Chasing the Weakest Failure Detector for k-Set Agreement in Message-Passing Systems
Achour Mostefaoui, Michel Raynal, Julien Stainer

To cite this version:

HAL Id: hal-01151291
https://hal.archives-ouvertes.fr/hal-01151291
Submitted on 12 May 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Chasing the Weakest Failure Detector for k-Set Agreement in Message-passing Systems

Achour Mostefaoui
Université de Nantes, France
achour.mostefaoui@univ-nantes.fr

Michel Raynal, Julien Stainer
Université de Rennes 1, France
{raynal|jstainer}@irisa.fr

Abstract—This paper continues our quest for the weakest failure detector which allows the k-set agreement problem to be solved in asynchronous message-passing systems prone to process failures. It has two main contributions which will be instrumental to complete this quest.

The first contribution is a new failure detector (denoted $\Pi \Sigma_{x,y}$) that has several noteworthy properties. (a) It is stronger than Σ_x which has been shown to be necessary. (b) It is equivalent to the pair (Σ, Ω) when $x = y = 1$ (optimal to solve consensus). (c) It is equivalent to the pair $(\Sigma_{n-1}, \Omega_{n-1})$ when $x = y = n-1$ (optimal for $(n-1)$-set agreement). (d) It is strictly weaker than the pair (Σ_x, Ω_y) (which has been investigated in previous works). (e) It is operational: the paper presents a $\Pi \Sigma_{x,y}$-based algorithm that solves k-set agreement for $k \geq xy$ (intuitively, x refers to the maximum number of isolated groups of processes and y to the number of leaders in each of these groups).

The second contribution of the paper is a proof that, for $1 < k < n-1$, the eventual leaders failure detector Ω_k (which eventually provides each process with the same set of process identities, this set including at least one correct process) is not necessary to solve k-set agreement problem.

Index Terms—Asynchronous distributed system, Eventual leader, Failure detector, Fault tolerance, Quorum.

I. INTRODUCTION

a) The k-set agreement problem: This problem is a natural generalization of the consensus problem. It is a coordination problem (also called decision problem) introduced by S. Chaudhuri [10] to explore the relation linking the number of process failures and the minimal number of values that processes are allowed to decide. This problem can be defined as follows [10]. Each process proposes a value and every non-faulty process has to decide a value (termination), in such a way that a decided value is a proposed value (validity) and no more than k different values are decided (agreement). The problem parameter k defines the coordination degree: $k = 1$ corresponds to its most constrained instance (consensus) while $k = n - 1$ corresponds to its weakest non-trivial instance (called set agreement).

Let t be the model parameter that defines the upper bound on the number of processes that may crash in a run, $0 \leq t < n$. If $t < k$, k-set agreement can be trivially solved in both synchronous and asynchronous systems: k predetermined processes broadcast (write in the shared memory) the values they propose and a process decides the first proposed value it receives (reads from the shared memory). Hence, the interesting setting is when $t \geq k$, i.e., when the number of values that can be decided is smaller or equal to the maximal number of processes that may crash in a run.

Round-based algorithms that solve the k-set agreement problem for $k \leq t < n$ in crash-prone synchronous message-passing systems are presented in [2, 18]. These algorithms are optimal in the sense that the processes decide in at most $\left(\frac{n}{k}\right) + 1$ rounds which has been shown to be a lower bound on the number of rounds for a process to decide. For asynchronous systems where the processes communicate by reading/writing a shared memory or sending/receiving messages, the situation is different, namely, when $t \geq k$, the k-set agreement problem has no solution [6, 16, 25].

b) Failure detectors: Let us observe that in an asynchronous system where the only means for processes to communicate is a read/write shared memory or send/receive message-passing network, no process is able to know if another process has crashed or is only very slow. The concept of a failure detector originates from this simple observation. A failure detector is a device (distributed oracle) that enriches a distributed system by providing alive processes with information on failures they provide to processes.

