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Markovian growth-fragmentation processes

Jean Bertoin∗

Abstract

Consider a Markov process X on [0,∞) which has only negative jumps and converges as time tends to

infinity a.s. We interpret X(t) as the size of a typical cell at time t, and each jump as a birth event. More

precisely, if ∆X(s) = −y < 0, then s is the birthtime of a daughter cell with size y which then evolves

independently and according to the same dynamics, i.e. giving birth in turn to great-daughters, and so on.

After having constructed rigorously such cell systems as a general branching process, we define growth-

fragmentation processes by considering the family of sizes of cells alive a some fixed time. We introduce

the notion of excessive functions for the latter, whose existence provides a natural sufficient condition for

the non-explosion of the system. We establish a simple criterion for excessiveness in terms of X. The case

when X is self-similar is treated in details, and connexions with self-similar fragmentations and compensated

fragmentations are emphasized.

Key words: Growth-fragmentation, branching process, self-similarity.

Classification: 60F17; 60G51; 60G80.

1 Introduction

The purpose of this work is to construct and study a fairly general family of stochastic processes describing the

random evolution of particles which grow and split in two as time passes, independently of the other particles

in the system. Our initial motivation stems from the study large random planar maps with a boundary, and more

precisely from a weak limit theorem describing the structure of cycles at heights; see [4]. Another motivation

comes from biology where such systems may be used to model a population of cells; see e.g. Doumic et al.

[9] and references therein. Roughly speaking, growth-fragmentation processes can further be viewed as the

stochastic counterparts of growth-fragmentation equations, which have received some attention in the recent

years; see [6, 7, 8], and references therein.

In the pure (i.e. without growth) random fragmentation framework, the point of view which has often been

taken in the literature (see [2] and references therein) consists in constructing first homogeneous versions where

the rate at which particles dislocate does not depend on their sizes. Upon a logarithmic transform, the discrete
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time skeletons of homogeneous fragmentations can be viewed as branching random walks; the latter have been

studied in depth for more than fours decades and yield many useful informations and techniques relevant to

homogeneous fragmentations; see in particular [5]. As a second step, one can then derive more general self-

similar fragmentations from the homogeneous ones, by performing a time-substitution on each particle in a

consistent way.

In order to define rigorously such time-substitutions on every particle, one needs to handle the genealogical

structure of the system, and in this direction, the approach for self-similar fragmentations with binary disloca-

tions which has been developed recently by Pitman and Winkel [14] is very convenient. More precisely, Pitman

and Winkel [14] start from a so-called fragmenter (M(t), t ≥ 0), that is the exponential of the negative of a sub-

ordinator, and consider a particle system which is defined as follows. Imagine that we start at time t = 0 from

a single particle, whose size evolves according to M. Then interpret each (negative) jump of M as a branching

event, in the sense that whenever ∆M(t) ≔ M(t) − M(t−) = −y < 0, a new particle with size y is born at time

t. Assume that the evolution of the daughter particle is governed by the law of the same fragmenter (starting

of course from y), and is independent of the processes of all the other daughter particles. And so on for the

granddaughters, then great-granddaughters ... Then the sizes of the particles alive at time t can be ranked in the

decreasing order and one can check that this yields a general homogeneous fragmentation process with binary

dislocation measure. This construction is well-suited to perform time-changes, as the genealogical structure of

the particle system is explicitly given. However, an obvious drawback is that it makes the handling of quantities

involving all the particles at the same time more involved, as it is given from a genealogical perspective, and

not in the universal time simultaneously for all the particles.

In this paper, we consider a natural generalization of the approach of Pitman and Winkel, in which the

fragmenter M is replaced by a Markov process (X(t), t ≥ 0) with values in [0,∞), which has càdlàg sample

paths and no positive jumps, and converges almost surely as time goes to infinity. We view X as the process of

the size of a typical cell, the jumps of X as division events during which a daughter cell is born and splits from

her mother, and then, putting jumps aside, the continuous evolution of X as a regular growth or decay. Such

cell systems shall thus be thought of as fairly general Markovian growth-fragmentation processes, in which all

dislocations are binary.

The verbal description above can be made rigorous, and we shall first show how cell systems can be con-

structed as a general branching process, see e.g. Jagers [12]. An important point is that this construction is

genealogical (first, the mother, then her daughters, ...), whereas we are rather interested in the system evolving

in time. The possibility of growth for cells then yields difficulties. In particular, the jumps of X may not be

summable (this typically occurs when the sample path of X has infinite variation), and the set of the sizes of all

cells alive at time t may fail to be locally finite, and may even be everywhere dense!

The main purpose of this work is to provide simple conditions in terms of the process (X(t), t ≥ 0) that

ensure that the particle system does not explode locally. In this direction, we study the existence of excessive

functions for the cell system, that is of functions f ∶ (0,∞) → R+ which remain bounded away from 0 on the
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interval (ε,∞) for every ε > 0, and such that for every x > 0 and t ≥ 0,

Ex

⎛
⎝ ∑z∈X(t)

f (z)⎞⎠ ≤ f (x),

where X(t) denotes the family of cells alive at time t, and Ex refers to the mathematical expectation when the

system starts at the initial time from a single cell with size x. Note that if f is an excessive function, then

almost surely, the elements of X(t) can be ranked in the non-increasing order and form a null-sequence. In

that case, the temporal branching property of the growth-fragmentation process holds: given the state of the

system at time t, each cell alive at time t grows and divides according to the Markovian evolution prescribed

by X, independently of the other cells and of the past of the process. We call (X(t), t ≥ 0) a (Markovian)

growth-fragmentation process.

Our first general result provides a simple condition in terms of the cell process X which ensures that a given

function is excessive for the cell-system. We shall then investigate in more details the case when the Markov

process X is self-similar, relying on the fundamental connection between positive self-similar Markov processes

and real-valued Lévy processes due to Lamperti [13]. In particular, we derive an explicit criterion in terms of

the characteristics of the underlying Lévy process for a power function to be excessive for a self-similar growth-

fragmentation process. We shall also relate homogeneous growth-fragmentations to the so-called compensated

fragmentations introduced recently in [3], and obtain a simple criterion for the almost-sure extinction. Finally,

we observe that the families of the logarithms of the initial sizes of cells at each generation form a branching

random walk, whose mean intensity can be computed explicitly. In particular, this entails that self-similar

growth-fragmentation processes for which certain power functions are excessive, have càdlàg paths.

