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Abstract: The strictly convex network flow problem is considered. The dual of this problem is unconstrained,
differentiable, and well suited for solution via distributed or parallel iterative methods. A new class of asyn-
chronous iterative methods is proposed: the asynchronous iterations with flexible communication. Communi-
cation to other processors of the value of the components of the iteration vector resulting from intermediary
steps of computation is the main feature of this new class of methods. Convergence is speeded up when such
partial updates are used. A convergence result is given. Preliminary computational results are presented and

analysed.

Keywords: Distributed algorithms, parallel iterative methods, asynchronous iterations, flexible communica-

tion, nonlinear optimization, convex network flow problems.

1. INTRODUCTION

We consider the strictly convex network flow problem. This problem occurs in many domains: electrical
networks, gas or water distribution, financial models, communication and transportation networks. Nonlinear
network flow problems require intensive computations (see [ZeM88]). A distributed or parallel solution of these
problems is very attractive (see [ZeL88], [TsB&6], and [BCE95]). We concentrate on the dual problem which is
unconstrained, differentiable and well suited for solution via parallel iterative methods. It was shown in [BeE87]
and [E1b96] that the structure of the dual problem allows the successful application of distributed asynchronous
relaxation and gradient algorithms. Reference is also made to [TsB87], [Tse90], [TBT90], and [ChZ91], for the

solution of this problem via sequential or parallel iterative methods using different line search techniques.



In this paper we propose a new class of asynchronous iterative methods, the asynchronous iterations with
flexible communication. This new class of algorithms was first presented in [MES94] for the solution of nonlinear
systems of equations in the case of M-functions. It was applied in [SME95] to the solution of nonlinear partial
differential equations. The general framework of this study is slightly different from the one considered in
[MES94] and [SME95]. We consider the case where the nonlinear flow equations are diagonally monotone
nondecreasing. This case is more general than M-functions. We also concentrate on a different class of mappings.
We study submappings and supermappings, whereas we have considered a-submappings and a-supermappings
in [MES94] and [SME95]. Finally, we propose point iterative methods for nonlinear network flow problems,

whereas the methods studied in [MES94] and [SME95] are essentially block iterative methods.

Flexible communication between processors is the main feature of the new class of methods presented in
this paper. Asynchronous iterations with flexible communication admit more message exchanges than totally
asynchronous iterations studied in [ChM69], [Mie75al, [Bau78], and [BeT89]. In particular, the current value
of the components of the iteration vector resulting from intermediate steps of updating can be communicated
to other processors. We recall that communications occur only at the end of each updating phase in totally
asynchronous schemes of computation. So, the new class of methods proposed here allows each processor to
communicate partial updates which are issued from computations in progress. We will see in the sequel that the
use of such partial updates can speed up the convergence. We give a convergence result which is all new. We
note that previous results in the literature (see [ChM69], [Mie75a], [Bau78], and [BeT89]) cannot be used in this
context since they consider a different model of algorithms. An implementation of an asynchronous iterative
method with flexible communication is proposed. Termination detection is considered. Finally, preliminary

computational results on a distributed memory multiprocessor are presented and analysed.

The second Section deals with the convex network flow problem. Asynchronous iterative algorithms with
flexible communication are presented in Section three. An implementation is given in Section four. Experimental
results are presented and analysed in Section five. Conclusions are drawn in Section six. The proof of the

convergence result is presented in Section seven.

2. THE PROBLEM
2.1. Problem formulation

Let G = (N, A) be a connected directed graph. N is referred to as the set of nodes, A C N x N is referred to

as the set of arcs, and the cardinal number of N is denoted by n. Let ¢;; : R — (—00, +o0] be the cost function



associated with each arc (i,7) € A, c;; is a function of the flow of the arc (4, j) which is denoted by f;;. Let b;
be the supply or demand at node i € N, we have ), b; = 0. The problem is to minimize total cost subject
to a conservation of flow constraint at each node:

min Z cij(fij), subject to Z fij — Z fmi = b;,Vi € N. (2.1)

(i,j)EA (i,j)€A (m,i)EA

We assume that problem (2.1) has a feasible solution. We consider the following standing assumptions on ¢;;.
Assumption 2.1. ¢;; is strictly convex.
Assumption 2.2. ¢;; is lower semicontinuous.

Assumption 2.3. The conjugate convex function of ¢;;, defined by

cijtiy) = supitiy. fis = cis(fis)} (2.2)

ij

is real valued, i.e. -00 < ¢;(ti;) < 400 for all real ¢;;.

Remark 2.1. Assumptions 2.1 to 2.3 correspond to the general assumptions made in [BeE87]. We recall that
Assumption 2.3 implies that lim|y, | o ¢ij(fij) = +00. Therefore the objective function of problem (2.1) has
bounded level sets (see [Roc70, Section 8]). It follows that there exists an optimal solution for problem (2.1)
which must be unique in view of the strict convexity assumed in Assumption 2.1. By the strict convexity of

k
Cij, C

;; is also continuously differentiable and its gradient denoted by Vc;; (tij) is the unique f;; attaining the

supremum in (2.2) (see [Roc70, pp. 218, 253], see also [BeE87]). We also note that V¢, being the gradient of
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a differentiable convex function, is monotonically nondecreasing.

Problem (2.1) is of great practical interest and has been studied for a long time (see [Roc70] and [Roc84]).

2.2. The dual problem

A dual problem for (2.1) is given by

m}{n q(p), subject to no constraints on the vector p = {p;|i € N}, (2.3)
pER™

where ¢ is the dual functional given by
ap)= > ci—p) =D bipi (2.4)
(i.j)€A ieN
We refer to p as a price vector and its components as prices. The i-th price p;, is a Lagrange multiplier associated
with the i-th conservation of flow constraint. The duality between problems (2.1) and (2.3) is explored in great

detail in [Roc84]. The necessary and sufficient condition for optimality of a pair (f,p) is given in [Roc70]. A



feasible flow vector f = {fi;|(i,j) € A} is optimal for (2.1) and a price vector p = {p;|i € N} is optimal for (2.3)
if and only if for all (i, j) € A, p; —p; is a subgradient of ¢;; at f;;. An equivalent condition is fi; = Vey;(pi —pj),
for all (i,7) € A. Any one of these equivalent relations is referred to as the complementary slackness condition

(see [Roc70, pp. 337-338], see also [BeES8T]).

