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Abstract

In this paper we design a numerical scheme for approximating Backward

Doubly Stochastic Differential Equations (BDSDEs for short) which represent

solution to Stochastic Partial Differential Equations (SPDEs). We first use a

time-discretization and then, we decompose the value function on a functions

basis. The functions are deterministic and depend only on time-space variables,

while decomposition coefficients depend on the external Brownian motion B.

The coefficients are evaluated through a empirical regression scheme, which

is performed conditionally to B. We establish non asymptotic error estimates,

conditionally to B, and deduce how to tune parameters to obtain a convergence

conditionally and unconditionally to B. We provide numerical experiments as

well.

Keywords: Backward Doubly Stochastic Differential Equations, discrete Dy-

namic Programming Equations, empirical regression scheme, SPDEs.
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1 Introduction

Backward Doubly Stochastic Differential Equations (BDSDE in short) are classic

tools to give Feynman-Kac representations for stochastic semilinear PDEs, see the

seminal work of [PP94]. The BDSDE (Y x, Zx) of our interest is of the following

form

Y t,x
s = Φ(Xt,x

T ) +

∫ T

s
f(r,Xt,x

r , Y t,x
r , Zt,xr )dr (1)
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+

∫ T

s
h(r,Xt,x

r , Y t,x
r , Zt,xr )

←−−
dBr −

∫ T

s
Zt,xr dWr,

where (Xt,x
s )t≤s≤T is a d-dimensional diffusion process starting from x at time t

driven by the finite d-dimensional brownian motion (Wt)0≤t≤T . Here T > 0 is fixed

and the differential term with
←−
dBt refers to the backward stochastic integral with

respect to a l-dimensional Brownian motion B independent from W . In addition

W and B are defined on a filtered probability space
(
Ω,F ,P

)
where we define the

sigma-fields FWt,s := σ{Wr − Wt, t ≤ r ≤ s}, FBs,T := σ{Br − Bs, s ≤ r ≤ T},
FW := FW0,T , FB := FB0,T , F := FW ∨ FB, all completed with the P-null sets. To

account for the measurability of the solution to (1), we need to define the collection

of sigma-fields (for fixed t ∈ [0, T ])

F ts := FWt,s ∨ FBs,T ,

and we know that the solution is such that Y t,x
s is F ts-measurable for any s ∈ [t, T ]

and Zt,xs is F ts-measurable for a.e. s ∈ [t, T ].

Moreover, the random map (t, x) 7→ (Y t,x
t , Zt,xt ) provides the solution of the following

SPDE and its gradient times σ at point (t, x):

u(t, x) = Φ(x) +

∫ T

t
[Lu(s, x) + f(s, x, u(s, x), (∇xuσ)(s, x))]ds

+

∫ T

t
g(s, x, u(s, x), (∇xuσ)(s, x))

←−−
dBs

where L is the infinitesimal generator of X (see [PP94, Theorem 3.1] for details).

Such SPDEs appear in various applications like pathwise stochastic control prob-

lems, the Zakai equations in filtering and stochastic control with partial observations.

Several generalizations to investigate more general nonlinear SPDEs have been de-

veloped following different approaches of the notion of weak solutions, namely,

Sobolev’s solutions [K99, BM01, MS02], and stochastic viscosity solutions [LS98,

BuM01, LS02]. Generally, the approaches used to solve numerically SPDEs are an-

alytic and based on time-space discretization of the equations. The discretization is

achieved by different methods such as finite difference, finite element and spectral

Galerkin methods [GN95, G99, W05, GK10, JK10]

Only recently some works have paid attention to the simulation and approxi-

mation of (1): See [Abo09, Ama13, BBMM13] for time discretization under various

assumptions, see [Abo11] for an attempt to an implementable numerical scheme us-

ing regression methods without full convergence results, see [SYY08] for a scheme

based on random walks.

In this work, we consider an empirical regression scheme (also known as re-

gression Monte-Carlo method or least-squares Monte-Carlo method) for solving the

discrete time BDSDE arising in [BBMM13]: This approach (inspired by [GLW05,

2



LGW06] and more recently by [GT15b]) is increasingly popular and known to ac-

count well for high-dimensional problems, as a difference with scheme based on

random walks. Our original contribution is the analysis of the regression scheme

for approximating BDSDEs and its proof of convergence, with some non-asymptotic

error estimates in order to have the most accurate control on the convergence w.r.t.

all the parameters. Here, we adapt the tools for the regression error analysis, arising

from discrete BSDE’s approximation, developed recently in [GT15b] in a quite gen-

eral context. These tools will allow us to analyse the regression error in the doubly

stochastic framework.

We recall the different strategies of approximation using least squares algorithms,

to better motivate our approach. For the sake of clarity, assume standard Lipschitz

and boundedness assumptions (detailed later) and t = 0, then start with the case

h ≡ 0, i.e. the usual BSDE case, and consider a time discretization scheme which

takes the form (in [LGW06]) of One step forward Dynamic Programming (ODP for

short) equation: YtN = Φ(XtN ) and for all i ∈ {N − 1, . . . , 0}

Yti = E[Yti+1 + f(ti, Xti , Yti+1 , Zti)∆i | FW0,ti ], (2)

∆iZti = E
[
Yti+1∆W>i | FW0,ti

]
,

where > denotes the transpose operator and where ti ∈ π, π := {t0:= 0, . . . , tN := T}
being a discrete time grid of the time interval [0, T ], ∆i := ti+1 − ti and ∆Wi := Wti+1 −Wti .

Since (Xti)i forms a Markov chain, there exist deterministic measurable functions

yi(.) and zi(.), but unknown, such that Yti = yi(Xti) and Zti = zi(Xti). The func-

tions yi(.) and zi(.) are solutions of least squares problems in L2(Ω,P,Fti) and can

be approximated on a finite dimensional subspace, which coefficients are computed

using Monte-Carlo simulations. Now for the case h 6= 0, in [Abo11] a similar algo-

rithm is proposed where the equation for Yti is replaced by

Yti = E
[
Yti+1 + f(ti, Xti , Yti+1 , Zti)∆i + h(ti, Xti , Yti+1 , Zti+1)∆Bi | FW0,ti ∨ F

B
0,T

]
,

where ∆Bi := Bti+1 −Bti and similarly for the Z-component. Then, the author has

designed an empirical least-squares algorithm by taking approximations in the space

of functions w.r.t. the variables (Xti , Btk+1
−Btk : i ≤ k ≤ N): Thus, the dimension

of this problem is dim = d+l×N and goes to infinity as the discretization parameter

N → +∞. Since we know [LGW06, GT15b, GT15a] from the usual error analysis

on BSDE that the convergence rates are of the form N−c1/(c2+(dim)) where c1, c2 are

positive constants and dim is the dimension of the explanatory variables, it seems

hopeless to conclude to the convergence of the above algorithm.

