver in healthcare: its antimicrobial efficacy and safety in use, 2010.

T. Kim, Q. Feng, J. Kim, J. Wu, H. Wang et al., Antimicrobial effects of metal ions (Ag ? , Cu 2? , Zn 2? ) in hydroxyapatite, Journal of Materials Science Materials in Medicine, vol.9, issue.3, pp.129-163, 1998.
DOI : 10.1023/A:1008811501734

B. Singh, A. Dubey, S. Kumar, N. Saha, B. Basu et al., In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10???xAgx(PO4)6(OH)2 (0.0???x???0.5) hydroxyapatites, Materials Science and Engineering: C, vol.31, issue.7, pp.1320-1329, 2011.
DOI : 10.1016/j.msec.2011.04.015

W. Chen, Y. Liu, H. Courtney, M. Bettenga, C. Agrawal et al., In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating, Biomaterials, vol.27, issue.32, pp.5512-5519, 2006.
DOI : 10.1016/j.biomaterials.2006.07.003

Y. Ando, H. Miyamoto, I. Noda, N. Sakurai, T. Akiyama et al., Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion, Materials Science and Engineering: C, vol.30, issue.1, pp.175-80, 2010.
DOI : 10.1016/j.msec.2009.09.015

G. Nazari, A. Tahari, A. Moztarzadeh, F. Mozafari, M. Bahrololoom et al., Ion exchange behaviour of silver-doped apatite micro- and nanoparticles as antibacterial biomaterial, Micro & Nano Letters, vol.6, issue.8, pp.713-720, 2011.
DOI : 10.1049/mnl.2011.0381

M. Shirkhanzadeh, M. Azadegan, and G. Liu, Bioactive delivery systems for the slow release of antibiotics: incorporation of Ag+ ions into micro-porous hydroxyapatite coatings, Materials Letters, vol.24, issue.1-3, pp.7-12, 1995.
DOI : 10.1016/0167-577X(95)00059-3

J. Lee and W. Murphy, Functionalizing Calcium Phosphate Biomaterials with Antibacterial Silver Particles, Advanced Materials, vol.28, issue.8, pp.1173-1182, 2013.
DOI : 10.1002/adma.201203370

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227400

K. Venkateswarlu, N. Rameshbabu, C. Bose, A. Muthupandi, V. Subramanian et al., Fabrication of corrosion resistant, bioactive and antibacterial silver substituted hydroxyapatite/titania composite coating on Cp Ti, Ceramics International, vol.38, issue.1, pp.731-771, 2012.
DOI : 10.1016/j.ceramint.2011.07.065

P. Lim, E. Teo, B. Ho, B. Tay, and E. Thian, Effect of silver content on the antibacterial and bioactive properties of silversubstituted hydroxyapatite, J Biomed Mater Res Part A, vol.101, pp.2456-64, 2013.

J. Spadaro, D. Webster, and R. Becker, Silver Polymethyl Methacrylate Antibacterial Bone Cement, Clinical Orthopaedics and Related Research, vol.&NA;, issue.143, pp.266-70, 1979.
DOI : 10.1097/00003086-197909000-00042

V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel et al., An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement, Biomaterials, vol.25, issue.18, pp.4383-91, 2004.
DOI : 10.1016/j.biomaterials.2003.10.078

A. Ewald, D. Hösel, S. Patel, L. Grover, J. Barralet et al., Silver-doped calcium phosphate cements with antimicrobial activity, Acta Biomaterialia, vol.7, issue.11, pp.4064-70, 2011.
DOI : 10.1016/j.actbio.2011.06.049

J. Vilamitjana-amédée, R. Bareille, F. Rouais, A. Caplan, and M. Harmand, Human bone marrow stromal cells express an osteoblastic phenotype in culture, In Vitro Cellular & Developmental Biology - Animal, vol.51, issue.3, pp.699-707, 1993.
DOI : 10.1007/BF02631426

C. Parish and A. Müllbacher, Automated colorimetric assay for T cell cytotoxicity, Journal of Immunological Methods, vol.58, issue.1-2, pp.225-262, 1983.
DOI : 10.1016/0022-1759(83)90277-6

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, vol.65, issue.1-2, pp.55-63, 1983.
DOI : 10.1016/0022-1759(83)90303-4

P. Khalilzadeh, B. Lajoie, E. Hage, S. Furiga, A. Baziard et al., -homoserine lactone analog, Canadian Journal of Microbiology, vol.56, issue.4, pp.317-342, 2010.
DOI : 10.1139/W10-013

URL : https://hal.archives-ouvertes.fr/hal-01251663

C. Combes, R. Bareille, and C. Rey, Calcium carbonate???calcium phosphate mixed cement compositions for bone reconstruction, Journal of Biomedical Materials Research Part A, vol.24, issue.195
DOI : 10.1002/jbm.a.30795

URL : https://hal.archives-ouvertes.fr/hal-00467129

D. Eichert, C. Drouet, H. Sfihi, C. Rey, and C. Combes, Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization, Biomaterials research advances, pp.93-143, 2007.

N. Vandecandelaere and . D. Ph, Thesis. E ´ laboration et caractérisation de biomatériaux osseux innovants a ` base d'apatites phospho-calciques dopées, 2012.

M. Palmer, W. Costerton, J. Sewecke, and D. Altman, Molecular Techniques to Detect Biofilm Bacteria in Long Bone Nonunion: A Case Report, Clinical Orthopaedics and Related Research??, vol.91, issue.1, pp.3037-3079, 2011.
DOI : 10.1007/s11999-011-1843-9

J. Ciampolini and K. Harding, Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often?, Postgraduate Medical Journal, vol.76, issue.898, pp.479-83, 2000.
DOI : 10.1136/pmj.76.898.479

P. Carek, L. Dickerson, and J. Sack, Diagnosis and management of osteomyelitis, Am Fam Physician, vol.63, pp.2413-2434, 2001.