2 Cell systems and growth-fragmentation processes

2.1 Construction of a cell system as a general branching process

For every x > 0, we write Px for the law of a Feller process X = (X(t), t ≥ 0) started from X(0) = x and taking

values in (0,∞) ∪ {∂}, where as usual ∂ denotes a cemetery point. We also write ζ = inf{t ≥ 0 ∶ X(t) = ∂} for

its lifetime, which may of course be infinite. We call X a cell process provided that X has no positive jumps,

i.e. ∆X(t) ∶= X(t) − X(t−) ≤ 0 for all t ∈ (0, ζ), and converges at infinity, i.e. limt→∞ X(t) exists Px-a.s., where

the limit equals ∂ when ζ < ∞ and belongs to [0,∞) otherwise.

We now explain the rigorous construction of a cell system driven by X as a general branching process. We

stress that when the set of jump times of X is discrete, there is a simpler and more direct construction as a

branching Markov process, which presents no difficulty and is also easier to analyze. So our approach in terms

of general branching processes is mainly relevant when the cell process jumps on a dense set of times.

We first introduce the Ulam-Harris tree U = ⋃∞i=0N
i with N = {1,2, . . .} and the convention N0 = {∅}. The

ancestor ∅ is called Eve, and Ni is the set of her great-granddaughters at generation i. A node u ∈ U is thus a
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finite sequence u = (u1, . . . ,ui) of positive integers where i = ∣u∣ is the generation of u, and the children of u are

given by the nodes uk = (u1, . . . ,ui, k) for k ∈ N.

We represent the cell system described informally in the Introduction as a family of processes indexed by

U,

X ≔ (Xu,u ∈ U).
where Xu = (Xu(s), s ≥ 0) is the process of the size of the cell labelled by u, measuring time from its birth, so

that Xu(s) is the size of the cell u at age s. That is X∅ is the process of the size of the Eve cell, which is born

at time b∅ = 0. For every u ∈ U and j ∈ N, the cell labelled u j is born at the instant bu j ≔ bu + βu j, where βu j

denotes the j-th largest jump of the process Xu, and Xu j(s) represents the size of the cell u j at age s, i.e. at time

bu j + s for every s ≥ 0. We implicitly agree that bu j = ∞ and then Xu j(s) ≡ ∂ when Xu has less than j jumps.

Given the size x > 0 at the initial time of Eve, the law Px of the cell system X is described recursively

as follows. Let (X∅(t), t ≥ 0) have the law Px and set b∅ = 0. Given X∅, we write (x1, β1), (x2, β2), . . .
for the sequence of the jump sizes and times of −X∅, i.e. xi = X∅(βi−) − X∅(βi), ranked in the decreasing

lexicographic order (that is either xi = xi+1 and then βi > βi+1, or xi > xi+1). In the case when X∅ has only a

finite number of jumps, say n, then we agree that xi = 0 and βi = ∞ for all i > n. We stress that the assumption

that limt→∞ X(t) exists Px-a.s. ensures that the ranking is well-defined. We then assign to the processes of

the sizes at the first generation, Xi = (Xi(s), s ≥ 0) for i ∈ N, the distribution of a sequence of independent

processes with respective laws Pxi
. We continue in an obvious way for the second generation, conditionally

given generations 0 and 1. That is, typically, the cell u = (u1,u2) is born at time bu = bu1
+ βu2

, where βu2

denotes the instant of the u2-th largest jump of the process Xu1
, and given ∆Xu1

(βu2
) = −y, Xu has the law Py

and is independent of the process of the sizes of the other granddaughters. And so on for the next generations;

we refer to Jagers [12] for the rigorous argument showing that this indeed defines uniquely the law Px. It will

be convenient to agree that P∂ denotes the law of the degenerate process on U such that Xu ≡ ∂ for every u ∈ U,

b∅ = 0 and bu = ∞ for u ≠ ∅. We shall also write Ex for the mathematical expectation under the law Px.

This construction is only a slight modification of that of a general branching process, as in the latter,

daughters are usually enumerated according to their birth-time rather than their sizes. The reason for order-

ing daughter-cells according to their size at birth in our setting, is that when the set of jump times of X is

dense, jump-times cannot be enumerated in the increasing order; however jump sizes can always be listed in

decreasing order. Our construction of the cell system is elementary; however we stress that there is a technical

difficulty when we wish to study the evolution of cell systems as time passes. Specifically, note that in general,

the sigma-field

σ (1bu≤sXu(s − bu) ∶ 0 ≤ s ≤ t , u ∈ U)
generated by the observation of the cells alive up to time t contains information about the future of the cells

after time t. For instance, if b1 ≤ t and X1(0) = x, then we know that X∅ can have no jump of size less than −x

after time t.

In this setting, the branching property of general branching processes can be stated as follows.
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Proposition 1 (Genealogical branching property) For every u ∈ U, write X u = (X u
v , v ∈ U) for the process

such that X u
v = Xuv for every v ∈ U. For every fixed generation i ∈ N, conditionally on (Xv, v ∈ U and ∣v∣ ≤ i),

the processes X u j for u ∈ Ni and j ∈ N are independent. Further, each X u j has the law Py, with y the size of the

j-th largest jump (in absolute value) of the process Xu.

We recall that Jagers [12] showed that this genealogical branching property holds more generally at optional

stopping lines, which can be viewed as a strong branching property. Recall however that deterministic times

cannot be expressed as stopping lines for the system.

2.2 Growth-fragmentation processes and excessive functions

The cell system being constructed, we now define for every t ≥ 0 the cell population at time t as the family of

the sizes of the cells alive at time t, viz.

X(t) = {{Xu(t − bu) ∶ u ∈ U , bu ≤ t < bu + ζu}} ,
where ζu denotes the lifetime of Xu and the notation {{⋯}} refers to multiset (i.e. elements are repeated accord-

ing to their multiplicities). Letting the time parameter t vary, we call the process of cell populations (X(t), t ≥ 0)
a growth-fragmentation process associated to the cell process X.