Our strategy of approximation is different from the above and it leads to a

convergent scheme. This is inspired by the ”SPDE” object seen as a PDE driven

by an auxiliary independent noise (here the Brownian motion B), i.e. we are to

compute Yti as a function x 7→ yi(∆B, x) for given Brownian increments ∆B. As
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a consequence, the dimension of the problem is still d, but the regression schemes

and the error analysis are to be performed conditionally to B. This raises new

difficulties, in particular because the theory of BDSDE is well posed unconditionally

to B. Moreover and as a difference with [Abo11], we incorporate in our scheme an

additional improvement inspired by [GT15b] in the BSDE setting, where the discrete

BSDE is considered in the form of a Multi step forward Dynamic Programming

(MDP for short) equation given by

Yti = E

[
Φ(XtN ) +

N−1∑
k=i

f(tk, Xtk , Ytk+1
, Ztk)∆k | FW0,ti

]
,

and similarly for Zti . Using the tower property of conditional expectations, we

note that ODP (based on (2)) and MDP coincide. But combined with empirical

regression approximations, they are different and it is proved in [GT15b] that the

MDP scheme leads to better error estimates than the ODP scheme, in particular

for the Y -component. Indeed, the quadratic error is the average of local error terms

rather than the sum.

In this work, we specialise our analysis to the case where f and h do not depend

on z, i.e. we only approximate Y . We guess that this simplification makes the

reading easier for the reader (even in the ”simple” BSDE case as in [GT15b, GT15a],

the analysis is rather tough) and the essence of our methodology remains unchanged

if f and h depend on z. This simplified setting already raises new issues (about a

priori estimates and stabilities) which we partly overcome but which will still deserve

deeper investigation in the future to handle more general f and h.

The organisation of the paper is as follows. In Section 2 we give preliminaries

on BDSDEs and the assumptions we will use. Then, we define the discrete BDSDE

to be solved, in the MDP form. After that, we establish a priori estimates that will

be useful in the regression error analysis. In Section 3, we present the Least Squares

MDP algorithm designed to approximate the solution of the discrete BDSDE of

Section 2. Then, we give the full analysis of the regression error conditionally and

unconditionally to the Brownian motion B. Section 4 is dedicated to some numerical

tests.

Usual notations. If x is in an Euclidean space E, |x| denotes its norm. If ϕ is a

vector-valued function defined on E, |ϕ|∞ denotes its sup-norm. If ν is a probability

measure on E, |.|ν stands for the L2-norm w.r.t. the measure ν. If X is a E-valued

random variable with distribution ν, we may write |.|X := |.|ν . Last, if A is a matrix,

|A| stands for its Hilbert-Schmidt norm.

2 Preliminaries and notations

This section gathers preliminary results to be used in order to discuss the approxi-
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mation of the solution and its convergence. Actually, in the sequel we consider only

the solution (Xt, Y t, Zt) with initial condition t = 0: Extending the results to other

t is rather straightforward. Thus, from now on, we omit to indicate the dependence

w.r.t. t by simply write (X,Y, Z), the starting point X0 is given.

2.1 Forward Backward Doubly Stochastic Differential Equation

Recall the setting related to the filtered probability space given in the introduction.

Let x ∈ Rd be given and consider (Xs)0≤s≤T as solution of the following SDE

dXs = b(Xs)ds+ σ(Xs)dWs for s ∈ [0, T ], X0 = x, (3)

where b and σ are two given functions on Rd with values respectively in Rd and

Rd ⊗ Rd, that satisfy the following standard Lipschitz assumption.

Assumption (H1). There exists a non-negative constant K such that

|b(x)− b(x′)|+ |σ(x)− σ(x′)| ≤ K|x− x′|, ∀x, x′ ∈ Rd.

This implies the existence of a unique strong solution to (3). Besides, we consider

the following BDSDE defined by{
−dYs = f(s,Xs, Ys)ds+ h(s,Xs, Ys)

←−−
dBs − ZsdWs, s ∈ [0, T ],

YT = Φ(XT ):= ξ,
(4)

where f and h are respectively real-valued and Rl-valued functions on [0, T ]×Rd×R
and Φ is a real-valued function on Rd (h is considered as a row vector).

Our standing assumptions to study (4) are the following.

Assumption (H2). There exist non-negative constants Cf , Ch, Cξ, Lf , Lh and Lξ
such that

i) |f(s1, x1, y1)−f(s2, x2, y2)| ≤ Lf
(√
|s1 − s2|+ |x1 − x2|+ |y1 − y2|

)
for

all s1, s2 ∈ [0, T ], x1, x2 ∈ Rd and y1, y2 ∈ R,

ii) |h(s1, x1, y1)−h(s2, x2, y2)| ≤ Lh
(√
|s1 − s2|+ |x1 − x2|+ |y1 − y2|

)
for

all s1, s2 ∈ [0, T ], x1, x2 ∈ Rd and y1, y2 ∈ R,
iii) |f(s, x, 0)| and |h(s, x, 0)| are uniformly bounded on [0, T ]×Rd by Cf and

Ch respectively,

iv) |Φ(x1)− Φ(x2)| ≤ Lξ|x1 − x2| for all x1, x2 ∈ Rd,
v) Φ is uniformly bounded on Rd by Cξ.

Pardoux and Peng [PP94, Theorem 1.1] proved that under the previous assumptions,

there exists a unique solution (Y, Z) ∈ S2([0, T ]) × H2
d([0, T ]) to the BDSDE (4),

where
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• H2
d([0, T ]) denotes the set of (classes of dP × dt a.e. equal) Rd-valued jointly

measurable processes {ψs; s ∈ [0, T ]} such that E
[∫ T

0 |ψs|
2ds
]
< +∞ and ψs

is F0
s -measurable, for a.e. s ∈ [0, T ].

• S2([0, T ]) denotes the set of real-valued continuous processes such that

E

[
sup

0≤s≤T
|ψs|2

]
< +∞ and ψs is F0

s -measurable for any s ∈ [0, T ].

2.2 Time-discretization scheme for decoupled Forward-BDSDE

In order to approximate the solution of the Forward-BDSDE (3)-(4), we introduce

the following discretized version. Let

π = {t0 := 0 < t1 < . . . < tN := T}

be a partition of the time interval [0, T ] with time step ∆i := ti+1 − ti, 0 ≤ i ≤
N − 1. Throughout this work, we will use the notations ∆Wi := Wti+1 −Wti and

∆Bi := Bti+1 −Bti , for i = 0, . . . , N − 1.

The forward component X is approximated by the classical Euler scheme:{
Xπ
t0 = x,

Xπ
ti+1

= Xπ
ti + b(Xπ

ti)∆i + σ(Xπ
ti)∆Wi, for i = 0, . . . , N − 1.

It is known that as max0≤i≤N−1 ∆i → 0, one has sup
0≤i≤N

E
[
|Xti −Xπ

ti |
2
]
→ 0.

The solution Y of (4) is approximated by Y π defined by the following Multi step-

forward Dynamic Programming (MDP) equation: For i = N − 1, . . . , 0, we

set

Y π
ti = Ei

[
Φ(Xπ

T ) +
N−1∑
k=i

(
f(tk, X

π
tk
, Y π

tk+1
)∆k + h(tk+1, X

π
tk+1

, Y π
tk+1

)∆Bk

)]
(5)

= Ei
[
Y π
ti+1

+ f(ti, X
π
ti , Y

π
ti+1

)∆i + h(ti+1, X
π
ti+1

, Y π
ti+1

)∆Bi

]
,

where Ei [.] denotes the conditional expectation w.r.t. Gi defined by

Gi := σ(∆Wj , 0 ≤ j ≤ i− 1) ∨ F∆B

with F∆B = σ(∆Bj , 0 ≤ j ≤ N − 1). Observe that (Gi)0≤i≤N−1 is a discrete

filtration associated to the time grid π. We recall from [BBMM13, Theorem 4.1]

the following convergence result for the time discretization error. Set

ErrorN (Y,Z) := max
0≤i≤N−1

sup
ti≤s≤ti+1

E
[
|Ys − Y π

ti |
2
]

+

N−1∑
i=0

E
[∫ ti+1

ti

|Zs − Zπti |
2ds

]
.