Given a system model \mathcal{M} (e.g., asynchronous read/write shared memory system model or asynchronous send/receive message-passing system model) a failure detector A is stronger than a failure detector B with respect to \mathcal{M} (denoted $A \succeq_{\mathcal{M}} B$ or $B \preceq_{\mathcal{M}} A$) if there is an algorithm (called reduction) that builds B in \mathcal{M} enriched with A (we then also say that B is weaker than A). If A is stronger than B and B is stronger than A, then A and B are equivalent with respect to \mathcal{M} (denoted $A \simeq_{\mathcal{M}} B$). If $A \succeq_{\mathcal{M}} B$ and $B \preceq_{\mathcal{M}} A$ then A is strictly stronger than B (equivalently B is strictly weaker than A) (denoted $A \succ_{\mathcal{M}} B$ or $B \prec_{\mathcal{M}} A$). If $A \preceq_{\mathcal{M}} B$ and $B \preceq_{\mathcal{M}} A$ (denoted $A \preceq_{\mathcal{M}} B$, A and B cannot be compared in \mathcal{M}.

Failure detectors, to circumvent the “$t \geq k$” impossibility result associated with the k-set agreement problem in asynchronous systems, have been investigated since 2000 [19]. (Random oracles to solve the k-set agreement problem have also been investigated [20].) The question of the weakest failure detector to solve the k-set agreement problem ($k > 1$) has been stated first in [24]. A failure detector A is the weakest failure detector that allows a problem P to be solved in a model \mathcal{M} if any failure detector B that allows P to be solved
in \mathcal{M} is such that $B \succeq_\mathcal{M} A$.

c) The weakest failure detector for k-set agreement in shared memory systems where $t = n - 1$: The eventual leader failure detector Ω introduced in [9] is the weakest failure detector that allows consensus (i.e., 1-set agreement) to be solved in shared memory systems where any number of processes may crash [17]. Ω ensures that there is an unknown but finite time after which all the processes have the same non-faulty leader (before that time, there is an anarchy period during which each process can have an arbitrarily changing faulty or non-faulty leader). At the other end of the spectrum ($k = n - 1$), the failure detector Ω_{n-1} (anti-omega) has been introduced in [26] where it is shown to be the weakest failure detector that allows $(n-1)$-set agreement to be solved in these systems.

A simple generalization of Ω and Ω_{n-1} denoted Ω_k, $1 \leq k \leq n - 1$, (Ω_1 is Ω) has been introduced in [23] where it is conjectured to be the weakest failure detector class for solving k-set agreement in asynchronous read/write shared memory systems. This conjecture has been proved in [14]. A failure detector of the class Ω_k provides each process with a (possibly always changing) set of k processes such that, after some unknown but finite time, all the sets that are output have in common the same non-faulty process. The optimality of Ω_k to solve k-set agreement in shared memory systems seems to be related to the fact that this problem is equivalent to the k-simultaneous consensus problem [1] in which each process executes k independent consensus instances (to which it proposes the same input value) and is required to terminate in one of them. As indicated in [26], this problem has been instrumental in determining the weakest failure detector for wait-free solving the $(n-1)$-set agreement problem in asynchronous shared memory systems.

d) The cases $k = 1$ and $k = n - 1$ in message-passing systems where $t = n - 1$: When $k = 1$, as already indicated k-set agreement boils down to consensus, and it is known that the failure detector denoted Ω is the weakest to solve consensus in asynchronous message-passing systems where $t < n/2$ [9]. This lower bound result is extended to any value of t in [12] where the failure detector Σ is introduced and is shown that $\Sigma \times \Omega$ is the weakest failure detector to solve consensus in message-passing systems when $t < n$. This means that Σ is the minimal additional power (as far as information on failures is concerned) required to overcome the barrier $t < n/2$ and attain $t \leq n - 1$. Actually the power provided by Σ is the minimal one required to implement a shared register in a message-passing system [4], [12]. Σ provides each process with a quorum (set of process identities) such that the values of any two quorums (each taken at any time) intersect, and there is a finite time after which any quorum includes only correct processes. Fundamentally, Σ prevents partitioning. A failure detector $\Sigma \times \Omega$ outputs a pair of values, one for Σ and one for Ω.