We denote by Px the law of the process X = (X(t), t ≥ 0) under Px. We stress that the family of laws

(Py)y>0 of the cell process X determines the law Px of the cell system X , and conversely one recovers Px from

Px simply by focusing on the distribution of the process of the size of Eve. However, one cannot recover the

whole cell system X from the growth-fragmentation process (X(t), t ≥ 0) in full generality, because it is not

always possible to retrieve the genealogical structure of X solely from the latter, and in general the law of Px

the growth-fragmentation process does not determine that of the cell process X. See Pitman and Winkel [14]

and Shi [15] for a discussion.

Recall that a function f ∶ (0,∞) → [0,∞) is called excessive for the Markov process X if

Ex( f (X(t))) ≤ f (x) for all t ≥ 0 and x > 0,

with the convention that f (∂) = 0. We shall now introduce a stronger notion for growth-fragmentations, that

will have an important role in our study. Recall first that if I is a family of positive real numbers, i.e. a multiset

in (0,∞), then ∑i∈I f (i) denotes the sum of the f (i) where the elements i of I are repeated according to their

multiplicity. In other words, a multiset I can be viewed as a point measure with atoms at the elements of I,

where the mass of an atom is given by the multiplicity of the element, and ∑i∈I f (i) then denotes the integral

of f against this point measure. In this setting, if (I j ∶ j ∈ J ) is a collection of multisets, then the sum I = ⊎I j

can be identified with the sum of the point measures associated to each I j.

Definition 1 Let f ∶ (0,∞)→ [0,∞) be a measurable function which is bounded away from 0 on semi-infinite
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intervals, viz.

inf
x>a

f (x) > 0 for every a > 0. (1)

We say that f is excessive for the growth-fragmentation process X (or for the cell system X ) if for each t ≥ 0

and x > 0, we have

Ex

⎛
⎝ ∑z∈X(t)

f (z)⎞⎠ ≤ f (x). (2)

We henceforth assume the existence of an excessive function f , and write M f for the space of multisets

I on (0,∞) with ∑i∈I f (i) < ∞. We stress that (1) ensures that every multiset I ∈ M f has only finitely

many elements (counted with their multiplicity) in semi-infinite intervals (a,∞), and hence I can be expressed

uniquely in the form of a non-increasing null sequence, that is I = {{z1, z2, . . .}}; with z1 ≥ z2 ≥ . . . > 0. We

endowM f with the topology of vague convergence for the corresponding point measures, which is equivalent

to simple convergence for non-increasing null sequences. We can now view X(t) as a random variable with

values inM f , and thus a growth-fragmentation as a stochastic process with values inM f .

We next introduce a family of probability kernels onM f as follows. Given a multiset I inM f , consider a

family (ηx, x ∈ I) of independent variables inM f , where each ηx has the law of X(t) under Px. Observe that

the sum of multisets η = ⊎ ηi fulfills

E
⎛
⎝∑z∈η f (z)⎞⎠ =∑x∈I E

⎛
⎝∑z∈ηx

f (z)⎞⎠ ≤∑x∈I f (x) < ∞,

and as a consequence, η is a random multiset inM f . We denote its law by ρt(I, ⋅).
The main observation of this section is that growth-fragmentation processes fulfill the branching process (in

time).

Proposition 2 (Temporal branching property) Suppose that the growth-fragmentation process X possesses

an excessive function f . Then for every s, t ≥ 0 and x > 0, the conditional distribution under Px of X(t + s)
given (X(r),0 ≤ r ≤ s) is ρt(X(s), ⋅).
Proof: Although this temporal branching property should certainly not come as a surprise, providing all the

technical details of the proof would be rather cumbersome, and we shall merely present the main steps.

For every ε > 0, we write X (ε) for the system obtained from X by killing each cell together with its future

descent when its size becomes less than ε. In the obvious notation, X(ε)(t) ⊆ X(t) for every t ≥ 0, and as a

consequence, f is also an excessive function for X(ε), in the sense that (2) holds with X(t) replaced by X(ε)(t).
The point in introducing this killed system is that its temporal evolution can be described as a branching Markov

process. Specifically, starting from a single cell with size x > ε, we let its size evolve until possibly a first jump

of size smaller than −ε occurs (recall also that the cell is killed when its size becomes less than ε, so death may

occur when making this jump). If such a jump occurs, we then create a first daughter cell with size given by
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the (opposite of the) size of the jump. After this first division event, both the mother cell and her first daughter

follow the same evolution independently one of the other, and so on for the next birth events.

We stress that no explosion occurs for X(ε) viewed as a branching process in universal time, since, by

construction, all the cells of X(ε)(t) have size at least ε and can be found amongst the cell population X(t).
Further, we know that X(t) has only finitely many elements larger than ε, Px-a.s. The temporal branching

structure of X(ε) is discrete, in the sense that for each cell in X(ε), the set of times at which this cell begets is

discrete, and one can then check (albeit technical details are somewhat cumbersome) that X(ε)(t) fulfills the

temporal branching property analogous to that in the statement.

To complete the proof, we let ε decrease to 0 and observe that

lim
ε→0+

Ex

⎛⎜⎝ ∑
X(t)/X(ε)(t)

f (z)⎞⎟⎠ = 0. (3)

Indeed, because the cell process X lives in (0,∞), if a cell u ∈ U is alive at time t in the cell system X (i.e.

bu ≤ t < bu + ζu), then its ancestral lineage has a size which remains bounded away from 0 on the time-

interval [0, t]. That is, if for 0 ≤ s ≤ t, we denote by u(s) the youngest ancestor of u alive at time s, then

inf0≤s≤tXu(s)(s − bu(s)) > 0. Therefore, if a cell u ∈ U is alive at time t in the cell system X , then it is also alive

in the system X (ε) for all ε sufficiently small. Our claim now follows from (2) by dominated convergence.