Thus, we have
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Theorem 1 Under Assumptions (H1)-(H2) and assuming in addition that b, σ,

Φ, f and h are of class C2 with bounded derivatives up to order 2, there exists a

non-negative constant C(6) (independent on π) such that

ErrorN (Y, Z) ≤ C(6) max
0≤i≤N−1

∆i. (6)

We note that in the case we are dealing with (i.e. the drivers are independent from

the variable z), we do not have to approximate the control process Z, since it does

not enter in the approximation of Y .

Extra notations. Our aim being the Monte-Carlo approximation of the discrete

BDSDE solution for a given time grid π, we shall alleviate the notation by simply

writing Xi, Yi for Xπ
ti , Y

π
ti . Furthermore, we shall write

∆B := {∆Bj , 0 ≤ j ≤ N − 1}.

With this notation and since the data are Lipschitz (coefficients of the BDSDE and

of the Euler scheme), it is easy to check the following lemma, by combining the

Equation (5) with a recursion argument.

Lemma 1 Under Assumptions (H1)-(H2), for each i ∈ {0, . . . , N} there exists a

locally Lipschitz function yi : (Rl)N × Rd 7→ R such that

Yi = yi(∆B,Xi). (7)

2.3 A priori estimates

In this section, we establish a priori estimates on discrete BDSDEs. These estimates

will be needed later for the regression analysis. In the case of pure BSDEs, they

are rather standard (see [GT15b] among other references): on the one hand we take

advantage of the driver independent of Z to provide slightly stronger estimates than

usually. On the other hand, the BDSDE setting with the ∆B contribution is a

source of difficulty in the analysis.

We aim at comparing two discrete BDSDEs, Y1,. and Y2,., defined as follows. For

j = 1, 2, we set Yj,N = ξj and for all i = N − 1, . . . , 0

Yj,i = Ẽi [Yj,i+1 + fj,i(Yj,i+1)∆i + hj,i+1(Yj,i+1)∆Bi] , (8)

where

• Ẽi [·] is the conditional expectation w.r.t. Gi ∨ G̃, where G̃ is a sigma-field

independent of W and B,

• (ω, y) → f1,i(ω, y) := f1,i(y) and (ω, y) → f2,i(ω, y) := f2,i(y) are real-valued

and [Gi ∨ G̃]⊗ B(R)-measurable functions on R,
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• (ω, y) → h1,i+1(ω, y) := h1,i+1(y) and (ω, y) → h2,i+1(ω, y) := h2,i+1(y) are

Rl-valued and [Gi+1 ∨ G̃]⊗ B(R)-measurable functions on R.

The above choice of measurability is coherent with the MDP equation (5) and

with the further feature that solutions to posterior times are built using extra in-

dependent Monte-Carlo simulations (to be associated to the sigma-field G̃). We

set

δYi := Y1,i − Yi,2,
δξ := ξ1 − ξ2,

δfi := f1,i(Y1,i+1)− f2,i(Y1,i+1),

δhi+1 := h1,i+1(Y1,i+1)− h2,i+1(Y1,i+1).

Now, we are in a position to state the following lemma, which gives a local estimate

on the solutions of two discrete BDSDEs.

Lemma 2 We assume that for j ∈ {1, 2}, ξj belongs to L2(GN ∨ G̃) and that for

i ∈ {0, . . . , N−1}, fj,i(Yj,i+1) and hj,i+1(Yj,i+1) belong to L2(Gi+1 ∨ G̃). In addition,

we assume that f2,i and h2,i+1 are Lipschitz continuous with Lipschitz constants Lf2,i

and Lh2,i+1
(possibly G0 ∨ G̃-measurable). Then, we have

|δYi| ≤(1 + Lf2,i
∆i + Lh2,i+1

|∆Bi|)Ẽi [|δYi+1|]

+ Ẽi [|δfi|] ∆i + Ẽi [|δhi+1|] |∆Bi|. (9)

Proof. From (8), we have

δYi = Ẽi [δYi+1 + {δfi + f2,i(Y1,i+1)− f2,i(Y2,i+1)}∆i]

+ Ẽi [{δhi+1 + h2,i+1(Y1,i+1)− h2,i+1(Y2,i+1)}∆Bi] .

Applying the triangle and Jensen inequalities, then using the Lipschitz assumptions

on f2,i and h2,i give the estimation (9). �
By propagating the above result, we obtain a global stability result on the solu-

tions of two discrete BDSDEs. The proof is easy and left to the reader.

Proposition 1 Under the notations and assumptions of Lemma 2, the following

estimation holds a.s. for all i ∈ {1, . . . , N}:

Γi|δYi| ≤ ΓN Ẽi [|δξ|] +

N−1∑
k=i

Γk

(
Ẽi [|δfk|] ∆k + Ẽi [|δhk+1|] |∆Bk|

)
,

where Γi := Πi−1
j=0(1 + Lf2,j

∆j + Lh2,j+1
|∆Bj |) and Γ0 := 1.

As an application of the above proposition, we can derive an a.s. upper bound

for the solution of the discrete BDSDE (5). Such an upper bound is required in the

subsequent empirical regression algorithm.
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Proposition 2 Under Assumptions (H1) and (H2), the solution of the discrete

BDSDE (5)-(7) has an a.s. upper bound, uniformly w.r.t. i ∈ {0, . . . , N}:

|yi(∆B, .)|∞ ≤ C∆B
y := eLfT+Lh

∑N−1
j=0 |∆Bj |

Cξ + CfT + Ch

N−1∑
j=0

|∆Bj |

 .

Proof. Apply Proposition 1 by setting Y1,i := 0 (with ξ1 := 0, f1,i ≡ 0, h1,i ≡ 0)

and Y2,i := Yi =yi(∆B,Xi) (with ξ2 := Φ(XN ), f2,i(y) := f(ti, Xi, y) and h2,i+1(y) :=

h(ti+1, Xi+1, y)): Combined with Assumption (H2) this gives

Γi|yi(∆B, .)|∞ ≤ ΓNCξ +

N−1∑
k=i

Γk (Cf∆k + Ch|∆Bk|) .

We obtain the announced result by observing that

Γi ≤ exp

 i−1∑
j=0

[Lf∆j + Lh|∆Bj |]

 ≤ exp

LfT + Lh

N−1∑
j=0

|∆Bj |

 . (10)

�
Observe that unfortunately this a.s. upper bound explodes in probability as

N →∞ because

N−1∑
j=0

|∆Bj | ≥ (
N−1∑
j=0

|∆Bj |2)/ max
0≤j≤N−1

|∆Bj | ∼ T/ max
0≤j≤N−1

|∆Bj | → +∞

in probability. On the other hand, it is valid in rather great generality under the

assumptions of our setting (f and h Lipschitz). Nevertheless, an easy improve-

ment can be obtained provided that f and h are uniformly bounded, avoiding the

exponential factor: Indeed, from (5) we directly have

|yi(∆B, .)|∞ ≤ Cξ + T |f |∞ + |h|∞
N−1∑
j=0

|∆Bj | a.s.,

yielding another upper bound which still explodes as N →∞ but at a slower rate.