The Loneliness failure detector (denoted \mathcal{L}) has been proposed in [13] where it is proved that it is the weakest failure detector for solving $(n-1)$-set agreement in the asynchronous message-passing model with $t = n-1$. Such a failure detector provides each process p with a boolean (that p can only read) such that the boolean of at least one process remains always false and, if all but one process crash, the boolean of the remaining process becomes and remains true forever. Let us notice that the weakest failure detector for $(n-1)$-set agreement is not the same in the read/write shared memory model (where it is Ω_{n-1}) and the send/receive message-passing model (where it is \mathcal{L}).

e) The quest for the weakest failure detector for k-set agreement in message-passing systems: This quest seems to be one of the most difficult research topics in the theory of fault-tolerant distributed computing. Since a few years, several new failure detectors have been proposed for solving k-set agreement in asynchronous message passing systems prone to any number of crashes, but so far finding the weakest still remains a challenge.

The interested reader will find in [21] a study on relations linking some of these failure detectors. Here we only present the failure detector Σ_x introduced in [5] because it is central to the paper. Σ_x generalizes the quorum failure detector class Σ introduced in [12] (Σ_1 is Σ). This failure detector provides each process with a set (quorum) such that at least two quorums do intersect in any set of $x + 1$ quorums (whose values are taken at any times). Moreover, there is a finite (but unknown) time after which the quorum of any process includes only non-faulty processes. Two main results are proved in [5]:

(a) as far as information on failures is concerned, Σ_k is a necessary requirement to solve k-set agreement; (b) Σ_{n-1} is sufficient to solve $(n-1)$-set agreement. Interestingly, a Σ_x-based algorithm is presented in [7] that solves k-set agreement for $k \geq n - \lceil \frac{n}{x+1} \rceil$.

f) Contributions of the paper: This paper is a new step in the quest for the weakest failure detector for k-set agreement in message-passing systems. It has two main contributions.

- The first contribution is the definition and the investigation of a new failure detector class denoted $\Pi \Sigma_{x,y}$.

 - Intuitively $\Pi \Sigma_{x,1}$ (1) prevents the system from partitioning into more than k independent subsets and (2) guarantees that the processes of at least one of these subsets agree on a common leader. $\Pi \Sigma_{x,y}$ can be seen as y independent instances of $\Pi \Sigma_{x,1}$ in which item (2) is guaranteed in only one of these instances.

 - Let \mathcal{AMP} denote the asynchronous message-passing system model where up to $n - 1$ process may crash. The properties of $\Pi \Sigma_{x,y}$ are the following: (a) $\Pi \Sigma_{1,y} \preceq \mathcal{AMP} \{ \Sigma_1, \mathcal{L}_y \}$; (b) $\Pi \Sigma_{n-1,n-1} \preceq \mathcal{AMP} \{ \Sigma_2, \Omega_{n-1} \}$; (c) $\Pi \Sigma_{x,y} \preceq \mathcal{AMP} \{ \Sigma_x, \Omega_{n-1} \}$ for $1 \leq x, y \leq n$ and $\Pi \Sigma_{n,y} \preceq \mathcal{AMP} \{ \Sigma_n, \Omega_{n-1} \}$ for $1 \leq y < x < n$.

 It follows from (a) and (b) that $\Pi \Sigma_{1,1}$ and $\Pi \Sigma_{n-1,n-1}$ are the weakest failure detectors to solve k-set agreement for $k = 1$ and $k = n - 1$, respectively.

 For $1 \leq k \leq n - 1$, we have the following. An algorithm based on the pair of failure detectors $\langle \Sigma_x, \Omega_y \rangle$ is presented in [7] that solves k-set agree-
ment for \(k \geq xy \) (let BT-2010 denote this algorithm). Moreover, it is shown in that paper that there is no \((\Sigma_1, \Omega_1)\)-based \(k\)-set agreement algorithm when \((k < xy) \land (n \geq 2xy)\).

