J. R. Miller and P. Simon, MATERIALS SCIENCE: Electrochemical Capacitors for Energy Management, Science, vol.321, issue.5889, pp.651-652, 2008.
DOI : 10.1126/science.1158736

J. Chmiola, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.1760-1763, 2006.
DOI : 10.1126/science.1132195

E. Raymundo-piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon, vol.44, issue.12, pp.2498-2507, 2006.
DOI : 10.1016/j.carbon.2006.05.022

C. Largeot, Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, vol.130, issue.9, pp.2730-2731, 2008.
DOI : 10.1021/ja7106178

C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Imidazolium Ionic Liquid Interfaces with Vapor and Graphite: Interfacial Tension and Capacitance from Coarse-Grained Molecular Simulations, The Journal of Physical Chemistry C, vol.115, issue.33, pp.16613-16618, 2011.
DOI : 10.1021/jp205461g

URL : https://hal.archives-ouvertes.fr/hal-00854030

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

J. Huang, B. G. Sumpter, and V. Meunier, Theoretical Model for Nanoporous Carbon Supercapacitors, Angewandte Chemie International Edition, vol.44, issue.188, pp.520-524, 2008.
DOI : 10.1002/anie.200703864

L. Yang, B. H. Fishbine, A. Migliori, and L. Pratt, Molecular Simulation of Electric Double-Layer Capacitors Based on Carbon Nanotube Forests, Journal of the American Chemical Society, vol.131, issue.34, pp.12373-12376, 2009.
DOI : 10.1021/ja9044554

Y. Shim and H. J. Kim, Nanoporous Carbon Supercapacitors in an Ionic Liquid: A Computer Simulation Study, ACS Nano, vol.4, issue.4, pp.2345-2355, 2010.
DOI : 10.1021/nn901916m

G. A. Feng, The importance of ion size and electrode curvature on electrical double layers in ionic liquids, Phys. Chem. Chem. Phys., vol.74, issue.3, pp.1152-1161, 2011.
DOI : 10.1039/C0CP02077J

A. A. Kornyshev, Double-Layer in Ionic Liquids:?? Paradigm Change?, The Journal of Physical Chemistry B, vol.111, issue.20, pp.5545-5557, 2007.
DOI : 10.1021/jp067857o

M. Armand, F. Endres, D. R. Macfarlane, H. Ohno, and B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, vol.16, issue.8, pp.621-629, 2009.
DOI : 10.1038/nmat2448

O. Lanning and P. Madden, Screening at a Charged Surface by a Molten Salt, The Journal of Physical Chemistry B, vol.108, issue.30, pp.11069-11072, 2004.
DOI : 10.1021/jp048102p

M. V. Fedorov and A. A. Kornyshev, Ionic Liquid Near a Charged Wall: Structure and Capacitance of Electrical Double Layer, The Journal of Physical Chemistry B, vol.112, issue.38, pp.11868-11872, 2008.
DOI : 10.1021/jp803440q

J. Vatamanu, O. Borodin, and . Smith, Molecular Insights into the Potential and Temperature Dependences of the Differential Capacitance of a Room-Temperature Ionic Liquid at Graphite Electrodes, Journal of the American Chemical Society, vol.132, issue.42, pp.14825-14833, 2010.
DOI : 10.1021/ja104273r

M. V. Fedorov and A. A. Kornyshev, Towards understanding the structure and capacitance of electrical double layer in ionic liquids, Electrochimica Acta, vol.53, issue.23, pp.6835-6840, 2008.
DOI : 10.1016/j.electacta.2008.02.065

G. Feng, J. Huang, B. G. Sumpter, V. Meunier, and R. Qiao, A ???counter-charge layer in generalized solvents??? framework for electrical double layers in neat and hybrid ionic liquid electrolytes, Physical Chemistry Chemical Physics, vol.11, issue.32, pp.14723-14734, 2011.
DOI : 10.1039/c1cp21428d

M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Double Layer in Ionic Liquids: Overscreening versus Crowding, Physical Review Letters, vol.106, issue.4, p.46102, 2011.
DOI : 10.1103/PhysRevLett.106.046102

S. Kondrat and A. A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes, Journal of Physics: Condensed Matter, vol.23, issue.2, p.22201, 2011.
DOI : 10.1088/0953-8984/23/2/022201

S. Kondrat, N. Georgi, M. V. Fedorov, and A. A. Kornyshev, A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations, Physical Chemistry Chemical Physics, vol.32, issue.23, pp.11359-11366, 2011.
DOI : 10.1021/jp052999o

J. C. Palmer, Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, issue.4, pp.1116-1123, 2010.
DOI : 10.1016/j.carbon.2009.11.033

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, The Journal of Chemical Physics, vol.126, issue.8, p.84704, 2007.
DOI : 10.1063/1.2464084

M. Pounds, S. Tazi, M. Salanne, and P. A. Madden, based simulation study, Journal of Physics: Condensed Matter, vol.21, issue.42, p.424109, 2009.
DOI : 10.1088/0953-8984/21/42/424109

J. Chmiola, C. Largeot, P. Taberna, P. Simon, and Y. Gogotsi, Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory, Angewandte Chemie International Edition, vol.201, issue.18, pp.3392-3395, 2008.
DOI : 10.1002/anie.200704894

C. Hardacre, J. D. Holbrey, M. Nieuwenhuyzen, and T. G. Youngs, Structure and Solvation in Ionic Liquids, Accounts of Chemical Research, vol.40, issue.11, pp.1146-1155, 2007.
DOI : 10.1021/ar700068x

T. Ohkubo, Restricted Hydration Structures of Rb and Br Ions Confined in Slit-Shaped Carbon Nanospace, Journal of the American Chemical Society, vol.124, issue.40, pp.11860-11861, 2002.
DOI : 10.1021/ja027144t

A. P. Willard and D. Chandler, Instantaneous Liquid Interfaces, The Journal of Physical Chemistry B, vol.114, issue.5, pp.1954-1958, 2010.
DOI : 10.1021/jp909219k

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834420

D. Roy and M. Maroncelli, An Improved Four-Site Ionic Liquid Model, The Journal of Physical Chemistry B, vol.114, issue.39, pp.12629-12631, 2010.
DOI : 10.1021/jp108179n

P. M. Vora, -bonded carbon networks through the metal-insulator transition, Physical Review B, vol.84, issue.15, p.155114, 2011.
DOI : 10.1103/PhysRevB.84.155114

URL : https://hal.archives-ouvertes.fr/inria-00276732