Lastly, we know that supN≥1 sup0≤i≤N E|yi(∆B,Xi)|2 < +∞, see [BBMM13],

which shows the gap between a.s. and L2 estimates. This is a difficulty intrinsic to

the study of pathwise property of BDSDE: To our knowledge, having good pathwise

estimates is an open question.

3 Regression Monte-Carlo scheme

In this section, we design an algorithm to approximate conditional expectations

involved in (5) using linear least squares methods (empirical regressions). We also

analyse its convergence.
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Since we are to consider regressions conditionally to ∆B, it is clearer to write

(Ω,F ,P) as a product space (Ω∆W ×Ω∆B,F∆W ⊗F∆B,P∆W ⊗P∆B) where F∆W =

σ(∆Wj : 0 ≤ j ≤ N − 1) and F∆B = σ(∆Bj : 0 ≤ j ≤ N − 1), coherently with

the discrete BDSDE (5) to solve. This is our convention from now on. Then the

conditional expectation w.r.t. F∆B is denoted by E∆B [.].

3.1 Preliminaries on Ordinary Least-Squares (OLS)

In the following, we recall the definition of the Least-Squares regression as stated

in [GT15b] and specialise it to our framework. The next general probability space

(Ω̃ × Ω∆B, F̃ ⊗ F∆B, P̃ ⊗ P∆B) (which will be larger than (Ω,F ,P)) is to account

for the extra simulations used in the regression Monte-Carlo algorithm.

Definition 1 Let n ≥ 1. We consider the two probability spaces (Ω̃ × Ω∆B, F̃ ⊗
F∆B, P̃⊗ P∆B) and (Rn,B(Rn), ν). Let

• S be a F̃ ⊗F∆B⊗B(Rn)-measurable R-valued function such that S(ω̃,∆B, .) ∈
L2(B(Rn), ν) for P̃⊗ P∆B-a.e. (ω̃,∆B) ∈ Ω̃⊗ Ω∆B,

• K be the linear vector subspace of L2(B(Rn), ν) spanned by F∆B ⊗ B(Rn)-

measurable R-valued functions {pj(∆B, .), j ≥ 1}.

The least squares approximation of S in the space K with respect to ν is the P̃ ⊗
P∆B ⊗ ν-a.e. unique and F̃ ⊗ F∆B ⊗ B(Rn)-measurable function S∗ given by:

S∗(ω̃,∆B, .) := arginf
φ∈K

∫
|S(ω̃,∆B, x)− φ(x)|2ν(dx).

Then, we say that S∗ solves OLS(S,K, ν).

In the same manner, let M := M∆B be a positive integer-valued F∆B-random vari-

able and νM := 1
M∆B

∑M∆B

m=1 δX (m) be a discrete probability measure on (Rn,B(Rn)),

where δx is the Dirac measure at x and (X (m) : Ω̃ −→ Rn,m ≥ 1) is an infinite

sequence of i.i.d. random variables. For an F̃ ⊗ F∆B ⊗ B(Rn)-measurable real-

valued function S such that |S(ω̃,∆B,X (m)(ω̃))| < +∞ for all m and P̃⊗ P∆B-a.e.

(ω̃,∆B) ∈ Ω̃×Ω∆B, the least squares approximation of S in the space K with respect

to νM is the (P̃⊗P∆B-a.e.) unique, F̃ ⊗F∆B⊗B(Rn)-measurable function S∗ given

by

S∗(ω̃,∆B, .) := arginf
φ∈K

1

M∆B

M∆B∑
m=1

|S(ω̃,∆B,X (m)(ω̃))− φ(X (m)(ω̃))|2. (11)

Then, we say that S∗ solves OLS(S,K, νM ).

Due to (7), the MDP equation (5) is interpreted in terms of Definition 1 as follows:

10



For all i ∈ {0, . . . , N − 1}, yi(∆B, .) is the measurable function given by:

yi(∆B, .) = solution of OLS
(
Yi(∆B, .),Ki, νi

)
, (12)

where νi := P ◦ (Xi, . . . , XN )−1, Ki is any dense subset in the real-valued functions

belonging to L2(B(Rd),P ◦ (Xi)
−1) and

Yi(∆B, xi:N ) :=Φ(xN ) +

N−1∑
k=i

(
f(tk, xk, yk+1(∆B, xk+1))∆k (13)

+ h(tk+1, xk+1, yk+1(∆B, xk+1))∆Bk

)
with xi:N := (xi, . . . , xN ) ∈ (Rd)N−i+1. To make the algorithm implementable,

the infinite-dimensional space Ki and the exact measure νi in (12) are replaced

respectively by a finite-dimensional space and an empirical measure.

3.2 Notations and algorithm

The solution yi(∆B, .) of (12) will be approximated in a finite dimensional functional

linear space, defined hereafter. Because the algorithm and the regression analysis

are performed conditionally on ∆B, it is important that the number M of data to

be used and the functions space K depend on ∆B in Definitions 1 and 2. This is a

significant difference with [GT15b] where K and M are not stochastic.

Definition 2 (Finite dimensional approximation spaces) For each i ∈ {0, . . . , N−
1}, the finite dimensional approximation space K∆B

Y,i (of cardinality K∆B
Y,i which is a

finite F∆B-random variable) is given by:

K∆B
Y,i := span{pji (∆B, .), j = 1, . . . ,K∆B

Y,i }

where for all j, the F∆B⊗B(Rd)-measurable function pji : Ω∆B ⊗ Rd −→ R satisfies

the condition E∆B

[
|pji (∆B,Xi)|2

]
< +∞.

The best approximation error of yi(∆B, .) on the linear space K∆B
Y,i is given by

τ∆B,Y
1,i := inf

φ∈K∆B
Y,i

E∆B

[∣∣∣yi(∆B,Xi)− φ(Xi)
∣∣∣2] .

The computation of the OLS (12) involves the law of Xi, . . . , XN , which is replaced

by the empirical measure, defined as follows.

Definition 3 (Simulations and empirical measure) For any i ∈ {0, . . . , N −
1}, let M∆B

i be1 the number of Monte-Carlo simulations used for the regression at

1M∆B
i may depend on ∆B to allow an optimal tuning of parameters as a function of ∆B, see

Corollary 1. To avoid overfitting, we assume w.l.o.g. M∆B
i ≥ K∆B

Y,i .

11



time ti: namely, we sample independent copies of Xi:N := (Xi, . . . , XN ), that we

denote by

Ci := {X(i,m)
i:N ,m ≥ 1}

and that we call cloud of simulations at time ti. For the algorithm we will use only

the first M∆B
i simulations of Ci, however for the sake of clarity in the analysis error

it is more convenient to write Ci with an infinite sequence.