Actually, an appropriate modification of BT-2010 provides us with a \(\Pi_1\Sigma_1\)-based \(k\)-set algorithm that has the same properties (listed above) as BT-2010. The important point is here the following one: while BT-2010 and the proposed algorithm work for the same pairs \((x, y)\), it follows from item (c) that the proposed algorithm is based on weaker information on failures than BT-2010.

- The second contribution of the paper (which has been obtained thanks to the previous failure detector \(\Pi_1\Sigma_1\)) is the following: \(\Omega_k\) is not necessary to solve \(k\)-set agreement when \(1 < k < n - 1\). Combined with the fact that \(\Sigma_k\) is necessary [5], this result restricts the area we have to look for in order to discover the weaker failure detector for \(k\)-set agreement in message-passing systems for \(1 < k < n - 1\).

- **Roadmap:** The paper is made up of 8 sections. Section II presents the base computation model and the \(k\)-set agreement problem. Section III presents the eventual leaders and generalized quorums failure detectors. Section IV defines the new failure detector \(\Pi_1\Sigma_1\) and shows that it is strictly weaker than \((\Sigma_1, \Omega_1)\) for \(1 < y < x < n\). Section V presents a basic abstraction called \(\alpha_1\) which is used in Section VI (assuming \(k \geq xy\)) to build an algorithm that solves the \(k\)-set agreement problem in the asynchronous message-passing model enriched with \(\Pi_1\Sigma_1\). Section VII shows that \(\Omega_k\) is not necessary for solving \(k\)-set agreement (when \(1 < k < n - 1\)). Finally, Section VIII concludes the paper.

II. BASE COMPUTATION MODEL AND \(k\)-SET AGREEMENT

A. Computation model

- **Process model:** The system consists of a set of \(n\) sequential processes denoted \(p_1, \ldots, p_n\), \(P = \{1, \ldots, n\}\) is the set of process identities. Each process executes a sequence of (internal or communication) atomic steps. A process executes its code until it possibly crashes (if it ever crashes). After it has crashed, a process executes no more steps. A process that crashes in a run is said faulty in that run, otherwise it is correct. Given a run, \(C\) and \(F\) denote the set processes that are correct and the set processes that are faulty in that run, respectively. Up to \(t = n - 1\) processes may crash in a run, hence, \(1 \leq |C| \leq n\).

- **Communication model:** The processes communicate by executing atomic communication steps which are the sending or the reception of a message. Every pair of processes is connected by a bidirectional channel. The channels are failure-free (no creation, alteration, duplication or loss of messages)

1In [11], a slightly different result is shown, namely \((\Sigma, \Omega_k)\) is not necessary to solve \(k\)-set agreement in message-passing. However, this is not sufficient to prove our theorem since \((\Sigma, \Omega_k)\) has a strictly stronger computability power than \(\Omega_k\) in message-passing.

and asynchronous (albeit the time taken by a message to travel from its sender to its receiver is finite, there is no bound on transfer delays). The notation “broadcast MSG_TYPE\(_n\)” is used as a (non-atomic) shortcut for “for each \(j \in P\) do send MSG_TYPE\(_n\) to \(p_j\) end for” (let us observe that \(p_i\) sends then the message also to itself).

- **Underlying time model:** The underlying time model is the set \(\mathbb{N}\) of natural integers. As we are in an asynchronous system, this time notion is not accessible to the processes (hence, the model is sometimes called time-free model). It can only be used from an external observer point of view to state or prove properties. Time instants are denoted \(\tau, \tau', \ldots\).

- **Notation:** The previous asynchronous crash-prone message-passing system model is denoted \(\text{AMP}[\emptyset]\). \(\text{AMP}\) stands for “Asynchronous Message-Passing”; \(\emptyset\) means this is the “base” system (not enriched with a failure detector).

B. The \(k\)-Set agreement problem

As already indicated in the Introduction, the \(k\)-set agreement problem has been introduced by Soma Chaudhuri [10]. It generalizes the consensus problem (that corresponds to \(k = 1\)). It is defined as follows. Each process proposes a value and has to decide a value in such a way that the following properties are satisfied:

- Termination. Every correct process decides a value.
- Validity. A decided value is one of the proposed values.
- Agreement. At most \(k\) different values are decided.