2.3. The dual optimal solution set

Existence of an optimal solution of the dual problem can be guaranteed under an additional regular feasibility
assumption (see [Roc84, p. 360 and p. 329], see also [BeE87]). On the other hand the optimal solution of the
dual problem is never unique since adding the same constant to all coordinates of a price vector p leaves the dual
cost unaffected. We can remove this degree of freedom by constraining the price of one node, say a destination

node d, to be zero. Consider the set P = {p € R"|p; = 0}. We concentrate on the reduced dual problem:

minyepq(p). (2.5)

The reduced dual optimal solution set P* is defined by: P* = {p" € P|q(p’) = min, ¢(p)}. In the sequel we will

operate under the following assumption.
Assumption 2.4. The reduced dual optimal solution set P* is nonempty and compact.

Remark 2.2. Assumption 2.4 is not overly restrictive, the reader is referred to [BeE87] for various examples.
It follows from Assumption 2.4 that there exists a minimal and a maximal optimal solution of the reduced dual
problem, i.e. there exists p,p € P* such that p < p <P, for all p € P*, where p < p denotes the component-wise

partial ordering on R™ (see [BeE&7, Proposition 2]).
In the sequel g(p) will denote the gradient of the dual functional. From (2.4) it follows that the components
9i(p) of g(p) are given by:

gi(p) = %a(p) _ Z Veii(pi —pj) — Z Veri(pm —pi) — bi, i € N (2.6)

Opi
p (i,j)EA (m,i)eA

Since ¢;(p) is a partial derivative of a differentiable convex function it is continuous and monotonically nonde-

creasing in the i-th coordinate (see [TsB87]).

For simplicity (p;;p) will denote in the sequel the vector of R™ with i-th component equal to p; and j-th

component equal to p;,j € N — {i}.

3. PARALLEL ITERATIVE ALGORITHMS

In this Section, we consider several parallel iterative methods for the solution of the reduced dual problem,;



in particular, we introduce the new class of asynchronous iterative algorithms with flexible communication.



3.1. Relaxation

Since the reduced dual problem is unconstrained and differentiable it is natural to consider algorithmic
solution by a descent iterative method. A relaxation method is interesting in this respect since it admits a
simple implementation. Given a price vector p € P, a node i € N — {d} is selected and its price p; is changed to
a value p; such that the dual cost is minimized at p; with respect to the i-th price (i.e. g;(p;;p) = 0), all others
prices being kept constant. The algorithm proceeds by relaxing the prices of all nodes element of N — {d} in
cyclic order and repeating the process (see [BeE87]). Consider now the point-to-set mapping F;,i € N — {d},
which assigns to a price vector p € P, the set of all prices p; that minimize the dual cost along the i-th price
starting from p, i.e. Fi(p) = {pi|gi(pi;p) = 0}. It is well known that a real valued convex function having
one compact level set, has all its level sets compact (see [Roc70 p.70]). Therefore under Assumption 2.4 the
sets F;(p),p € P,i € N — {d}, are all nonempty, compact intervals. It follows that the minimal and maximal

relaxation mappings F and F, with components defined by:

F,(p) = min p; and fi(p) = max p;,i € N —{d}, (3.1)
pi€Fi(p) Di€Fi(p)

respectively, are well defined on the set P (see [BeE87]). Bertsekas and El Baz have shown in [BeE87] that F

and F are continuous and monotone on P in the sense that for any p,p’ € P, i € N — {d} we have
Ei(p) <E;(p)ifp<p,
Filp) <Fi(p)ifp <y,

The following two concepts will be central to all our considerations.

3.2. Submappings and supermappings

Definition 3.1. A mapping F, with components Fj,i € N — {d}, is a submapping associated with the minimal
relaxation mapping £ on P’ = {p € P|p < p}, we also say that F is a submapping on P’ for simplicity, if for
alli € N — {d} and p € P’ such that p; < F;(p), we have F;(p) € [p;, E;(p)] and Fj(p) # p; if F;(p) # pi.

We can analogously define supermappings on P” = {p € P[p < p}, by substituting F for F, P” for P’, and

reversing the inequalities.

Remark 3.1. By the monotonicity of F on P, (3.1) implies that if p € P, then we have F,;(p) < F;(p) = p.,

=i
for all i € N — {d}. Therefore, it follows from Definition 3.1 that if F' is a submapping on P’, then for all

i € N —{d} and p € P’ such that p; < F,(p), we have Fi(p) < F,(p) < p,- We can analogously show that if I

is a supermapping on P”, then for all i € N — {d} and p € P” such that F;(p) < p;, we have p, < F;(p).



Now we introduce properties referring to continuity. These properties will be used in the convergence analysis

of asynchronous iterative algorithms with flexible communication.

Definition 3.2. A submapping F is order continuous on P’ if
p(k) tp' € Pk — 0o = Ei(p(k)) + Fy(p'),k — oo, foralli € N — {d}, (3.2)

where the notation p(k) 1 p',k — 00, is used to mean that p(0) < p(1) < ... < plk) <p(k+1) < .. <p and
/

limg o0 p(k) =D-

A supermapping F' is order continuous on P” if
p(k) L p € Pk — 0o = Fi(p(k)) { Fi(p'),k — oo, for alli € N — {d},

where the notation p(k) | p',k — o0, is used to mean that p(0) > p(1) > ... > p(k) > p(k+1) > ... > p’ and
limg o0 p(k) = p.

Definition 3.3. Let F be a submapping on P’ and F” an order continuous submapping on P’ such that for all

i € N —{d} and p € P’, satistying p;, < F,(p), we have

Fi(p) € [pi, Fx(p)], (3.3)

then the submapping F is m-continuous on P’.

We can similarly define m-continuous supermappings on P” by substituting P” for P’ and reversing the in-

equalities.



3.3. Examples of submappings and supermappings

Now we present several submappings and supermappings. We consider first mappings based on inexact line

search.

3.3.1. Relaxation methods with inexact line search

In this subsection, we concentrate on approximate relaxation mappings F whereby the minimization along
each coordinate is allowed to be inexact to some extent. Reference is made in particular to [TsB87], [BHT87],
[BeT89], [Tse90], and [ChZ91]. For all p € P, the components F;,i € N — {d}, of the mapping F, are defined

by:

69i(p) < gi(Fy(p);p) < 0 and Fy(p) < Fi(p), if gi(p) <0, Fi(p) = pi, if gi(p) =0, (3.4a)

0 < gi(Fi(p);p) < 6gi(p) and Fy(p) > Fi(p), if gs(p) > 0, (3.4b)

where 6 € [0,1).