In addition, we assume that the clouds {Ci; i = 0, . . . , N − 1} are sampled inde-

pendently. The random variables (X
(i,m)
i:N : 0 ≤ i ≤ N − 1,m ≥ 1) are supported by a

probability space (Ω(M),F (M),P(M)) and we define the empirical probability measure

associated to the cloud Ci:

νi,M :=
1

M∆B
i

M∆B
i∑

m=1

δ
(X

(i,m)
i ,...,X

(i,m)
N )

.

The L2-norm w.r.t νi,M will be denoted as usually as |.|νi,M (and |.|ν for another

measure ν).

Then, the full probability space used to analyse the following algorithm is

(Ω̄, F̄ , P̄ ) = (Ω,F ,P)⊗ (Ω(M),F (M),P(M)). Within this extended probability space,

we keep the same notation for probability and expectation, whenever unambiguous,

for the sake of simplicity.

The algorithm is defined as follows.

Algorithm 1 (Least-Squares MDP (LSMDP) Algorithm) We define y
(M)
i (∆B, .),

for all i, by a backward induction. We start with

y
(M)
N (∆B, .) := Φ(.)

and for i = N − 1, . . . , 0, we define

ψ
(M)
i (∆B, .) as the solution of OLS

(
Y(M)
i (∆B, .),K∆B

Y,i , νi,M

)
(14)

where for any xi:N := (xi, . . . , xN ) ∈ (Rd)N−i+1, we set

Y(M)
i (∆B, xi:N ) :=Φ(xN ) +

N−1∑
k=i

(
f(tk, xk, y

(M)
k+1(∆B, xk+1))∆k (15)

+ h(tk+1, xk+1, y
(M)
k+1(∆B, xk+1))∆Bk

)
.

After that, we set

y
(M)
i (∆B, .) :=

[
ψ

(M)
i (∆B, .)

]
i
, (16)

where [.]i is the soft thresholding operator defined by

[y]i := −C∆B
y ∨ y ∧ C∆B

y , (17)

C∆B
y being the bound computed in Proposition 2. Any other (and better) upper bound

on |yi(∆B, .)|∞ could advantageously replace C∆B
y .

12



The further statements will be made in terms of the squared approximation error

of yi in the linear space K∆B
Y,i with respect to the empirical measure νi,M , defined by

τ∆B,Y
1,i,M := E∆B

[
inf

φ∈K∆B
Y,i

∣∣∣yi(∆B, .)− φ∣∣∣2
νi,M

]
. (18)

A simple argument based on the inversion of E∆B and inf and on the independence

between simulations (Xi,m
i:N ,m ≥ 1) and ∆B yields the following bound.

Lemma 3 For all i ∈ {0, . . . , N − 1}, we have

τ∆B,Y
1,i,M ≤ τ∆B,Y

1,i .

3.3 Main result: non-asymptotic error estimates for the regression

scheme

The following theorem gives the conditional regression error of Algorithm 1 for

approximating solutions of (5): It is measured in terms of

ηY,∆Bi,M :=

√
E∆B

[∣∣∣yi(∆B, .)− y(M)
i (∆B, .)

∣∣∣2
νi,M

]
, (19)

ηY,∆Bi :=

√
E∆B

[∣∣∣yi(∆B,Xi)− y(M)
i (∆B,Xi)

∣∣∣2]. (20)

Actually by using uniform concentration-of-measure estimates, we can switch from

one error to the other, up to a small error term; see later Proposition 4 in our specific

setting or more generally Proposition 5.

Theorem 2 Under Assumptions (H1-H2), for any i ∈ {0, . . . , N − 1} we have

ηY,∆Bi,M ≤ δi +
√

2 exp
(√

2LfT +
√

2Lh

N−1∑
k=i

|∆Bk|
)N−2∑
k=i

(Lf∆k + Lh|∆Bk|)δk+1,

(21)

where for all k in {0, . . . , N − 1}

δk :=
(
τ∆B,Y

1,k,M

) 1
2

+
(card(K∆B

Y,k )

M∆B
k

) 1
2
σYk(∆B)

+
√

2028C∆B
y

N−2∑
j=k

(Lf∆j + Lh|∆Bj |)

√√√√(card(K∆B
Y,j+1) + 1) log(3M∆B

j+1)

M∆B
j+1

, (22)

with

σYk(∆B) := Cξ + T (LfC
∆B
y + Cf ) + (LhC

∆B
y + Ch)

N−1∑
j=k

|∆Bj |. (23)

13



Theorem 2 gives explicit non asymptotic error estimates for the algorithm, since

the constants of the error upper bound depend explicitly on the time grid π and on

the path (∆Bk)0≤k≤N−1. As in [GT15b], it allows an easy tuning of the convergence

parameters K∆B
Y,i and M∆B

i to obtain an a.s. convergence given the external noise B

as in the spirit of SPDEs. The subsequent convergence result (Corollary 1) is made

possible owing to the Lipschitz regularity of the unknown solution x 7→ yi(∆B, x),

which is stated as follows.

Proposition 3 Under Assumptions (H1-H2), for any x, x′ ∈ Rd and i0 ∈
{0, . . . , N − 1} we have

|yi0(∆B, x)− yi0(∆B, x′)| ≤ C∆B
(24)|x− x

′| (24)

where C∆B
(24) := C(25)e

LfT+Lh
∑N−1
j=0 |∆Bj |

(
Lξ + LfT + Lh

N−1∑
j=0

|∆Bj |
)
.

Proof. Set Xi0,x
i = x for i ≤ i0 and let (Xi0,x

i )i≥i0 be the Euler scheme start-

ing from x at time i0. We apply Proposition 1 by setting Y1,i := y(∆B,Xi0,x
i )

(with ξ1 := Φ(Xi0,x
N ), f1,i(.) := f(ti, X

i0,x
i , .), h1,i+1(.) := h(ti+1, X

i0,x
i+1 , .)) and

Y2,i := yi(∆B,X
i0,x′

i ) (with ξ2 := Φ(Xi0,x′

N ), f2,i(.) := f(ti, X
i0,x′

i , .) and h2,i+1(.) :=

h(ti+1, X
i0,x′

i+1 , .)). With Assumption (H2), we get

Γi|yi(∆B,Xi0,x
i )− yi(∆B,Xi0,x′

i )| ≤ ΓNLξEi
[
|Xi0,x

N −Xi0,x′

N |
]

+

N−1∑
k=i

Γk

(
LfEi

[
|Xi0,x

k −Xi0,x′

k |
]
∆k + LhEi

[
|Xi0,x

k+1 −X
i0,x′

k+1 |
]
|∆Bk|

)
.

Using (10) and taking i = i0 in the above inequality, we get

|yi0(∆B, x)− yi0(∆B, x′)| ≤ eLfT+Lh
∑N−1
j=0 |∆Bj |

(
LξEi0

[
|Xi0,x

N −Xi0,x′

N |
]

+
N−1∑
k=i0

{LfEi0
[
|Xi0,x

k −Xi0,x′

k |
]

∆k + LhEi0
[
|Xi0,x

k+1 −X
i0,x′

k+1 |
]
|∆Bk|}

)
.