III. EXISTING FAMILIES OF FAILURE DETECTORS

This section presents failure detectors that have been proposed in the quest of the weakest failure detector for \(k\)-set agreement. The system model \(\text{AMP}[\emptyset]\) enriched with a failure detector \(A\) is denoted \(\text{AMP}[A]\).

A failure detector provides each alive process with a read-only local variable. Let \(xxx_i\) be such a variable of process \(p_i\). Let \(xxx_i^\tau\) denotes the value of \(xxx_i\) at time \(\tau\).

A. The \(\Omega_k\) and \(\Pi_k\) families

The eventual leaders failure detectors of the families \(\Omega_k\) and \(\Pi_k\) provide each process \(p_i\) with a local variable denoted \(\text{leaders}_i\). They originate from \(\Omega\) [9] \((\Omega_1 \equiv \Pi_1 \equiv \Omega)\). \(\Pi_k\) has been shown to be the weakest failure detector to solve \(k\)-set agreement in asynchronous shared memory systems with any number of process crashes in [14]. Let us consider the following properties on the sets \(\text{leaders}_i\):

- **Validity.** \(\forall i, \forall \tau:\text{leaders}_i^\tau\) is a set of \(k\) process identities.
- **Strong eventual leadership.** \(\exists LD, \forall \tau: (LD \cap C \neq \emptyset) \land (\forall \tau' \geq \tau, \forall i \in C: \text{leaders}_i^\tau = LD)\).
- **Weak eventual leadership.** \(\exists \ell \in C, \forall \tau: (\forall \tau' \geq \tau, \forall i \in C: \ell \in \text{leaders}_i^\tau)\).

Validity combined with weak eventual leadership states that, after some unknown but finite time, all correct processes have the same set of \(k\) leaders and at least one of them is a correct process. Validity combined with weak eventual leadership requires only that the correct processes eventually share a common correct leader.
I) The Ω_k family: This family (introduced in [22]) includes the failure detectors that satisfy the validity and strong eventual leadership properties.

m) The Π_k family: This family (introduced in [23]) includes the failure detectors that satisfy the validity and weak eventual leadership properties.

B. The Σ_k and Π_k families

n) The Σ_k family: As noticed in the Introduction, the generalized quorum failure detector Σ_0 (introduced in [5]) is a generalization of the quorum failure detector Σ introduced in [12] where it is shown to be the weakest failure detector to implement a register in $A\mathcal{M}\mathcal{P}[\emptyset]$.

The properties that define Σ_k can be built in $\mathcal{O}(k)$ is an extension of because it allows for a simpler formulation of algorithms.

- Self-inclusion. $\forall i \in \mathcal{P}, \forall \tau: i \in qr_i^\tau$.
- Quorum liveness. $\exists \tau: \forall i \in \mathcal{C}, \forall \tau' \geq \tau: qr_i^{\tau'} \subseteq \mathcal{C}$.
- Quorum intersection. $\forall \tau_1, \ldots, \tau_k+1 \in \mathcal{P}, \forall \tau_i: i \not= j \land (qr_i^{\tau_i} \cap qr_j^{\tau_j} \neq \emptyset)$.

It is shown in [5] that Σ_k is necessary when one wants to solve k-set agreement in $A\mathcal{M}\mathcal{P}[\emptyset]$.

a) The Π_k family: The failure detector Π_k (introduced in [5]) is an extension of Σ_k to which it adds the following property.

- Eventual leadership. $\exists LD, \tau: \langle (LD) = k \rangle \land (\forall \tau' \geq \tau, \forall i \in \mathcal{C}: qr_i^{\tau'} \cap LD \neq \emptyset)$.