We know from (3) that X(ε)(t) increases to X(t) for each t ≥ 0 when ε ↓ 0, and because for every fixed

a > 0, X(t)∩ (a,∞) is finite a.s., the probability that X(t)∩ (a,∞) = X(ε)(t) ∩ (a,∞) can be made as close to

1 as we wish by choosing ε > 0 sufficiently small. It now follows readily that the temporal branching property

of X(ε) can be transferred to X by letting ε tend to 0. ◻

Corollary 1 Suppose that f is an excessive function for the growth-fragmentation process X. Then the process

⎛
⎝ ∑z∈X(t)

f (z) , t ≥ 0
⎞
⎠

is a supermartingale under Px for every x > 0.

Proof: This follows readily from the temporal branching property and the very definition of excessive functions

for a growth-fragmentation process. ◻

2.3 A criterion for excessiveness

We now state the main result of this section, which provides a simple criterion for the existence of an excessive

function for a growth-fragmentation and is easy to verify in practice.
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Theorem 1 Consider a measurable function f ∶ (0,∞)→ [0,∞) which fulfills (1), and agree that f (∂) = 0. If

for every x > 0 and t > 0, there is the inequality

Ex ( f (X(t)) + ∑
0<s≤t

f (−∆X(s))) ≤ f (x),
then f is excessive for the growth-fragmentation process X.

Remarks. 1. In the pure fragmentation case when the process X has non-increasing sample paths, the identity

function f (x) = x obviously fulfills the condition of the statement since X(t) −∑0<s≤t ∆X(s) = Xc(t), where

Xc denotes the continuous part of X.

2. An application of the Markov property shows easily that the condition on the statement is fulfilled if and

only if the process

f (X(t)) + ∑
0<s≤t

f (−∆X(s)) , t ≥ 0

is a super-martingale under Px for every x > 0. Whether this holds or not for a given cell process X and a given

function f can then be investigated using stochastic calculus (see, e.g. Ether and Kurtz [10] and Jacod and

Shiryaev [11]) in the fairly general situation when X is a semi-martingale and the function f smooth enough.

See also the forthcoming Lemma 2.

Proof: We fix t and consider the chain

Σ(i) = ∑
∣u∣≤i,bu≤t

f (Xu(t − bu)) + ∑
∣v∣=i,bv≤t

∑
s≤t−bv

f (−∆Xv(s)), i = 0,1, . . . ;

we shall check that Σ = (Σ(i), i ≥ 0) is a super-martingale. Then Σ(∞) = limi→∞ Σ(i) exists a.s., with Σ(∞) ≥
∑X(t) f (z). It thus follows from Fatou’s lemma that

Ex

⎛
⎝ ∑z∈X(t)

f (z)⎞⎠ ≤ Ex(Σ(0)) = Ex ( f (X(t)) + ∑
0<s≤t

f (−∆X(s))) ≤ f (x),

where the last inequality derives again from the assumption of the statement.

It thus remains to prove that Σ(i) is indeed a super-martingale. We recall first that for every vertex v ∈ Ni at

generation i ≥ 1, the birth-time bv and initial size Xv(0) of the cell labelled by v are measurable with respect to

(Xv−,bv−), where v− is the mother of v. The assumption of the statement entails that on the event bv ≤ t, the

conditional expectation of

f (Xv(t − bv)) + ∑
0<s≤t−bv

f (−∆Xv(s))
given Fi−1 = σ ((Xu,bu) ∶ ∣u∣ ≤ i − 1), is bounded from above by f (Xv(0)). Recall that (on this event) Xv(0) =
−∆Xv−(bv − bv−) and bv − bv− ≤ t − bv−. Summing over vertices v at generation i, we get that the conditional
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expectation

Ex

⎛
⎝ ∑∣v∣=i,bv≤t

f (Xv(t − bv)) + ∑
∣v∣=i,bv≤t

∑
s≤t−bv

f (−∆Xv(s)) ∣Fi−1

⎞
⎠

is bounded from above by

∑
∣v∣=i,bv≤t

f (Xv(0)) = ∑
∣u∣=i−1,bu≤t

∑
r≤t−bu

f (−∆Xu(r)) .

It thus only remains to add ∑∣u∣≤i−1,bu≤t f (−∆Xu(t − bu)) to both sides, and we get

Ex (Σ(i)∣Fi−1) ≤ Σ(i − 1),
which is the desired super-martingale property. ◻

3 Self-similar growth-fragmentation processes

In this Section, we shall study growth-fragmentation processes when the cell process X is self-similar. We first

provide some fundamental background on self-similar Markov processes and the approach of Lamperti [13] to

the latter, tailored to fit the present framework.

3.1 Lamperti’s representation of self-similar cell processes

Let ξ = (ξ(t), t ≥ 0) denote a real-valued Lévy process which starts from 0, has no positive jumps, and is

possibly killed at some independent exponential time. Its distribution can be characterized by a quadruple

(σ2,b,Λ, k), which we shall refer to as the characteristics of ξ, where σ2 ≥ 0, b ∈ R, k ≥ 0 is the killing rate,

and Λ a measure on (−∞,0), known as the Lévy measure, such that

∫
(−∞,0)

(1 ∧ y2)Λ(dy) <∞.
Specifically, the Lévy-Khintchin formula

Ψ(q)≔ −k +
1

2
σ2q2

+ bq +∫
(−∞,0)

(eqy
− 1 + q(1 − ey))Λ(dy) (4)

defines a convex function Ψ ∶ [0,∞) → R which is known as the Laplace exponent of ξ, and we have

E(exp(qξ(t))) = exp(tΨ(q)) for all t,q ≥ 0,

with the convention that exp(qξ(t)) = 0 when ξ has been killed before time t. In the literature, the Lévy-

Khintchin formula is usually written with q(1− ey) replaced by −qy1y>−1 in the integral, but this is unimportant
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as its only amounts to changing the coefficient of the linear term in Ψ. We further assume that when k = 0, ξ

drifts to −∞, in the sense that limt→∞ ξ(t) = −∞ a.s. It is well-known that the latter is equivalent to assuming

that the right-derivative of Ψ at 0 is negative, Ψ′(0+) ∈ [−∞,0), and in terms of the characteristics of ξ, to

b < ∫(−∞,0)(ey
− 1 − y)Λ(dy).