Since the coefficients b and σ are globally Lipschitz, there exists a non negative

constant C(25) such that

sup
i0≤k≤N

Ei
[
|Xi0,x

k −Xi0,x′

k |
]
≤ C(25)|x− x′|. (25)

By the last estimation, we conclude immediately. �
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3.4 Convergence of the algorithm and complexity

We are now in a position to study in details the convergence of the Algorithm 1,

by choosing appropriately the approximation space K∆B
Y,i and the number of simu-

lations M∆B
i . We are to handle the analysis conditionally to ∆B. To simplify the

presentation, ∆i = Cst = T/N and K∆B
Y,i will not depend on i; nevertheless less

restrictive investigations are possible in light of the general estimates of Theorem 2.

Approximation spaces. Since the unknown function yi(∆B, .) is Lipschitz (Propo-

sition 3), it is enough to consider piecewise approximations. Let D∆B be a large

hypercube of Rd centered on X0 = x, that is D∆B =
∏d
k=1(xk −H∆B, xk + H∆B]

for some parameter H∆B large enough. Then, D∆B can be partitioned in a finite

number of small hypercubes C∆B
j1,...,jd

of edge ρ∆B > 0 i.e.

D∆B =
⋃

j1,...,jd

C∆B
j1,...,jd

where

C∆B
j1,...,jd

=
d∏

k=1

(xk −H∆B + jkρ
∆B, xk −H∆B + (jk + 1)ρ∆B]

and jk ∈ {0, . . . , 2H∆B

ρ∆B − 1}. To simplify the exposition we neglect the rounding

effect by assuming 2H∆B

ρ∆B is integer. The number of hypercubes is (2H∆B/ρ∆B)d,

which equals card(K∆B
Y,i ) since on each hypercube, the approximation is piecewise

constant.

Recall that under (H1), Xi has finite moments at any order, i.e. for any q > 0

sup
0≤i≤N

E [|Xi − x|q∞] ≤ Cq,(26) (26)

for a constant independent of N . With Proposition 3 at hand, we easily upper

bound the squared approximation error as follows:

τ∆B,Y
1,i,M ≤ τ∆B,Y

1,i := inf
φ∈K∆B

Y,i

E∆B

[∣∣∣yi(∆B,Xi)− φ(Xi)
∣∣∣2]

≤ E∆B

[∣∣∣yi(∆B,Xi)
∣∣∣21{Xi /∈D∆B}

]
+
∑

j1,...,jd

E∆B

[∣∣∣yi(∆B,Xi)− yi(∆B, xj1,...,jd)
∣∣∣21{Xi∈C∆B

j1,...,jd
}

]

for an arbitrary point xj1,...,jd in the hypercube C∆B
j1,...,jd

≤ (C∆B
y )2C2,(26)(H

∆B)−2 + (C∆B
(24)ρ

∆B)2
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using the Markov inequality with q = 2 for the first term and the Lipschitz property

of yi(∆B, .) for the second. To get a squared approximation error τ∆B,Y
1,i,M of order

N−1 (in coherence with Theorem 1), it is enough to choose

H∆B = C∆B
y

√
N, ρ∆B =

1

C∆B
(24)

√
N
.

However, this is not sufficient to contribute in ηY,∆Bi,M with an error of magnitude

N−1/2 because of the summation over k in (21). An appropriate choice is

H∆B = ec
∑N−1
k=0 |∆Bk|N3/2, ρ∆B = e−c

∑N−1
k=0 |∆Bk|N−3/2.

For c large enough (and explicit w.r.t. model data), this shows that the τ∆B,Y
1,k,M -

errors contribute in ηY,∆Bi,M as CN−1/2 for a deterministic constant C. With the

above choice, we have

card(K∆B
Y,i ) = (2e2c

∑N−1
k=0 |∆Bk|N3)d.

Number of simulations. A careful analysis of the upper bound (21) shows that

M∆B
i := N3d+5 exp

(
c′
N−1∑
k=0

|∆Bk|

)
(27)

for c′ large enough implies

ηY,∆Bi,M ≤ C(28)

√
log(N + 1)

N
, a.s, (28)

for some deterministic constant C(28) > 0. We have proved the first part of the

following result.

Corollary 1 (Convergence of the algorithm) For the uniform time grid with

N time steps and for a.s. any discrete path (∆Bk)0≤k≤N−1, the empirical regres-

sion algorithm with appropriate choices of K∆B
Y,k and M∆B

k yields an error in L2

conditionally to ∆B bounded by C(28)

√
log(N+1)

N where C(28) is deterministic.

Furthemore, the complexity of the algorithm is C ∼ N
∑N−1

i=0 M∆B
i up to a de-

terministic constant. Thus,

• conditionally on ∆B, the complexity is of order

C = O(N3d+7);

• in expectation, the complexity is of order

E [C] ≈ c̃N3d+7 exp(c̃
√
N)

for some c̃ > 0.
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It remains to justify the second part regarding the complexity C. The latter is

directly evaluated by counting the elementary operations as in [GT15b]. Then, its

evaluation conditionally and unconditionally on ∆B are easily obtained in view of

(27).

As for simple BSDEs, the curse of dimensionality occurs. But here, the effect of

external Brownian motion is seemingly much more determinant, it is responsible for

the factors exp
(
c′
∑N−1

k=0 |∆Bk|
)

and exp(c̃
√
N). In other words, the convergence

holds, but in average at a logarithmic speed w.r.t. the accuracy. In a pathwise

sense, the approximation may be more or less accurate depending on the realization

of ∆B, which is intuitively meaningful.

3.5 Proof of Theorem 2

The following proposition is useful to interchange the errors (19) and (20).

Proposition 4 For all i ∈ {0, . . . , N − 1}, we have

(
ηY,∆Bi

)2
≤ 2

(
ηY,∆Bi,M

)2
+ (C∆B

y )2
2028(card(K∆B

Y,i ) + 1) log(3M∆B
i )

M∆B
i

.

Proof. Let i ∈ {0, . . . , N − 1}. Write

E∆B

[∣∣∣yi(∆B,Xi)− y(M)
i (∆B,Xi)

∣∣∣2] ≤ 2E∆B

[∣∣∣yi(∆B, .)− y(M)
i (∆B, .)

∣∣∣2
νi,M

]
+E∆B

[(
E
[∣∣∣yi(∆B,Xi)− y(M)

i (∆B,Xi)
∣∣∣2 | ∆B, {Ck : k ≥ i}

]
−2
∣∣∣yi(∆B, .)− y(M)

i (∆B, .)
∣∣∣2
νi,M

)
+

]
,

and apply Proposition 5, with p = 2, λ = C∆B
y (owing to Proposition 2), K = K∆B

Y,i ,

M = M∆B
i . �

To prove Theorem 2, we need few extra notations.

1. We define the following σ-fields G∗i := F∆B∨σ(Ci+1, . . . , CN−1) and Gi,1:M
i :=

G∗i ∨σ
(
X

(i,m)
i : m ≥ 1

)
for all i = 0, . . . , N − 1.

2. We define

ψi(∆B, .) as the solution of OLS
(
Yi(∆B, .),K∆B

Y,i , νi,M

)
,

for all i = 0, . . . , N − 1. This is the OLS solution when the functions f and

h are computed with the right solution, as opposed to the definition (14) of

ψ
(M)
i (∆B, .).
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We now turn to the proof of Theorem 2. In view of Proposition 2 and the

definition (17) of the thresholding operator [.]i which is 1-Lipschitz, we have

ηY,∆Bi,M =

√
E∆B

[∣∣∣[yi(∆B, .)]
i
−
[
ψ

(M)
i (∆B, .)