It is shown in [5] that Π_k and the pair (Σ_k, Ω_k) are equivalent, i.e., Π_k can be built in $A\mathcal{M}\mathcal{P}[\Sigma_k, \Omega_k]$ and (Σ_k, Ω_k) can be built in $A\mathcal{M}\mathcal{P}[\Pi_k]$. It is also shown in [5] that Π_{k-1} and \mathcal{L} are equivalent. If follows from these observations that Π_1 and Π_n are the weakest failure detectors for $k = 1$ and $k = n - 1$. Unfortunately, as shown in [3], [7], Π_k does not allow to solve k-set agreement for $1 < k < n - 1$.

IV. THE FAMILY OF FAILURE DETECTORS $\Pi\Sigma_{x,y}$

A. Definition

The definition of $\Pi\Sigma_{x,y}$ is incremental, first is defined $\Pi\Sigma_x$ and then $\Pi\Sigma_{x,y}$.

p) The failure detector $\Pi\Sigma_x$: A failure detector $\Pi\Sigma_x$ provides each process p_i with a set qr_i and a variable leader_i which define the current quorum and the current leader of p_i.

It is defined by the following properties.

- Self-inclusion. $\forall i \in \mathcal{P}, \forall \tau: i \in qr_i^\tau$.
- Quorum liveness. $\exists \tau: \forall i \in \mathcal{C}, \forall \tau' \geq \tau: qr_i^{\tau'} \subseteq \mathcal{C}$.
- Quorum intersection. $\forall \tau_1, \ldots, \tau_k+1 \in \mathcal{P}, \forall \tau_i: i \not= j \land (qr_i^{\tau_i} \cap qr_j^{\tau_j} \neq \emptyset)$.
- Eventual partial leadership. $\exists \tau_1, \tau_2 \geq \tau: qr_i^{\tau_1} \cap qr_i^{\tau_2} \neq \emptyset \Rightarrow (\exists \tau: \forall \tau' \geq \tau: \text{leader}_i^{\tau'} = \ell)$.

The self-inclusion, liveness and intersection properties are the properties that define Σ_x: after some time the quorum of any correct process contains only correct processes (liveness) and any set of $x + 1$ quorums contains two intersecting quorums (intersection). Hence, $\Pi\Sigma_x \succeq \Sigma_x$.

Eventual partial leadership states that there is a correct process p_i such that, for any correct process p_j whose quorum qr_i intersects infinitely often its quorum qr_j (left part of the implication), then eventually p_i is forever the leader of p_j (right part of the implication).

q) The failure detector $\Pi\Sigma_{x,y}$: $\Pi\Sigma_x$ is $\Pi\Sigma_{x,1}$. More generally, $\Pi\Sigma_{x,y}$ provides each process p_i with an array $FD_i[i..y]$ such that for each each $j \in \{1, \ldots, y\}$, $FD_i[j]$ is a pair containing a quorum $FD_i[j]3, \text{leader}$ and a process index $FD_i[j].\text{leader}$. Let $FD[j]$ denote the corresponding distributed object (ie, $FD[j]$ on p_i is represented by $FD_i[j]$).

The failure detector $\Pi\Sigma_{x,y}$ consists of an array $FD[i..y]$ that satisfies the following properties:

- Vector safety. $\forall j \in \{1, \ldots, y\}: FD[j]3, qr$ satisfies the liveness and intersection properties of $\Pi\Sigma_x$.
- Vector liveness. $\exists j \in \{1, \ldots, y\}: FD[j].\text{leader}$ satisfies the eventual partial leadership property of $\Pi\Sigma_x$ related to $FD[j]3, qr$ for the same j.

B. $\Pi\Sigma_{x,y}$ vs (Σ_x, Π_y)

A failure detector (Σ_x, Π_y) provides each process p_i with two independent read-only local variables: qr_i that satisfies the properties defined by Σ_x, and leader_i that satisfies the properties defined by Π_y.

Lemma 1: Let $1 \leq x, y \leq n - 1$. $\Pi\Sigma_{x,y} \succeq_{A\mathcal{M}\mathcal{P}} (\Sigma_x, \Pi_y)$.