Then fix α ∈ R and define for every t ≥ 0

τ
(α)
t ∶= inf {u ≥ 0 ∶ ∫

u

0
exp(−αξ(s))ds ≥ t} . (5)

More precisely, τ
(α)
t is always finite when α ≥ 0 and k = 0; however when α < 0 or k > 0, the exponential

integral I(α) ≔ ∫ ∞0 exp(−αξs)ds is finite a.s. and τ
(α)
t =∞ for all t ≥ I(α). For every x > 0, we write Px for the

distribution of the process

X(t) ∶= x exp{ξ (τ(α)txα )} , t ≥ 0

with the convention that X(t) = ∂ if xαt ≥ I(α). Then X = (X(t), t ≥ 0) is both Markovian and self-similar, in

the sense that for every x > 0,

the law of (xX(xαt), t ≥ 0) under P1 is Px. (6)

In the theory of self-similar processes, H ≔ −1/α is known as the Hurst exponent; however in order to remain

coherent with the literature on self-similar fragmentations, we shall rather refer to α the index of self-similarity

(note also that this allows taking α = 0). Of course, X is also a cell process, thanks to the assumptions we made

on the Lévy process ξ. More precisely, X has an infinite lifetime if and only if α ≥ 0 and k = 0, and otherwise

is killed at time x−αI(α) either by reaching continuously the boundary 0 (if k = 0) or by sudden death (if k > 0).

Conversely, any self-similar cell process can be constructed in this way.

We call a cell system X , or a growth-fragmentation process X, self-similar with index α whenever its cell

process X fulfills (6), that is when (X(t), t ≥ 0) is constructed from a Lévy process with no positive jumps ξ and

an index α ∈ R as above; the initial value x > 0 being chosen arbitrarily. We first observe that the self-similarity

property of X propagates to the whole cell system X . Recall that for u ∈ U, bu denotes the birth time of the cell

labelled by u.

Lemma 1 Consider a self-similar cell system X = (Xu,u ∈ U) with index α. Fix x > 0 arbitrary, and define

for every u ∈ U and t ≥ 0, X ′u(t) = xXu(xαt) and b′u = x−αbu. Then the law of ((X ′u,b′u),u ∈ U) under P1 is the

same as the law of ((Xu,bu),u ∈ U) under Px.

Proof: Indeed, the scaling property (6) shows that X ′∅ has the law Px. By construction, the sequence of the

jump sizes and times of X ′∅ are given respectively by X ′j(0) = xX j(0) and b′j = x−αb j for j ∈ N. Applying again

the scaling property (6), we deduce that the distribution of ((X ′u,b′u), ∣u∣ ≤ 1) under P1 is the same as that of

((Xu,bu), ∣u∣ ≤ 1) under Px. The proof is completed by iteration of this argument. ◻
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3.2 A criterion for excessiveness of power functions

Throughout this section, we assume that X is a self-similar growth-fragmentation process with index α, where

the self-similar cell process X is related to the spectrally negative Lévy process ξ with characteristics (σ2,b,Λ)
by the Lamperti’s transformation. We next state the main result of this work, which provides a simple criterion

for a power function to be excessive for a self-similar growth-fragmentation process. This criterion is expressed

in terms of the characteristics of ξ. Introduce first

κ(q) ≔ Ψ(q) +∫
(−∞,0)

(1 − ey)qΛ(dy) , q ∈ R. (7)

Plainly, κ ∶ R+ → (−∞,∞] is also convex, and since the condition ∫(−∞,0)(1 ∧ y2)Λ(dy) < ∞ entails that

∫(−∞,0)(1 − ey)qΛ(dy) <∞ for every q ≥ 2, κ takes finite values on [2,∞).
Theorem 2 Suppose that there exists q > 0 with κ(q) ≤ 0. Then x ↦ xq is excessive for the growth-

fragmentation process X and the following properties hold:

• (Self-similarity) For every x > 0, the distribution of the process (xX(xαt), t ≥ 0) under P1 is the same as

that of (X(t), t ≥ 0) under Px.

• (Branching property) Conditionally on X(t) = {{x1, x2, . . .}}, the process (X(t + s), s ≥ 0) is independent

of (X(r),0 ≤ r ≤ t) and has the same distribution as (⊎X(i)(s), s ≥ 0), where the X(i) are independent

self-similar growth-fragmentations with respective laws Pxi
.

When the assumptions of Theorem 2 hold, the cell population X(t) at time t can of course be ranked in the

non-increasing order; however, we shall refrain to use the notation X1(t) ≥ X2(t) ≥ . . . ≥ 0 for the latter, as

it might induce some confusion with the sizes of cells of the first generation. We conjecture that conversely,

when the hypothesis of Theorem 2 fails, then the cell population explodes locally with positive probability, in

the sense that there is some compact interval I ⊂ (0,∞) such that X(t) has infinitely many elements in I with

positive probability for all for t ≥ 0 sufficiently large.

We now prove the first part of Theorem 2 by checking that the conditions of Theorem 1 are fulfilled.

Lemma 2 For every q ≥ 0 such that κ(q) ≤ 0, the process

Xq(t) + ∑
0<s≤t

∣∆X(s)∣q

is a supermartingale under Px for every x > 0.

Proof: We first establish the statement in the homogeneous case α = 0, i.e. when the cell process X is simply

the exponential of the Lévy process ξ. Recall that the point process of the jumps of ξ is Poisson with intensity
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dtΛ(dy). It follows that the increasing process

∑
0<s≤t

∣∆X(s)∣q = ∑
0<s≤t

exp(qξ(s−))(1 − exp(∆ξ(s)))q

has predictable compensator

(∫
(−∞,0)

(1 − ey)qΛ(dy))∫ t

0
exp(qξ(s))ds.

On the other hand, it is well-known that

exp(qξ(t)) −Ψ(q)∫ t

0
exp(qξ(s))ds

is a martingale. Merging these two observations, we deduce that that

Xq(t) + ∑
0<s≤t

∣∆X(s)∣q − κ(q)∫ t

0
X(s)qds

is a martingale, and our claim provided since κ(q) ≤ 0.