Proposition 3.1. Let Assumptions 2.1 to 2.4 hold. Then, any mapping F, defined by (3.4) is a submapping
on P'.

Proof: For all i € N — {d} and p € P’ such that p; < F,;(p), we have g;(p) < g:(F;(p);p) = 0, since g; is
monotonically nondecreasing in the i-th coordinate, moreover it follows from (3.1) that if F,(p) # p;, then we
have g;(p) < 0. Hence, it, follows from (3.4a) that p; < Fi(p) < F,(p). If p; = F,(p), then we have g;(p) = 0 and

it follows from (3.4a) that F;(p) = p;.
Q.ED.

It can analogously be shown that any mapping F', defined by (3.4) is also a supermapping on P” = {p € P|p < p}.

We note that the converse of Proposition 3.1 is not true. Clearly, all submappings on P’ do not satisfy (3.4a).
In some cases the following assumption is introduced.
Assumption 3.1. ¢;; is continuously differentiable.

The differentiability assumption is made in particular in [ChZ91], in that case the mapping F considered is

continuous. Therefore, F' is clearly order continuous.

3.3.2. Gradient and related mappings

In this subsection, we present several submappings and supermappings which are related to the gradient map-



ping. The components F] of the gradient mapping F' are defined by
1
F/(p) =pi — Egi(p), foralli € N—{d} and p € P. (3.5)

where a is a positive constant. Clearly F’ is continuous since ¢ is continuous. We introduce the following
assumption.

Assumption 3.2. ¢;; is strongly convex with modulus %

It was shown in [Elb96, Theorem 2.2] that under Assumptions 2.1 to 2.4 and Assumption 3.2, there exists a
constant & = 3. max;ec N a;, where a; denotes the degree of node i € N, such that for all p, p’ € P satisfying p' < p,
we have: g(p) — g(p’) < a.(p — p'). Therefore, the gradient mapping F’ is monotone on P if a = 3. max;en a;-
It can also be shown that F” is monotone on a given adequate subset of P’ if ¢;; is strongly convex on an
associated subdomain (see [EIb96]). The reader is referred to [EIb96, p. 195] for the presentation of monotone
scaled gradient mappings F’, with components F; given by F}(p) = p; — ai gi(p), for alli € N —{d} and p € P,
where a; = f.a;.

Proposition 3.2. Let Assumptions 2.1 to 2.4 and 3.2 hold and « = 8. max;cn a;. Then the gradient mapping
F' is an order continuous submapping on P’.

Proof: For all i € N — {d} and p € P’ such that p; < F,(p), we have g;(p) < g:(F;(p);p) = 0, since g; is
monotonically nondecreasing in the i-th coordinate. Therefore it follows from (3.5) that p; < F/(p). It follows
from the monotonicity of F’ on P’, (3.5), and (3.1) that for all i € N — {d} and p € P’ such that p; < F,;(p),

we have
FI(p) < FUE,(0),) = E0) — ~0i(E\(0):7) = E,(p).

Moreover it follows from (3.1) and (3.5) that F)(p) # p;, if F;(p) # p;. Finally, the gradient mapping F" is order

continuous on P’ since F" is continuous on P’.
Q.E.D.
We can analogously show that the gradient mapping F' is also an order continuous supermapping on P”.

Now we extend the class of submappings and supermappings related to the gradient mapping.

’

Proposition 3.3. Let the assumptions of Proposition 3.2 hold. Then the mapping F' defined by: F;(p) = pl,
for all i € N — {d} and p € P, where ¢’ is a given constant and p! = F-’(pg_l;p),q =1,..,¢,p? = p;, is an

3

m-continuous submapping on P’.

Proof: We show that F' is a submapping minorized by the order continuous gradient submapping F’ on P'.



We argue by induction. For ¢’ = 1, the mapping F is the gradient mapping and the proof of Proposition
3.2 referring to the gradient mapping F”, gives the first step of the induction. Assume now that there exists

q,1 < q < ¢, such that for all i € N — {d} and p € P’ with p; < F,;(p), we have
P < . <plmt < pl < Fy(p) and p! # p; if F(p) # pi-
Hence, by the monotonicity of F’ on P’ it follows from (3.1) that
pI™ = Fl(pl;p) > F/(p!™';p) = pf and

1
i = F0lip) < F{(E,(0),p) = Ei(n) = —gi(Ei(p)ip) = E,(p).
Finally, p{*' # p; if F;(p) # p; since p{*' > p? > p; and p{ # p; if F,(p) # pi-
QE.D.

Remark 3.2. Clearly, the same result holds for the mapping F' defined by: Fj(p) = pgl, foralli € N — {d}

and p € P, where p! = Fi’(pg_l;p),q =1,...,¢,p9 = pi, and ¢ is the smaller positive integer such that

gi (pgl ;p)‘ < €, € being a given constant.
We can show analogously that the above mappings F' are m-continuous supermappings on P”.

The concepts of submapping and supermapping are general. Concepts referring to submappings and supermap-
pings have been introduced previously in the context of the solution of nonlinear systems of equations involving
M-functions (see [Mie86]). Clearly these concepts can also be introduced for the solution of minimization

problems with strictly convex separable cost and linear constraints.

3.4. Asynchronous iterative algorithms with flexible communication

It follows from equation (2.6) that only local data, i.e. prices of adjacent nodes, are needed to update a
price. Relaxation or iterative methods associated with a submapping or a supermapping can be implemented
in a distributed way or in parallel. Prices p; of a subset of nodes can be updated concurrently by several
processors. For example prices of nodes that are not directly connected can be updated simultaneously in
the case of relaxation methods. All prices can be updated simultaneously in the case of the gradient method.
These implementations are carried out according to a particular order, moreover they require synchronization.
Since idle time due to synchronization may be nonnegligible, the parallel implementation of the above iterative
methods may be improved by considering procedures whereby computations are carried out concurrently without

any order nor synchronization, namely asynchronous procedures. The restrictions imposed on asynchronous

10



iterative methods are very weak: no component of the iteration vector is abandoned forever and more and
more recent, values of the components have to be used as the computation progresses. For further details about

asynchronous iterative algorithms the reader is referred to [ChM69], [Mie75a], [Bau78], and [BeT89].