Algorithm 1 From (Σ_x, Π_y) to $\Pi\Sigma_{x,y}$ (code for p_i)

(01) repeat forever rel_broadcast $\text{leader}(\text{leaders})$ end repeat.

(02) when $\text{leader}(\text{id})$ is delivered:

(03) for each $j \not= \text{id}$ do $\text{suspend}_{\text{neb}}[j] \leftarrow \text{suspend}_{\text{neb}}[j] + 1$ end for;

(04) let j_1, j_2, \ldots, j_n be a permutation of $\{1, \ldots, n\}$ such that $(\text{suspend}_{\text{neb}}[j_1], j_1) < (\text{suspend}_{\text{neb}}[j_2], j_2) < \cdots < (\text{suspend}_{\text{neb}}[j_n], j_n)$;

(05) for each $x \in \{1, \ldots, y\}$ do $FD_i[x].\text{leader} \leftarrow j_x$ end for.

Theorem 1: Let $1 \leq y \leq n - 1$. $\Pi\Sigma_{1,y} \succeq_{A\mathcal{M}\mathcal{P}} (\Sigma_1, \Pi_y)$. Proof: Taking $x = 1$ in Lemma 1 we have $\Pi\Sigma_{1,y} \succeq_{A\mathcal{M}\mathcal{P}} (\Sigma_1, \Pi_y)$. Hence, we have only to show that $(\Sigma_1, \Pi_y) \succeq_{A\mathcal{M}\mathcal{P}} \Pi\Sigma_{1,y}$.

Let qr_i of Σ_1 be the output of $FD_i[1]3, qr$. Hence, the quorums qr_i inherit the liveness and intersection properties of $FD_i[1]3, qr$ that trivially satisfy the properties defining Σ_1.

Let leaders_i be any subset of size y that contains $\cup_{1 \leq i \leq y}(FD_i[j].\text{leader})$. Due to the vector liveness property of $\Sigma_1\Pi_y$, there is an entry j such that $FD[j]$ satisfies the eventual partial leadership (Observation O1). Moreover, as $x = 1$, any pair of quorums output by $FD[j]$ do intersect (Observation O2). It follows from O1 and O2 that there is a correct process p_j such that, for each correct process p_i, there is a time after which the predicate $FD_i[j].\text{leader} = \ell$ remains forever true. Consequently, there is a finite time after which the predicate $\ell \in \text{leaders}_i$ remains forever true at any correct process p_i, from which follows the weak eventual leadership property of $\Pi\Sigma_{1,y}$.
Theorem 2: Let \(1 \leq x \leq n - 1 \). \(\Pi \Sigma_{x,n-1} \simeq_{\mathrm{AMP}} \Sigma_x \).

Proof: Taking \(y = n - 1 \) in Lemma 1, we have \(\Pi \Sigma_{x,n-1} \simeq_{\mathrm{AMP}} \langle \Sigma_x, \bar{\Omega}_{n-1} \rangle \). Hence, we only have to show that \(\langle \Sigma_x, \bar{\Omega}_{n-1} \rangle \simeq_{\mathrm{AMP}} \Pi \Sigma_{x,n-1} \).

It is shown in [5] (Corollary 2 in [5]) that \(\Sigma_x \simeq_{\mathrm{AMP}} \Sigma_{x+1} \simeq_{\mathrm{AMP}} \cdots \simeq_{\mathrm{AMP}} \Sigma_{n-1} \simeq_{\mathrm{AMP}} \Omega_{n-1} \). Moreover, it follows directly from their definitions that \(\Omega_{n-1} \simeq_{\mathrm{AMP}} \Pi \Sigma_{x,n-1} \).

It follows that \(\Sigma_x \simeq_{\mathrm{AMP}} \langle \Sigma_x, \bar{\Omega}_{n} \rangle \) which completes the proof of the theorem. \(\square \)

Lemma 2: Let \(1 \leq y < n \). \(\Pi \Sigma_{x,y+1,1} \simeq_{\mathrm{AMP}} \langle \Sigma_x, \bar{\Omega}_{y} \rangle \).