To complete the proof for an arbitrary index of self-similarity α ∈ R, it suffices to observe that if f fulfills

the condition of Theorem 1 for some cell process X, then the optional sampling property of nonnegative super-

martingales entails that f also fulfills that condition for any Markov process Y which is obtained from X by a

bijective time-substitution. Since a self-similar cell process X with index α is constructed from the exponential

of a Lévy process ξ by Lamperti’s time-substitution, the proof is complete. ◻

The branching property stated in Theorem 2 follows immediately from Proposition 2. In turn, self-similarity

derives from Lemma 1. Specifically, using the notation there, the multiset

X′(t)≔ {{X′u(t − b′u) ∶ u ∈ U , b′u ≤ t < b′u + ζ
′
u}}

can be expressed as

X′(t) = {{xXu(xα(t − x−αbu)) ∶ u ∈ U , x−αbu ≤ t < x−α(bu + ζu)}}
= {{xXu(xαt − bu) ∶ u ∈ U , bu ≤ xαt < bu + ζu}}
= xX(xαt),

which entails the claim.

3.3 Self-similar growth-fragmentations and compensated fragmentations

We say that a self-similar cell process is homogeneous if it has index α = 0, that is when it given in the form

X(t) = x exp(ξ(t)), with ξ a (possibly killed) spectrally negative Lévy process. The associated cell process
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and growth-fragmentation are then also called homogeneous. We start by connecting homogeneous growth-

fragmentations to another family of fragmentation type processes, namely compensated fragmentations, that

have been recently introduced in [3]. The distribution of a compensated fragmentation is characterized by three

parameters: a Gaussian coefficient σ2 ≥ 0, a growth rate coefficient b ∈ R, and a dislocation measure ν. The

latter is a measure on the space of mass-partitions

P = {p = (p1, p2, . . .) ∶ p1 ≥ p2 ≥ ⋯ ≥ 0 and
∞

∑
1

pi ≤ 1} ;

roughly speaking, ν describes the rates at which a particle splits into smaller fragments. The necessary and

sufficient condition for a measure ν on P to be the dislocation measure of a compensated fragmentation is

∫
P

(1 − p1)2ν(dp) <∞.
We refer to [3] for background.

We further say that a mass-partition p = (p1, p2, . . .) is binary if p2 > 0 and p1+ p2 = 1 (then pi = 0 for i ≥ 3),

and write P2 for the sub-space of binary mass-partitions. For the sake of simplicity, we identify a binary mass

partition p = (p1,1 − p1,0 . . .) with the pair (p1,1 − p1). We also write 0 = (0, . . .) for the null mass-partition

and recall that k denotes the killing rate of ξ. We now claim the following.

Proposition 3 Suppose that the Lévy measure Λ of the spectrally negative Lévy process ξ has support in

[− ln 2,0], and write ν2 for the measure on the space of binary partitions P2, which is defined as the im-

age of Λ by the map x ↦ (ex,1 − ex). Then the homogeneous growth-fragmentation process (X(t), t ≥ 0)
associated to the cell process X(t) = exp(ξ(t)) is a compensated fragmentation with characteristics (σ2,b, ν),
where ν = ν2 + kδ0.

Proof: Observe first that

∫
P

(1 − p1)2ν(dp) = ∫
[− ln 2,0)

(1 − ex)2Λ(dx) ≤ ∫
[− ln 2,0)

x2
Λ(dx) <∞ ,

so ν is the dislocation measure of a compensated fragmentation, say Z = (Z(t), t ≥ 0) with characteristics

(σ2,b, ν); see Definition 3 in [3]. That is, the point-measure valued process

L(t)≔ ∞

∑
i=1

δln Zi(t) , t ≥ 0

is a branching Lévy process with characteristics (σ2,b, µ), in the sense of Definition 2 of [3], where µ is the

image of ν by the map p ↦ ln p. Equivalently, µ is the image of Λ by the map x ↦ (x, ln(1 − ex)). Roughly

speaking, this implies that the atoms of L = (L(t), t ≥ 0) form a particle system in which each particle, say

located at z ∈ R, dies and is replaced by a pair of atoms located at z + x1 and z + x2 at rate µ(dx) where

x = (x1, x2).
13



Next, for every c ≥ 0, denote by L[c] = (L[c](t), t ≥ 0) particle system obtained from L = (L(t), t ≥ 0) by

suppressing for each branching event of the type z ↦ (z + x1, z + x2), the second child z + x2 whenever x2 ≤ −c

(see Definition 2 and Equation(19) in [3] for a precise construction). According to Lemma 3 in [3], L[c] is

again a branching Lévy process with characteristics (σ2,b, µ[c]) in the sense of Definition 1 of [3], where µ[c]

is the image of µ by the map (x1, x2)↦ (x1, x
[c]
2 ), with x[c] = x2 if x2 > −c, and x[c] = −∞ if x2 ≤ −c.

For c = 0, L[0](t) has a single atom located at ξ∗(t), which is referred to as the selected atom. According

to Corollary 1 in [3], the process of the selected atom ξ∗ is a spectrally negative Lévy process with Laplace

exponent Ψ∗ given by

Ψ∗(q) = 1

2
σ2q2

+ bq + ∫
P

(pq
1 − 1 + q(1 − p1))ν(dp)

= k +
1

2
σ2q2

+ bq +∫
P2

(pq
1 − 1 + q(1 − p1))ν2(dp).

It is immediately seen that Ψ∗ = Ψ, and thus the selected atom has the same distribution as ξ.