Convergence of asynchronous iterative algorithms has been established for many problems (see [Bau78] -
[BeT89], [ChM69] - [Elb91], [Elb94a] - [MiS85b], and [TsB&6] - [UrD90]). Particular attention must be paid
to the Asynchronous Convergence Theorem of Bertsekas (see [Ber83], see also [BeT89, p. 431]). For network
flow problems, Bertsekas and El Baz have shown the convergence of asynchronous relaxation methods under
Assumptions 2.1 to 2.4 (see [BeE87]). Satisfactory convergence properties of asynchronous gradient algorithms

were also shown in [EIb96] using in particular Assumptions 2.1 to 2.3 and 3.2.

The asynchronous model of computation does not allow the communication of the results of intermediate
steps of updating; it can be interesting to communicate both updates and such partial updates to other proces-
sors. So, we propose a new approach to constructing asynchronous iterative algorithms. We introduce the class
of asynchronous iterations with flexible communication. This new class of asynchronous iterative algorithms

was first proposed in [MES94] in the context of M-functions and a-submappings.

Agynchronous iterations with flexible communication are associated here with fixed point mappings which
are submappings or supermappings and present the property of being generated by an iterative process like the

gradient type mappings of Proposition 3.3 and Remark 3.2.

Definition 3.4. An asynchronous iteration with flexible communication associated with an m-continuous
submapping F on P’ and the starting point p(0) € P’, satisfying p(0) < F(p(0)), is a sequence {p(k)} of vectors

of P such that for i € N — {d}:

pi(k) € [F (1 (11 (k) -, P (7, (K))), Fy (01 (71 (K)), .. o (7, (K)))], for all k € T, (3.6)

pi(k) = pi(k — 1), for all k ¢ T",

where F' is an order continuous submapping which minorizes F, T = {0,1,2,...} denotes the set of times at
which the current value of a component of the iteration vector is communicated to an other processor, T¢ is the
subset of times at which the current value of the i-th component of vector p is communicated by a processor to
an other processor, and for all i € N — {d}:

the set T is infinite, (3.7)

0< (k) <k—1 foralljeN—{id}and k€T, &5

11



(k) =k —1, for all k € T, (3.9)

7

7/(k) is monotonically increasing for all j € N — {d}, (3.10)

if {k:} is a sequence of elements of T that tends to infinity, then lim; o 7}(k;) = 400 for all j. (3.11)

We similarly define asynchronous iterative algorithms with flexible communication associated with an m-
continuous supermapping F' on P” and a starting point p(0) € P” such that p(0) > F(p(0)), by substituting

the following expression for (3.6):
pl(k) € [Fi(pl(Tli(k))a '-~7pn(Trl‘L(k)))vFil(pl(Tli(k))a 7pn(TrZL(k)))]v for all k € Tia

pi(k) =pi(k — 1), for all k ¢ T".

According to (3.7) to (3.11) no component of the iteration vector is abandoned for ever, the latest value of p;

is used at each computation of p;, finally more and more recent values are used as the computation progresses.

Asynchronous iterations with flexible communication defined by (3.6) to (3.11) describe general iterative meth-
ods whereby computations are carried out in parallel by up to n — 1 processors without any order nor synchro-
nization. The main feature of this new class of algorithms is flexible communication between processors. In this
new model, the prices p;(k) which are communicated to other processors can correspond to new updates of p;
produced by the submapping F or to the current value of p; produced by only few steps of the iterative process
which generates the submapping F, a restriction being that p; (k) takes value between E!(p; (1§ (k)), ..., pn (7% (K)))
and F;(py(1{(k)), ..., pn (7% (K))). So, the values p;(k) delivered by the algorithm can correspond to updates or
partial updates issued from computations which are in progress. We also note that the values p;(7}(k)) used in

the updating of p; are upperbounded by p;(k — 1), the current value of p; at time k — 1.

The above model describes general asynchronous schemes of computation whereby each processor can have
access to the current state of other processors. So, asynchronous iterations with flexible communication admit
more data exchange between processors than totally asynchronous iterations studied in [ChM69], [Mie75a],
[Bau78], [Ber83], and [BeT89] since the current value of each component of the iteration vector can be com-
municated to other processors at any time and possibly without any fixed rule; we recall that communications
occur only at the end of each updating phase in the totally asynchronous iterative scheme of computation.
We also note that asynchronous iterations with flexible communication are tightly bound to the concepts of
submappings and supermappings which are associated with the generation of monotone sequence of vectors;

this is the reason why the supplementary assumption (3.10), which is dropped in the Asynchronous Convergence

12



Theorem of Bertsekas (see [Ber83], and [BeT89, p. 431]), is needed here and the convergence mechanism of
asynchronous iterations with flexible communication, presented in detail in the Appendix, is different from the
convergence result presented in [Ber83], and [BeT89, p. 431]. The use of the resulting values of intermediary

steps of updating presents a particular interest in this context; intuitively, it can speed up the convergence.

Finally, we note that there are various ways of implementing asynchronous iterations with flexible commu-
nication. In the sequel, we shall briefly quote two ways. The first manner corresponds to the case where each
processor sends a request to other processors upon beginning a new updating and receives their current state
which can correspond to an intermediary step of computation. Another method corresponds to the case where
each processor transmits its current state to other processors according to a given policy. The latter method is

detailed in subsection 4.3.
The following result states the monotone convergence of asynchronous iterations with flexible communication.

Proposition 3.4. Let F' be an m-continuous submapping on P’, p(0) € P’ a starting point such that p(0) <
E(p(0)), and p the minimal optimal solution of the problem. Then, asynchronous iterations with flexible

communication {p(k)} associated with F' and p(0) are well defined and satisfy p(k) T P,k — oo.
Proof: see Appendix.

Remark 3.3. We can analogously show that asynchronous iterative methods with flexible communication
associated with an m-continuous supermapping F on P” converge to the maximal solution of the problem B,

from p(0) € P such that p(0) > F(p(0)).

4. IMPLEMENTATION

The implementation was carried out in parallel C on a T-node 16-32 distributed memory multiprocessor.
The machine consists of a network of 16 to 32 T800 transputers with some local memory. A T800 transputer
is a chip that integrates a processor, a floating point unit, fast memory and four bidirectional communication
links. The processor, floating point unit, and memory make the chip suitable as a building component for
computers. The communication links allow more transputers to be connected into one multiprocessor configu-
ration. Communication is made via direct memory access. Various network topologies can be programmed via
an Inmos C004 crossbar: pipeline, ring, grid, cube... In this study, we consider a pipeline network of processors

with bidirectional links (see Figure 1).