]
i

∣∣∣2
νi,M

]
≤

√
E∆B

[∣∣∣yi(∆B, .)− ψ(M)
i (∆B, .)

∣∣∣2
νi,M

]
.

Then, inserting the Gi,1:M
i -conditional expectations EGi,1:M

i

[
ψi(∆B, .)

]
and

EGi,1:M
i

[
ψ

(M)
i (∆B, .)

]
and using the triangle inequality, we get

ηY,∆Bi ≤

√
E∆B

[∣∣∣yi(∆B, .)− EGi,1:M
i

[
ψi(∆B, .)

]∣∣∣2
νi,M

]
(29)

+

√
E∆B

[∣∣∣EGi,1:M
i

[ψ
(M)
i (∆B, .)]− ψ(M)

i (∆B, .)
∣∣∣2
νi,M

]
+

√
E∆B

[∣∣∣EGi,1:M
i

[
ψi(∆B, .)− ψ(M)

i (∆B, .)
]∣∣∣2
νi,M

]
.

We separately deal with each term of the previous inequality.

a) Term

√
E∆B

[∣∣∣yi(∆B, .)− EGi,1:M
i

[
ψi(∆B, .)

]∣∣∣2
νi,M

]
in (29). We note that for all

m in {1, . . . ,M∆B
i }, EGi,1:M

i

[
Yi(∆B,X(i,m)

i )
]

= yi(∆B,X
(i,m)
i ). It follows from

Proposition 6-(iii) that EGi,1:M
i

[
ψi(∆B, .)

]
solves OLS

(
yi(∆B, .),K∆B

Y,i , νi,M

)
,

that is

E∆B

[∣∣∣yi(∆B, .)− EGi,1:M
i

[
ψi(∆B, .)

]∣∣∣2
νi,M

]
= τ∆B,Y

1,i,M (30)

where τ∆B,Y
1,i,M is defined in (18).

b) Term

√
E∆B

[∣∣∣EGi,1:M
i

[ψ
(M)
i (∆B, .)]− ψ(M)

i (∆B, .)
∣∣∣2
νi,M

]
in (29). The terms Y(M)

i (∆B, .)

are computed only using the clouds {Ck, k ≥ i+ 1}. Thus, we obtain by Propo-

sition 6-(iv)

E∆B

[∣∣∣ψ(M)
i (∆B, .)− EGi,1:M

i
[ψ

(M)
i (∆B, .)]

∣∣∣2
νi,M

]
≤

card(K∆B
Y,i )

M∆B
i

σ2
Yi(∆B), (31)

where σ2
Yi(∆B) is a F∆B-measurable random variable bounding the condi-

tional variance Var(Y(M)
i (∆B,Xi:N ) | ∆B, σ(Ci+1, . . . , CN−1), Xi = xi) uni-

formly in xi. A simple bound of the latter is supxi:N |Y
(M)
i (∆B, xi:N )|2 which
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we now make explicit: starting from the definition (15), since y
(M)
i (∆B, .) is

bounded by C∆B
y (see (16) and (17)) and in view of the Assumption (H2),

we easily derive than we can take σYi(∆B) as defined in (23).

c) Term

√
E∆B

[∣∣∣EGi,1:M
i

[
ψi(∆B, .)− ψ(M)

i (∆B, .)
]∣∣∣2
νi,M

]
in (29).

We set EMY,i(∆B, xi) := E
[
Yi(∆B,Xi:N )− Y(M)

i (∆B,Xi:N ) | Xi = xi,G∗i
]
. As

Yi(∆B,Xi:N )− Y(M)
i (∆B,Xi:N ) are computed only with the clouds {Ck, k ≥

i+ 1}, we have for all m

EGi,1:M
i

[
Yi(∆B,X(i,m)

i:N )− Y(M)
i (∆B,X

(i,m)
i:N )

]
= EMY,i(∆B,X

(i,m)
i ).

Thus, by Proposition 6-(i-iii), EGi,1:M
i

[
ψi(∆B, .)− ψ(M)

i (∆B, .)
]

solves

OLS
(
EMY,i(∆B, .),K∆B

Y,i , νi,M

)
. Using Proposition 6-(ii) (the norm stability

property of the OLS operator), we get

E∆B

[∣∣∣EGi,1:M
i

[
ψi(∆B, .)− ψ(M)

i (∆B, .)
]∣∣∣2
νi,M

]
≤ E∆B

[∣∣∣EMY,i(∆B, .)∣∣∣2
νi,M

]
= E∆B

[
|EMY,i(∆B,Xi)

∣∣∣2]
where we use at the last equality the independence (conditionally on F∆B)

between clouds of simulations. Using the triangle inequality on the conditional

L2-norm and the definitions of (13) and (15), we get√
E∆B

[∣∣∣EMY,i(∆B,Xi)
∣∣∣2]

≤
N−2∑
k=i

(Lf∆k + Lh|∆Bk|)

√
E∆B

[∣∣∣yk+1(∆B,Xk+1)− y(M)
k+1(∆B,Xk+1)

∣∣∣2].
To summarise, by plugging the last estimation and the estimations (30) and (31) in

the inequality (29), we have

ηY,∆Bi,M ≤
(
τ∆B,Y

1,i,M

) 1
2

+
(card(K∆B

Y,i )

M∆B
i

) 1
2
σYi(∆B) +

N−2∑
k=i

(Lf∆k + Lh|∆Bk|)ηY,∆Bk+1 .

Thanks to Proposition 4, the above conditional L2-norms ηY,∆Bk+1 can be expressed

in terms of ηY,∆Bk+1,M : namely

ηY,∆Bk+1 ≤
√

2ηY,∆Bk+1,M + C∆B
y

√√√√2028(card(K∆B
Y,k+1) + 1) log(3M∆B

k+1)

M∆B
k+1

.
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Therefore, we have proved

ηY,∆Bi,M ≤ δi +
N−2∑
k=i

√
2(Lf∆k + Lh|∆Bk|)ηY,∆Bk+1,M , (32)

where δi is defined in (22). By setting Ci+1 :=
√

2(Lf∆i + Lh|∆Bi|), (32) writes

under the form

ηY,∆Bi,M ≤ δi +
N−1∑
k=i+1

Ckη
Y,∆B
k,M , (33)

i.e. , the error ηY,∆Bi,M is bounded by a local error term δi and the sum of the errors

ηY,∆Bk,M arising before the steps k > i. This inequality is a discrete Gronwall type

inequality, which leads to the following upper bound for all i in {0, . . . , N − 1}

ηY,∆Bi,M ≤ δi +
N−1∑
k=i+1

Γi,kCkδk, (34)

where

Γi,k :=


∏
i<j<k

(1 + Cj)≤ exp

(
√

2LfT +
√

2Lh

N−1∑
k=i

|∆Bk|

)
, for i+ 1 < k,

1, otherwise.

(35)

The proof of (34) is postponed to Appendix A.3, while the proof of the upper bound

in (35) can be undertaken similarly to (10). Making explicit the terms in (34) readily

leads to (21), we are done. �

4 Numerical tests

In this section, we aim to test the algorithm on an example where we know the

exact solution. In any case, since the solution is random (through B), checking the

accuracy is challenging and our theoretical results of Theorem 2 are useful to assert

the convergence in general.