For every c ≥ 0, the branching Lévy process L[c] has a discrete genealogical structure, and since x2 =

ln(1 − ex1) for µ-almost every x = (x1, x2), Definition 1 and Lemma 3 of [3] entail that its evolution can be

described as follows. The system starts with an atom at the origin, which evolves according to the law of the

distinguished fragment ξ∗. At the first instant τ when this atom has a jump of size y < ln(1 − e−c), that is such

that ln(1−ey) > −c, a new particle is born at location ξ∗(τ−)+ ln(1−ey). After this first birth event, the mother

and the daughter particles evolve independently one of the other, according to the same dynamics as ξ∗, until

the first instant when one of those two particles has another jump of size a jump of size less than ln(1 − e−c).
Then a third particle is born, etc. Thus, if we map the atoms of L[c] into (0,∞) by the exponential function

z ↦ ez, we obtain the following particle system. The exponential of the selected atom is viewed as the size of

Eve cell, it size thus evolves according to the process X∅ = exp(ξ∗). Each time τ when the size of the Eve cell

has a jump with X∅(τ) < (1− e−c)X∅(τ−), that is equivalently, when ξ∗(τ)− ξ∗(τ−) < ln(1− e−c), a daughter

cell with size X∅(τ−) − X∅(τ) is born. Daughter cells evolve independently one of the other, again with the

same random transitions as X∅ = exp(ξ∗), and in turn give birth to grand-daughter cells each time their sizes

drop suddenly by factor smaller than 1 − e−c, and so on and so forth.

So, the image by the exponential function of the atoms of L[c] have the same dynamics as a cell system

associated to the cell process X = exp(ξ) in which each daughter cell u j (together with its descent) for u ∈

U and j ∈ N is killed whenever her size at birth is less than or equal to e−c times the size of her mother

immediately before the birth event, i.e. whenever Xu j(0) < e−cXu(bu j−). Letting c increase to∞, we conclude

by monotonicity (see Definitions 2 and 3 in [3]) that the compensated fragmentation Z has the same law as the

growth-fragmentation process X. ◻

Remark. So we have now two constructions of compensated fragmentations with binary dislocation measures.

That in [3] takes essentially the point of view of branching random walk and Lévy processes, it is given in phys-

ical time. The present one is described in terms of cell processes associated to the exponential of a spectrally

negative Lévy process, and adopts the setting of Crump-Mode-Jagers branching processes for the genealogy.
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The present construction is simpler to make, nonetheless the one in [3] is probably better suited to the analysis.

An important feature is that, as we already mentioned, the distribution of a compensated fragmentation is de-

termined uniquely by the characteristics (σ2,b, ν); however different spectrally negative Lévy processes may

generate the same compensated fragmentation process (cf. Shi [15]). We also point out that the construction in

[3] does not require dislocations to be binary, nor X to converge.

We next make the easy observation that Lamperti’s transformation for the self-similar cell process can be

shifted to the entire cell system. Specifically, consider a homogeneous cell process given in the form X(0)(t) =
x exp(ξ(t)), with ξ a spectrally negative Lévy process. Then let X (0) = (X (0)u ,u ∈ U) be a (homogeneous) cell

system based on X(0), and for each u ∈ U, define the Lamperti transforms

X (α)u (t)≔ X (0)u (T (α)u (t)) ,
where

T
(α)
u (t) ∶= inf {r ≥ 0 ∶ ∫

r

0
(X (0)u (s))−αds ≥ t} .

Corollary 2 The process X (α) = (X (α)u ,u ∈ U) is a cell system based on the self-similar cell process

X(α)(t) = x exp{ξ (τ(α)txα )} ,
where τ(α) is defined in (5) .

It is a special case of Proposition 3 that when ξ is the negative of a subordinator, then the cell population

process X(0) associated to the cell system X (0) can be viewed as a homogeneous fragmentation process with a

binary conservative dislocation measure. See Pitman and Winkel [14], who investigate in particular the family

of subordinators which give rise to the same homogeneous fragmentation. In this framework, Corollary 2

essentially rephrases the connexion between self-similar fragmentations with the same dislocation measure and

distinct indices of self-similarity which is stated as Theorem 3.3 in [2].

We now conclude this section with an extinction property of self-similar growth-fragmentations with a

negative index, which extends the well-known one in the case of pure fragmentation (see, e.g. Section 1.3 in

[2]).

Corollary 3 Assume that the cell process X is self-similar with index α < 0 and that κ(q) < 0 for some q ≥ 0.

Then the extinction time

inf{t ≥ 0 ∶ X(t) = ∅}
is finite Px-a.s. for every x > 0.

Proof: Consider the homogeneous cell process X(0) = exp(ξ) and let X (0) = (X (0)u ,u ∈ U) denote the

corresponding cell-system. We define the self-similar cell-system X (α) = (X (α)u ,u ∈ U) as in Corollary 2.
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For every u ∈ U and γ = 0, α, we write b
(γ)
u for the birth-time of the cell labelled by u in X (γ), and by

ζ
(γ)
u ≔ inf{t ≥ 0 ∶ X (γ)u (t) = 0} for its lifetime. We have to check that

sup
u∈U

(b(α)u + ζ
(α)
u ) <∞, almost surely. (8)

For every u = (u1, . . . ,u j) ∈ U and t ≥ 0, we define u(γ)(t) as the youngest ancestor of the cell u in the

system X (γ) which is alive at time t. That is u(γ)(t) = u whenever t ≥ b
(γ)
u and u(γ)(t) = (u1, . . . ,ui−1) if

b
(γ)

(u1 ,...,ui−1)
≤ t < b

(γ)

(u1 ,...,ui)
for some i = 1, . . . , j. We then define the path

Y(γ)u (t) = X (γ)u(γ)(t)
(t − b

(γ)

u(γ)(t)
) , t ≥ 0

which is obtained by the concatenation of the portions of paths of the ancestors of u. Plainly, we have

inf{t ≥ 0 ∶ Y(α)u (t) = ∂} = b
(α)
u + ζ

(α)
u ,

and on the other hand, Corollary 2 entails that Y(α)u and Y(0)u are related by the Lamperti transformation. In

particular, the lifetime of Y(α)u can also be expressed as

inf{t ≥∶ Y(α)u (t) = ∂} = ∫ ∞

0
(Y(0)u (t)))−α dt.

On the other hand, we deduce from Corollary 3 in [3] and Proposition 3 that the process

exp(−κ(q)t)∑
u∈U

(X(0)u (t))q , t ≥ 0

is a martingale (as a matter of fact, Corollary 3 in [3] assumes q ≥ 2, but the argument works as well for q > 0

provided that κ(q) < ∞). As a consequence, if X
(0)
∗ (t) denotes the size of the largest cell in the population

X(0)(t)
ω≔ sup{exp(−tκ(q)/q)X(0)∗ (t), t ≥ 0} <∞ a.s.

