L. Ambrosio and A. Figalli, On the regularity of the pressure eld of Brenier's weak solutions to incompressible Euler equations. Calculus of Variations and Partial Dierential Equations, 2007.

[. Aurenhammer, B. Homann, and . Aronov, Minkowski-Type Theorems and Least-Squares Clustering, Algorithmica, vol.20, issue.1, 1998.
DOI : 10.1007/PL00009187

V. Arnold, Sur la géométrie diérentielle des groupes de Lie de dimension innie et ses applications à l'hydrodynamique des uides parfaits, 1966.
DOI : 10.5802/aif.233

URL : http://archive.numdam.org/article/AIF_1966__16_1_319_0.pdf

J. Benamou, Y. Brenier, and K. Guittet, The Monge-Kantorovitch mass transfer and its computational uid mechanics formulation, International Journal for Numerical Methods in Fluids, 2002.
DOI : 10.1002/fld.264

[. Benamou, F. Collino, and J. Mirebeau, Monotone and Consistent discretization of the Monge-Ampere operator (Preprint). arXiv.org, 2014.

J. Benamou, G. Carlier, E. Merigot, . Benamou, D. Brittany et al., Discretization of functionals involving the Monge-Ampère operator. arXiv.org Numerical solution of the Optimal Transportation problem using the MongeAmpère equation, Journal of Computational Physics, 2014.

M. Bernot, A. Figalli, and F. Santambrogio, Generalized solutions for the Euler equations in one and two dimensions, Journal de Math??matiques Pures et Appliqu??es, vol.91, issue.2, 2009.
DOI : 10.1016/j.matpur.2008.09.011

URL : https://hal.archives-ouvertes.fr/hal-00284725

H. Richard, P. Byrd, J. Lu, C. Nocedal, and . Zhu, A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientic Computing, vol.16, issue.5, p.11901208, 1995.

Y. Brenier, The least action principle and the related concept of generalized ows for incompressible perfect uids, Journal, 1989.

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, vol.117, issue.4, 1991.
DOI : 10.1002/cpa.3160440402

. Cgal, Computational Geometry Algorithms Library

A. Earl, N. Coddington, and . Levinson, Theory of ordinary dierential equations

[. Cuturi, G. Peyré, and A. Rolet, A Smoothed Dual Approach for Variational Wasserstein Problems. arXiv.org, 2015.
DOI : 10.1137/15m1032600

URL : https://hal.archives-ouvertes.fr/hal-01188954

L. Euler, Opera Omnia, 1765.

A. Figalli and S. Daneri, Variational models for the incompressible Euler equations, HCDTE Lecture Notes, Part II, 2012.

B. Lévy, A numerical algorithm for L 2 semi-discrete optimal transport in 3D. arXiv.org, 2014.

Q. Merigot, A Multiscale Approach to Optimal Transport, Computer Graphics Forum, vol.40, issue.2, 2011.
DOI : 10.1111/j.1467-8659.2011.02032.x

URL : https://hal.archives-ouvertes.fr/hal-00604684

[. Oberman and Y. Ruan, An ecient linear programming method for Optimal Transportation. arXiv.org, 2015.

[. Papadakis, G. Peyré, and E. Oudet, Optimal Transport with Proximal Splitting, SIAM Journal on Imaging Sciences, vol.7, issue.1
DOI : 10.1137/130920058

URL : https://hal.archives-ouvertes.fr/hal-00816211

]. Shn94 and . Shnirelman, Generalized uid ows, their approximation and applications. Geometric and Functional Analysis, 1994.