We take a linear BDSDE of the form{
dXt = Xt(µdt+ σdWt), X0 = x,

Φ(x) given, f(y) = a0y, h(y) = b0y,

which is written in a one-dimensional setting (d = l = 1). From [PP94, Remark

3.4], we know that the solution is given by

Y exact
t = E

[
Φ(XT )ea0(T−t)+b0(BT−Bt)− 1

2
b20(T−t) | F0

t

]
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= E [Φ(XT ) | Xt] e
a0(T−t)+b0(BT−Bt)− 1

2
b20(T−t).

To allow an explicit computation of the above expectation, we take Φ(x) = −x+K.

The parameters are set to K = 115, x = 100, µ = 0.05, σ = 0.2, T = 0.25,

a0 = b0 = 0.5.

The domain of resolution is D∆B = [60, 200]. We use piecewise approximations

on hypercubes as explained in Subsection 3.4. Below we report the values of the

error y
(M)
0 (∆B, x)− Y exact

0 at time t = 0 and additionally, we provide the standard

deviation σM of y
(M)
0 (∆B, x) (conditionally to ∆B) by performing 50 independent

macro-runs of the empirical regression algorithms (with the same B). The value

ȳ
(M)
0 (∆B, x) stands for the mean over the macro-runs.

The following tables present the results for different choices of ρ∆B and M∆B
i .

The relative error is

∣∣∣∣ ȳ(M)
0 (∆B,x)−Y exact

0

Y exact
0

∣∣∣∣.
Let N = 20: a first simulation of B gives Y exact

0 = 13.724. Then, by taking

ρ∆B = 1, we obtain

M∆B
i ȳ

(M)
0 (∆B, x)(σM ) relative error

100 13.910(1.178) 1.3%

1000 13.792(0.309) 0.4%

5000 13.847(0.117) 0.8%

Now take N = 30 and another simulation of B yields Y exact
0 = 14.115. By setting

ρ∆B = 0.5 we obtain the following results.

M∆B
i ȳ

(M)
0 (∆B, x)(σM ) relative error

100 14.246(1.045) 0.9%

1000 14.195(0.337) 0.5%

5000 14.236(0.129) 0.8%

As predicted by our convergence analysis, we observe an improvement of accuracy

when ρ∆B → 0 and M∆B
i → +∞. Additional numerical experiments are available

in [Bac14], also including z in the driver.

A Appendix

A.1 Concentration-of-measure inequalities

We state an upper bound result, for a sample deviation, uniformly on the function

spaces.

Proposition 5 Let n ≥ 1, p ≥ 1 and K be a finite dimensional vector space of

measurable functions from Rn to R. Let λ ∈ (0,+∞) be a threshold, ϑ a measurable

function from Rn to [−λ, λ] and set

Kλ := {|τλφ(.)− ϑ(.)|p : φ(.) ∈ K} ,
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where τλφ(.) := −λ ∨ φ(.) ∧ λ. Then, for any M ≥ 1 and any X (1), . . . ,X (M) i.i.d.

random variables distributed as a Rn-valued random variable X , we have

E

(
sup
g∈Kλ

(∫
Rn
g(x)P ◦ X−1(dx)− 2

M

M∑
m=1

g(X (m))
)

+

)

≤ 507p2p−1λp
(card(K) + 1) log(3M)

M
.

Proof. Apply [GT15b, Proposition 4.9] with ψ(x) = (|x| ∧ 2λ)p which is Lipschitz

continuous with Lipschitz constant equal to p(2λ)p−1. �

A.2 OLS: deterministic and probabilistic properties

For the sake of completeness, we recall a result proved in [GT15b, Proposition 4.12],

gathering the important properties of the least-squares operator, and adapted to

our setting.

Proposition 6 Assume the notation of Definition 1 with a finite dimensional vector

subspace K and consider the second case with discrete probability measure νM . Let

S∗ solve OLS(S,K, νM ), according to (11). The following properties are satisfied.

(i) Linearity: The mapping S → S∗ is linear.

(ii) Empirical L2-norm stability: |S∗(ω̃,∆B, .)|νM ≤ |S(ω̃,∆B, .)|νM .

(iii) Conditional expectation solution: Assume additionally that Q is a σ-

field such that {pj(∆B,X (m)), j ≥ 1,m ≥ 1} is F∆B ∨ Q-measurable. Setting

SQ(∆B,X (m)) = E
[
S(ω̃,∆B,X (m)) | F∆B ∨Q

]
for each m ∈ {1, . . . ,M∆B},

then E
[
S∗ | F∆B ∨Q

]
solves OLS(SQ,K, νM ).

(iv) Bounded conditional variance: Suppose first that S(ω̃,∆B, x) is G̃ ⊗
F∆B⊗B(Rn)- measurable for a σ-field G̃ ⊂ F̃ independent of σ(X (m),m ≥ 1),

second that there exists a Borel measurable function κ : Rn → E, for some Eu-

clidean space E, such that the random variables {pj(∆B,X (m)),m ≥ 1, j ≥ 1}
are F∆B ∨ H-measurable with H := σ

(
κ(X (m)),m ≥ 1

)
, and third that there

exists a finite F∆B-random variable ζ(∆B) ≥ 0 that uniformly bounds the

conditional variances

Var(S(ω̃,∆B,X (m)) | F∆B ∨ G̃ ∨ H) ≤ ζ(∆B) P̃⊗ P∆B − a.s.

for all m ≥ 1. Then

E
[
|S∗(.)− E[S∗(.)|F∆B ∨ G̃ ∨ H]|2νM | F

∆B ∨ G̃ ∨ H
]
≤ card(K)

M
ζ(∆B).
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A.3 Proof of inequality (34)

The proof is made by backward induction on i ∈ {0, . . . , N − 1}.

• For i = N − 1, by inequality (33) we check that ηY,∆BN−1,M ≤ δN−1. Thus the

estimation (34) holds.

• Now, let i ∈ {0, . . . , N − 1}, assume that (34) is true for {i, . . . , N − 1} and

let us prove that it holds for {i− 1, . . . , N − 1}. Using (33) and (34), we get

ηY,∆Bi−1,M ≤ δi−1 +
N−1∑
k=i

Ckη
Y,∆B
k,M

≤δi−1 +
N−1∑
k=i

Ck

(
δk +

N−1∑
s=k+1

Γk,sCsδs

)

= δi−1 +

N−1∑
k=i

Ckδk +

N−1∑
s=i+1

s−1∑
k=i

CkΓk,sCsδs

= δi−1 + Ciδi +
N−1∑
k=i+1

Ckδk

{
1 +

k−1∑
s=i

CsΓs,k

}
.

Owing to Γi−1,k + Γi−1,kCi−1 = Γi−2,k and Γk−1,k = 1, observe that

1 +

k−1∑
s=i

CsΓs,k = Γi−1,k,

and therefore

ηY,∆Bi−1,M ≤ δi−1 + Ciδi +

N−1∑
k=i+1

CkδkΓi−1,k.

Recalling that Γi−1,i = 1, we conclude that (34) holds for i− 1.
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