Since Y(0)u (t) ≤ X
(0)
∗ (t), we conclude that for all u ∈ U,

b
(α)
u + ζ

(α)
u ≤ ω−α∫

∞

0
exp(−tακ(q)/q)dt <∞ a.s.

Since α < 0 and κ(q) < 0, the right-hand side is a.s. finite, which establishes (8). ◻

3.4 The genealogical branching random walk and some applications

In Section 2.1, we have seen that the genealogy of cell systems is described by a general branching process. In

this final Section, we start by observing that in the self-similar case, we can view process of the families of the

logarithm of the sizes of cells at birth, indexed by generations, as a branching random walk. Specifically, for
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every integer n ≥ 0, introduce

Z(n) ≔ {{lnXu(0) ∶ u ∈ Nn}} .
The self-similarity property of the cell process entails that for every x > 0, the distribution of Z(1) under Px

is the same as that of ln x + Z(1) under P1, and then the genealogical branching property (cf. Proposition 1)

readily yields that the process (Z(n) ∶ n ≥ 0) is a branching random walk. In words, (Z(n) ∶ n ≥ 0) is a

Markov chain such that the conditional distribution of Z(n + 1) given Z(n) is the law of the random multi-set

⊎z∈Z(n)(z + Z̄z) which is obtained by replacing each element z of Z(n) by z + Z̄z, where each Z̄z denotes an

independent copy of Z(1) under P1. In the rest of this section, we shall implicitly rule out the degenerate case

when the cell process X is continuous a.s.

We point out that the mean Laplace transform of Z(1),

m(q) ≔ E1

⎛
⎝ ∑z∈Z(1)

exp(qz)⎞⎠ , q > 0,

can be computed explicitly in terms of the Laplace exponent Ψ of the underlying Lévy process ξ, which is given

by (4), and the function κ, which has been defined in (7).

Lemma 3 For every q > 0, one has

m(q) = ⎧⎪⎪⎨⎪⎪⎩
1 − κ(q)/ψ(q) if Ψ(q) < 0,

∞ otherwise.

As a consequence, m(q) < 1 if and only if κ(q) < 0, and then

E1 (∑
u∈U

X q
u (0)) = ψ(q)

κ(q) <∞.

Proof: Because cell systems corresponding to self-similar cell processes having the same underlying Lévy

process ξ are related one to the other by Lamperti’s time substitution (see Corollary 2), and because such a time

substitution does not modify neither the genealogy of cells nor their sizes at birth, we may assume without loss

of generality that the index of self-similarity is α = 0. In this setting the cell process is X(t) = exp(ξ(t)) and

we have therefore

E1

⎛
⎝ ∑z∈Z(1)

exp(qz)⎞⎠ = E (∑
t≥0

exp(qξ(t−))(1 − exp(∆ξ(t))q) .
Classical arguments based on the Lévy-Itô decomposition of Lévy processes and the compensation formula for

Poissonian integrals show that the right-hand side equals

E (∫ ∞

0
exp(qξ(t))dt)∫

R−

(1 − ex)qΛ(dx),
where Λ denotes the Lévy measure of the underlying Lévy process ξ. This quantity is finite if and only if
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Ψ(q) < 0 and is then given by

−
1

Ψ(q) ∫R−(1 − ex)qΛ(dx).
The formula for m(q) in the statement then follows from the definition (7) of κ by substitution.

Assume now that κ(q) < 0 for some q > 0. The definition (7) shows that Ψ(q) < κ(q) < 0, so that m(q) < 1

by the first part, and the conserve is immediate.The fact that (Z(n) ∶ n ≥ 0) is a branching random walk entails

that the mean Laplace transform of Z(n) is

E1

⎛
⎝ ∑z∈Z(n)

exp(qz)⎞⎠ = m(q)n

and thus

E1 (∑
u∈U

X q
u (0)) = E1

⎛
⎝
∞

∑
n=0

∑
z∈Z(n)

exp(qz)⎞⎠ =
1

1 −m(q) =
ψ(q)
κ(q) .

◻

We next point at the following reinforcement of Lemma 3. Introduce the maximal size of each cell

X ∗u ≔ sup
t≥0

Xu(t), u ∈ U.

We also write L
q
U

for the space of q-summable families indexed by U, endowed with the usual norm.

Corollary 4 Suppose that there exists q > 0 with κ(q) < 0. Then we have

E1 (∑
u∈U

(X ∗u )q) <∞.

As a consequence, the process X = (X(t), t ≥ 0) has càdlàg paths in L
q
U

, a.s.

Remark. Because for any q′ > q, convergence in L
q
U

implies convergence in L
q′

U
, X is thus also càdlàg in

L
q′

U
.

Proof: We first recall that supt≥0 ξ(t) has the exponential distribution with parameter ̺, where ̺ > 0 is the

strictly positive solution to Ψ(q) = 0; see for instance Corollary VII.2(ii) in [1]. Therefore, for every r ∈ (0, ̺),
we have

E1 ((X ∗u )r) = ̺

̺ − r
E1 ((Xu(0))r) .

Let now q > 0 with κ(q) < 0. Since Ψ remains nonnegative on [̺,∞) and κ ≥ Ψ, we see that q < ̺, and we

conclude from Lemma 3 that

E1 (∑
u∈U

(X ∗u )q) = ̺

̺ − q
E1 (∑

u∈U

X q
u (0)) <∞.
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Then, consider a sequence (Un ∶ n ∈ N) of finite subsets of U with Un ⊆ Un+1 and ⋃n∈NUn = U. Because

each cell process Xu has càdlàg paths and Un is finite, the process t ↦ (1Un(u)Xu(t) ∶ u ∈ U) has also càdlàg

paths in L
q
U

, a.s. We deduce from the first part that

lim
n→∞
E1

⎛
⎝ ∑u∈U/Un

(X ∗u )q⎞⎠ = 0

and it follows easily that (X(t), t ≥ 0) has càdlàg paths in L
q
U

, a.s. ◻
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