4.1. Synchronous implementation
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In the case of synchronous iterative algorithms, updating and data exchange are made sequentially. Proces-
sors communicate the updates at the end of each updating phase. Communication only occurs with adjacent
processors in the pipeline. Processors are synchronized by message exchange, since communication is synchro-

nized and not bufferised.

4.2, Asynchronous implementation

Since only synchronous communication facilities were provided, we have considered the following implemen-
tation of asynchronous iterations. Two concurrent processes are implemented in parallel on each processor: a
computation process performs updatings and sends the updates to adjacent processors, a buffer process receives
and stores data sent by adjacent processors. The use of the buffer process allows the implementation of asyn-
chronous communications and more generally of asynchronous algorithms. The buffer process which has very
fast elementary subprocesses has a higher level of priority than the computation process which consumes more
time. So, the receipt of data is not delayed. The buffer process is idle while waiting for messages. All the cpu
time is then allocated to the process computation since the scheduler of the T800 transputer is designed so that

idle processes do not consume cpu time.

The approach considered in this study differs from the one considered in [Elb93]; as a matter of fact the
computation and the buffer processes communicate via shared variables rather than via message passing (see
Figure 1). Therefore, the computation process does not send requests to the buffer process. Moreover the
computation process does not wait for a reply. So, the buffer process is fully devoted to the receipt and storage
of external data. Thus message exchanges between processors are improved. We note that the data stored in the
shared variables only correspond to the value of the components of the iteration vector communicated by other
processors. The computation process reads the latest available data in the shared variables at the beginning of

each new updating.

4.3. An implementation of asynchronous iterations with flexible communication

We propose an implementation of asynchronous iterations with flexible communication which presents many
similarities with the implementation of asynchronous iterations given in subsection 4.2: two concurrent processes
run in parallel in each processor: alow level priority computation process and a high level priority buffer process.
The computation and buffer processes communicate via shared variables. In addition to the communications

made in the asynchronous implementation presented in subsection 4.2, the current value of the components of
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the iteration vector is also communicated to other processors when a given number of intermediate steps of the
updating process is reached. More precisely, the submapping of Remark 3.2 is implemented, and the current

value of the components of the iteration vector is sent when ¢ is equal to a given integer.

We illustrate the implementation by an algorithm. In order to simplify the presentation, we consider the

simple case where each processor updates one price.
PARi=1FORn-1
PAR
BUFFER

COMPUTATION(i)
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In the process COMPUTATION(I), the following process updates p; :
read shared variables

q+ 0

pi — (p)

WHILE |gi(p]; p)| > ¢ THEN

1
P p? = Lgi(plip)

q+—q+1
IF ¢ € Q@ THEN communicate the current value of p; (i.e. p?) to adjacent processors

read shared variables

1
Pt p! = Lgi(plip)

communicate the update pf“ to adjacent processors
where @ is a set of given positive integers.

4.3.1. Termination test

The termination test is based on the value of |gq(p1 (7 (k)), ..., pn(72(k)))|; T¢ denotes the infinite subset
of times at which the termination test is performed and we assume that the 7§ (k)) satisfy (3.8), (3.10), and
(3.11). We show that this test can be used to detect the global termination of asynchronous iterations with

flexible communication.

Proposition 4.1. Let Assumptions 2.1 to 2.4 hold and {p(k)} be an asynchronous iterative algorithm with
flexible communication associated with an m-continuous submapping £ on P’ starting from p(0) € P’ such that

p(0) < E(p(0)). Then ga(p(k)) > 0, for all k.

Proof: Tt follows from the proof of Proposition 3.4 that p(k) € P' = {p € P|p < p}, for all k. Therefore for all

(m,d),(d,j) € A, we have

pm(k) —pa(k) <p, —p, and pa(k) —p;(k) = p, —p,,

where pq(k) =p, = 0.

By the monotonically nondecreasing property of Vej;, for all (m, d), (d,j) € A, we have

Vema(pm(k) = pa(k)) < Vepa(p, —p,) and Veg;(pa(k) = pi(k)) = Veg;(p, —p,)-
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It follows from (2.6) that g4(p(k)) > ga(p) = 0, for all k.
QED.

Proposition 4.2. Let the assumptions of Proposition 4.1 hold, € be a positive constant, and assume that there

exists k such that g4(p(k)) < e. Then gqs(p(k")) <e, for all &' > k.

Proof: 1t follows from the proof of Proposition 3.4 that the asynchronous iteration with flexible communication

{p(k)} satifies:

p(k) < p(k'), for all &' > k. (4.1)

By the monotonically nondecreasing property of Vej;, for all (m, d), (d,j) € A, we have

Verna(Pm (k) = pa(k)) < Veqq(pm (k') = pa(k')) and Vg (pa(k) — p;(k)) > Vg, (pa(k') — pi (K)).

Hence, it follows from (2.6) that g4(p(k")) < ga(p(k)) <e, for all k' > k.
QE.D.
The following proposition is the main result of this subsection.

Proposition 4.3. Let the assumptions of Proposition 4.1 hold, € be a positive constant, and assume that there

exists k such that gq(p1(7{(k)), ..., pn(751 (k) <€ Then 30, 4y 19i(p(K))| < e, for all & > k.

Proof: Tt follows from the proof of Proposition 3.4 that g;(p(k)) <0, for all k& and for all i € N — {d}. Moreover

it follows from (2.6) that

ga(p(k)) == > gilp(k)), for all k. (4.2)
iEN—{d}

By the monotonically nondecreasing property of Vej; it follows also from (2.6) that g4 is monotonically

nonincreasing in the j-th coordinate for all j € N — {d}. Therefore, it follows from (3.8) and (4.1) that

9a(p(k)) < ga(pr (71 (K)), ... o (15 (K))), (4.3)

and the result follows from (4.2), (4.3), and Proposition 4.2.
Q.ED.

A similar result can analogously be shown for asynchronous iterative algorithms with flexible communication
associated with an m-continuous supermapping F' on P” starting from p(0) € P” such that p(0) > F(p(0)).
For the nonlinear network flow problem studied in this paper the detection of the global termination of asyn-

chronous iterative algorithms with flexible communication is achieved by using a local condition. A similar
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termination test is used for asynchronous iterations. We note that the termination test is g4(p(k)) < € in the

synchronous case. Finally, we note that the termination test can be computed in parallel with price updating.

5. COMPUTATIONAL RESULTS
5.1. Problems and algorithms
We have considered hydraulic network flow problems with the following cost functions:

14D
b

cij(fij) = |fij

This cost function satisfies Assumptions 2.1 to 2.3 and Assumption 3.2 on a bounded subdomain. We have
taken b = 1.85; this case corresponds to turbulent flow in pipes (see [Bid65], see also [Por69] and [Rhe70]). We

have:

* . 1.85
Ve (pi — pj) = sign(pi —pj) Ipi —pil .

The network topology always corresponds to a grid-like network with low degree nodes (max;ecn a; = 4). The

number of nodes and arcs varies from 48 to 144 and 77 to 237, respectively. For all problems there are three

11

5, 3, and %, respectively and three nonzero traffic outputs which are

nonzero traffic inputs which are equal to

also equal to 3, 5, and %, respectively.
We have considered various sequential iterative methods associated with submappings: the relaxation

method with inexact line search (I) proposed in [ChZ91 p. 876] (see also subsection 3.3.1), a gradient method

(G) (see subsection 3.3.2), and the gradient type method presented in Remark 3.2. The latter method is con-

sidered with different accuracies of the test

gi(pgl;p)‘ <€ ¢ =1073 and € = 1072, respectively; in the sequel
these versions are denoted by T and t, respectively. The stepsize of the gradient and gradient type methods is

0.34. All algorithms terminate when the deficit at node d is less than 0.1.

Parallel synchronous and asynchronous implementations of I, G, T, and t and the asynchronous imple-
mentation with flexible communication of the algorithm t presented in subsection 4.3 were carried out on the
distributed memory architecture; they are denoted by SIx, Alx, SGx, AGx, STx, ATx, Stx, Atx, and Ftx,
respectively, where the first letter (i.e. S, A, or F) corresponds to the type of implementation (which can be
synchronous, asynchronous, or asynchronous with flexible communication, respectively) and x is the number of
processors which is equal to 2, 4, 8, or 16. All parallel algorithms terminate when the deficit at node d is less
than 0.1 (see subsection 4.3.1). Clearly, it follows from (4.2) that the absolute value of the deficit at each node is

small compared with 0.1. In the case of asynchronous gradient type algorithms with flexible communication, the
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current value of the components of the iteration vector is communicated when ¢ = 3. For a given problem, the

starting point is always the same and satisfies p; < F;(p) for all i« € N —{d}. For all problems and algorithms we

balance the number of nodes assigned to the different processors. Task scheduling is made according to static

mode.

5.2. Experimental results

Figure 2 displays the solution times in seconds of I, G, T, and t in function of the number of nodes in the

network. Table 1 gives the solution times in seconds of the different parallel iterative methods for a problem

with 144 nodes and 234 arcs solved by using 16 processors. The speedups of the parallel iterative methods are

reported in Tables 2 to 10 for different problems. The column size gives the number of nodes in the network.

Algorithm

SI16

AT16

SG16

AGI16

ST16

AT16

St16

Atl6

Ft16

time (s)

111.33

107.76

66.35

66.67

100.53

84.99

55.39

52.74

48.59

Table 1 : times of the parallel iterative methods

Algorithm | SI2 | SI4 | SI8 | SI16
Size
48 1.92 | 348 | 6.24
72 1.95 | 3.64 | 6.76
96 1.96 | 3.73 | 7.04 | 12.68
144 197 | 3.81 | 7.33 | 13.64

Table 2 : speedups of synchronous relaxation algorithms with inexact line search

Algorithm | AI2 | AI4 | AI8 | AIl6
Size
48 1.96 | 3.68 | 6.17
72 1.98 | 3.85 | 7.00
96 199 | 391 | 7.34 | 12.45
144 1.99 | 3.95 | 7.68 | 14.09

Table 3 : speedups of asynchronous relaxation algorithms with inexact line search

Algorithm | SG2 | SG4 | SG8 | SG16
Size
48 1.96 | 3.84 | 7.56
72 1.97 | 3.89 | 7.69
96 1.98 | 3.91 | 7.76 | 15.29
144 1.98 | 3.94 | 7.83 | 15.49

Table 4 : speedups of synchronous gradient algorithms
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Algorithm | AG2 | AG4 | AG8 | AG16
Size
48 1.99 | 3.92 | 7.51 -
72 1.99 | 3.95 | 7.70 -
96 1.99 | 3.96 | 7.80 | 15.04
144 1.99 | 3.97 | 7.87 | 15.42

Table 5 : speedups of asynchronous gradient algorithms
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Algorithm | ST2 | ST4 | ST8 | ST16
Size
48 1.82 | 2.97 | 5.08 -
72 1.84 | 3.11 | 5.46 -
96 1.84 | 3.19 | 5.82 | 10.16
144 1.83 | 3.26 | 6.11 | 11.03

Table 6 : speedups of synchronous gradient type algorithms (¢/ = 1073)

Algorithm | AT2 | AT4 | AT8 | AT16
Size
48 1.97 | 3.66 | 5.68 -
72 1.97 | 3.81 | 6.58 -
96 1.96 | 3.82 | 7.05 | 11.24
144 1.94 | 3.80 | 7.34 | 12.97

Table 7 : speedups of asynchronous gradient type algorithms (¢’ = 1073)

Algorithm | St2 | St4 | St8 | St16
Size
48 1.76 | 3.09 | 5.39 -
72 1.76 | 3.23 | 5.87 -
96 1.79 | 3.35 | 6.20 | 10.83
144 1.83 | 3.50 | 6.64 | 12.18

!

Table 8 : speedups of synchronous gradient type algorithms (¢/ = 1072)

Algorithm | At2 | At4 | At8 | Atl6
Size
48 1.83 | 3.36 | 5.5 -
72 1.82 | 3.48 | 6.25 -
96 1.83 | 3.54 | 6.60 | 10.97
144 1.85 | 3.64 | 7.05 | 12.80

Table 9 : speedups of asynchronous gradient type algorithms (¢’ = 1072)

Algorithm | Ft2 | Ftd | Ft8 | Ftl6
Size
48 1.85 | 3.54 | 6.6 -
72 1.85 | 3.57 | 6.75 -
96 1.86 | 3.61 | 6.94 | 13.10
144 1.88 | 3.71 | 7.27 | 13.89

Table 10 : speedups of asynchronous gradient type algorithms with flexible communication (¢/ = 1072)

We have also assigned an unbalanced number of nodes to the different processors for a problem with 120 nodes
and 197 arcs solved by using 16 processors, the times in seconds of the different parallel iterative methods are

reported in Table 11.
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Algorithm | SI16 | AI16 | SG16 | AG16 | ST16 | AT16 | St16 | Atl6 | Ft16
time (s) 80.03 | 67.94 | 46.62 | 40.95 | 75.32 | 56.44 | 41.32 | 34.39 | 31.24

Table 11 : unbalanced case, times of the parallel iterative methods

5.3. Analysis of the computational experience

Figure 2 shows that t was faster than T. Moreover t and G were faster than I. We note in particular that I

requires more computation at each iteration than G.

There was deterministic load balancing in the particular case of parallel gradient algorithms since processors
computed essentially a gradient at each updating and very regular network topologies were considered, i.e. grid-
like networks that can be partitioned and assigned equitably to the different processors. Table 5 shows that
an asynchronous implementation has speeded up very efficiently the gradient method. Asynchronous gradient
algorithms were generally faster than synchronous gradient algorithms for a sufficiently large granularity. The
very good performances of synchronous gradient algorithms reported in Table 4 resulted from the regular
network topologies considered, accordingly idle times due to synchronization were very small. From Table 1
it can be seen that the very good speedups of synchronous and asynchronous gradient algorithms were not

sufficient to render these parallel algorithms faster than all other methods. We recall that G was slower than t.

There was also deterministic load balancing in the case of parallel relaxation algorithms with inexact line
search since each iteration consisted of a single step, processors computed essentially gradients at each updating,
and very regular network topologies were considered. Table 3 shows that an asynchronous implementation has
speeded up very efficiently the relaxation method with inexact line search. Asynchronous implementations
were faster than synchronous implementations for a sufficiently large granularity. The good performances of
synchronous algorithms illustrated in Table 2 were also due to the fact that we have considered essentially very

regular network topologies.

Parallel gradient type algorithms led to nondeterministic load unbalancing since the gradient type mapping
results from an iterative process. Tables 7 and 9 show that an asynchronous implementation has speeded up
efficiently the gradient type method. From Tables 1 and 6 to 9 it can be seen that synchronous gradient type
methods were slower than asynchronous gradient type methods. Idle time due to synchronization was great in
this case since there was nondeterministic load unbalancing. Tables 1, 7, and 9 also show that the speedups of
the asynchronous gradient type methods increased with the accuracy of the line search test. However, the gain

of efficiency was not sufficient to render AT faster than At, since T presented poor performances.
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Agynchronous gradient type methods with flexible communication were faster than all other methods. In
particular St, At, and Ft differed only by the implementation which was synchronous, asynchronous, and
asynchronous with flexible communication, respectively. From Tables 1 and 8 to 10 it can be seen that an
asynchronous implementation with flexible communication of the gradient type method was more efficient than

a synchronous or an asynchronous implementation.

In the unbalanced case, idle time due to synchronization were greater. From Table 11 it can be seen that
the asynchronous gradient type method with flexible communication (Ft) was faster than all other methods in

this case too.

6. CONCLUSIONS

In this paper, we have studied the solution of the dual of a strictly convex network flow problem via a new
class of parallel asynchronous iterative methods: parallel asynchronous iterations with flexible communication.
In this new class of methods, the current value of the components of the iteration vector resulting from interme-
diary steps of updating can be communicated to other processors. We have shown the monotone convergence
of asynchronous iterative algorithms with flexible communication. A preliminary computational experience
using a distributed memory architecture has mainly shown that an asynchronous implementation with flexible

communication is more efficient than a synchronous or totally asynchronous implementation.

7. APPENDIX : PROOF OF PROPOSITION 3.4
A.) We first show by induction that the sequence {p(k)} given by (3.6) to (3.11) is well defined and satisfy:
pi(7i (k) < Ey(p1(1{(K)), ... pa(75,(K))) for all k € T* and i € N — {d},
pi(ri(k)) < p;, forall k € T, je N—{d}, andi e N — {d},
p(0) <. <pk) <p(k+1)<...<p,k=0,1,..
p(k) < E(p(k)),k=0,1,...
gi(p(k)) <0, foralli e N —{d},k=0,1,...
From (3.8), (3.9), and the definition of p(0) we have:
pi(ri(1)), o0 pu (72 (1)) = p(0) < E(p(0)) = E(p1(7{(1)), ..., pu(75(1))) and p(0) < p. (7.1)

Consider i such that 1 € T, it follows from (7.1), (3.6), Definition 3.1, and Remark 3.1 that we have

pi(0) = pi(r/(1)) < p:(1) < p,.

—
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Consider now the case where 1 ¢ T, clearly it follows from (3.6) and the definition of p(0) that

pi(1) =pi(0) < p,. (7.3)
Thus (7.2) and (7.3) imply
p(0) < p(1) <p. (7.4)
By the monotonicity of F, it follows from (7.4) that
F;(p(0)) < Ei(p(1)), foralli € N —{d}. (7.5)
If 1 € T¢, then it follows from (3.6), (7.1), Definition 3.1, and (7.5) that
pi(1) < Fi(p(0)) < E;(p(0)) < E,(p(1)). (7.6)
If 1 ¢ T then it follows from (3.6), (7.1), and (7.5) that
pi(1) = pi(0) < E(p(0)) < E;(p(1)). (7.7)
Thus it follows from (7.6) and (7.7) that
p(1) < E(p(1)). (7.8)

By the monotonically nondecreasing property of g; in the i-th coordinate it follows from (7.8) and (3.1) that
9:(p(1)) < gi(E;(p(1));p(1)) = 0, for all i € N —{d}. (7.9)

The inequalities (7.1), (7.4), (7.8), and (7.9) give the first step of the induction.

Now, assume that for a given k, k > 1, we have for all m satisfying 0 <m <k —1:
pi(ti(m)) < E;(p1 (i (m)), ..., pn (7 (m))) for all m € T%,i € N — {d}, (7.10)

(pl(Tf(m)), ,pn(rfl(m))) <p, forallm e T'andie N — {d},

p(0) <...<p(m—1) <p(m) < ... <p(k—1) <p, (7.11)
p(m) < F(p(m)), (7.12)
gi(p(m)) <0, for all i € N — {d}. (7.13)
It follows from (3.9) that
pi(ti(k)) = pi(k — 1), for all k € T". (7.14)
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From (3.8) to (3.10), and (7.11) it follows that we have

p(0) < (pr(1{(K)), ... pu (7 (K))) < p. (7.15)

We introduce the following notation:

Ti(k) ={t € T'|0 < t < k},
where i € N — {d} and k € N, the set of natural numbers.

If k€ T' and T%(k) = (), then it follows from (3.6) that
pi(k —1) = pi(0). (7.16)
By the monotonicity of F it follows from (7.14), (7.16), (7.1), and (7.15) that

pi(ri (k) = pi(k = 1) = p;(0) < E;(p(0)) < Ei(p1(7i(k)), ., pu (75, ())) and (p1(7i (k)), ..., u(7;,(K))) < p.

(7.17)
If k € T" and T%(k) # 0, then it follows from (3.6) that we have
pi(k =1) =pi(l), (7.18)
where | = max;cri(y) t. It follows from (7.14) and (7.18) that we have
pi(ri (k) = pi(k — 1) = p;(1). (7.19)
Moreover it follows from (3.8) to (3.10) and (7.11) that we have
1 (11 (1)), s Pa (3 (D)) < (P1(T{ (), -y Pa (75, (K))) < p. (7.20)
By the monotonicity of F and Definition 3.1, it follows from (7.19), (3.6), and (7.20) that
pi(ri (k) = pi(1) < Fi(pr(r{(D); s a(5.(D)) < Es(p1 (1{(1)), oo P (T (1)) < (7.21)
Ei(p1(7i (k) s a(ry (K))) and (pi(r{ (K)), ... pa (7, (K))) < p.
It follows from (7.17) and (7.21) that
pi( (k) < Ei(p1(r{(K)), .. pa (7, (K))) and (p1 (11 (K)), ... pu (75, (K))) < p, k€ T". (7.22)

The inequalities (7.22) extend the inequalities (7.10) to rank k.

The relations (7.14), (3.6), (7.22), Definition 3.1, and Remark 3.1 imply that if k¥ € T, then we have

pi(k —1) = pi(7i (k) < pi(k) <p..

—

(7.23)
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Therefore it follows from (7.23), (3.6), and (7.11) that
p(k —1) < p(k) <p. (7.24)
We note that (7.24) extends (7.11) to rank k.
By the monotonicity of F and Definition 3.1, if & € T%, then it follows from (3.6), (3.8) to (3.10), (7.11),
and (7.24) that
pi(k) < Fi(pi(r{(k)), -, (7 (K))) < Ey(pr (1 (K)), ooy pu(75,(K))) < F(p(K)).- (7.25)

Moreover, by the monotonicity of F, if k ¢ T° and T(k) = (), then it follows from (3.6), (7.1), (7.11), and (7.24)

that

pi(k) = pi(k — 1) = pi(0) < E;(p(0)) < E;(p(k)), (7.26)
finally, if k ¢ T% and T*(k) # 0, then it follows from (3.6), (7.12), (7.11), and (7.24) that

pi(k) = pi(k —1) = pi(l) < E;(p(1)) < E;(p(k)), (7.27)

where | = max;cri (g t, So, (7.25) to (7.27) imply

p(k) < E(p(k)). (7.28)
The inequality (7.28) extends (7.12) to rank k.

By the monotonically nondecreasing property of g; in the i-th coordinate, it follows from (7.28) and (3.1)

that
9i(p(k)) < gi(E;(p(k));p(k)) =0, for alli € N — {d}. (7.29)

The inequality (7.29) extends (7.13) to rank k. Thus the induction is complete.

B.) The monotonically increasing sequence {p(k)} is upperbounded by p. Hence {p(k)} is convergent and
there exists p < p such that

p(k) T p,k — oo. (7.30)

Moreover by the continuity of F (see [BeE87]), it follows from (7.30) and (7.28) that F(p(k)) 1+ F(p),k — oo,

and p < F(p).
C.) Now we show that the sequence {p(k)} defined by (3.6) to (3.11) satisfies p(k) T p,k — oo. It follows
from (3.6) that for all & > 1 such that k € T* and T"(k) # (), we have
pi(k = 1) =pi(l), (7.31)
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where

[ = max t. (7.32)
teT (k)
We introduce the sequence {z(m)} such that for all i € N — {d}

z;(2m) = pi(k),m = card(T*(k)),k € T", (7.33)

and

z;(2m — 1) = F/ (pr (1} (k)), ooy pu (75 (K))), m = card(T"(k)),k € T*,m > 1, (7.34)
where F" is the order continuous submapping on P’ which minorizes F. We note that
kli}rglo card(T*(k)) = 400
since T is infinite. Clearly it follows from (7.30) and (7.33) that for all i € N — {d} we have
zi(2m) 1 pi,m — oo. (7.35)
It follows from (7.34), (3.3), (7.14), (3.6), (7.33), (7.31), and (7.32) that for all i € N — {d} and m > 1 we have
zi(2m = 1) = F{(p1({(k)), s o (1, (K))) € [pi(k = 1), pi (k)] = [2:(2m = 2), 2i(2m)]. (7.36)
From (7.35) and (7.36), for all i € N — {d} we have
zi(2m — 1) 1 pi,m — oc. (7.37)
If m = card(T*(k)) — oo, then k — co. It follows from (7.34) and (7.37) that for all i € N — {d} we have
F{(pr(r{(K)), e o (5, (K))) 1 D3, k = 0. (7.38)
From (3.11), and (7.30), for all i € N — {d} we have
(Pr(Ti (), ey P (75, () 1 i, ke = 00 (7.39)
By the order continuity of £, it follows from (7.39) that for all i € N — {d} we have
F{(pr(ri(R)), oo pu(73,(k))) T F{ (), k = o0 (7.40)

Therefore it follows from (7.38) and (7.40) that we have F/(p) = p;, for all i € N — {d}. From Definition 3.1,
F!(p) = p; for all i € N —{d} implies F,(p) = p; for alli € N — {d}, where F is the minimal relaxation mapping

defined by (3.1). Thus, it follows from the definition of p that p = p.
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Q.ED.
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Figure 2: time of I (dashdot), G (dashed), T (dotted), and t (solid).
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