Proof: Let \(r \leq y < n \). \(\Pi \Sigma_{x,r} \simeq_{\mathrm{AMP}} \langle \Sigma_x, \bar{\Omega}_{y} \rangle \). Let \(\Pi \Sigma_{x,y} \simeq_{\mathrm{AMP}} \langle \Sigma_x, \bar{\Omega}_{y} \rangle \) follows from Lemma 1. Hence, we have to show that \(\Pi \Sigma_{x,y} \simeq_{\mathrm{AMP}} \langle \Sigma_x, \bar{\Omega}_{y} \rangle \). Let us first observe that \(\Pi \Sigma_{x,y+1,1} \simeq_{\mathrm{AMP}} \Pi \Sigma_{x,y+1,1} \). This is easily obtained by providing each FD\([j] \) of the array FD\([1..y] \) of \(\Pi \Sigma_{y+1,1} \) with the outputs supplied by \(\Pi \Sigma_{y+1,1} \). On an other side, (as shown in [5]) \(\Sigma_x \) is strictly stronger than \(\Sigma_{x+1} \) for \(1 \leq z < n - 1 \) and, consequently, \(\Pi \Sigma_{y+1,1} \simeq_{\mathrm{AMP}} \Pi \Sigma_{x,y} \) for \(y < x \). It follows from Lemma 2 (i.e., \(\Pi \Sigma_{x,y+1,1} \simeq_{\mathrm{AMP}} \Pi \Sigma_{x,y} \)) that, as \(\Pi \Sigma_{x,y+1,1} \) is stronger than \(\Pi \Sigma_{x,y} \), we have \(\Pi \Sigma_{x,y} \simeq_{\mathrm{AMP}} \Pi \Sigma_{x,y} \) which proves the theorem. \(\square \)

Remark: A main difference between \(\Pi \Sigma_{x,y} \) and \(\Pi \Sigma_{x,y} \) lies in the fact that the eventual correct leader elected by \(\bar{\Omega}_{y} \) has to be the same for all correct processes, while \(\Pi \Sigma_{x,y} \) requires only that the correct processes of a subset (dynamically defined by one of the \(\Sigma_x \) failure detectors) agree on a common leader. Hence, the scope of the leadership provided by \(\Pi \Sigma_{x,y} \) is not required to be the whole system but only a subset of it.

V. A BASIC BUILDING BLOCK:
THE ALPHA\(_x\) ABSTRACTION

A. Definition of Alpha\(_x\)

This paper presents an algorithm that solves the \(k \)-set agreement problem in \(\mathrm{AMP}[\Pi \Sigma_{x,y}] \). This algorithm uses an abstraction called Alpha\(_x\) and has been introduced in [15] to capture the safety property of consensus and generalized in [24] to capture the safety property of \(k \)-set agreement in crash-prone systems. [15], [24] give corresponding implementations in read/write shared memory systems and send/receive message-passing systems.

Let \(\bot \) be a default value that cannot be proposed by processes. Alpha\(_x\) is an object initialized to \(\bot \) that may store up to \(x \) different values proposed by processes. It is an abstraction (object) that provides processes with a single operation denoted propose\((r, v) \) (where \(r \) is a round number and \(v \) a proposed value) that returns a value to the invoking process. The round number plays the role of a time role that allows identifying the propose\(() \) invocations. It is assumed that distinct processes use different round numbers and successive invocations by the same process use increasing sequence numbers. Alpha\(_x\) is a kind of abortable object in the sense that propose\(() \) invocations are allowed to return the default value \(\bot \) (i.e., abort) in specific concurrency-related circumstances (as defined from the obligation property, see below). More precisely, the Alpha\(_x\) objects used in this paper are defined by the following specification in which the obligation property takes explicitly into account the fact that we are interested into an Alpha\(_x\) object that will be implemented on top of \(\mathrm{AMP}[\Sigma_x] \) (which is a strictly stronger underlying model than \(\mathrm{AMP}[\emptyset] \)).

- **Termination.** Any invocation of propose\(() \) by a correct process terminates.
- **Validity.** If propose\((r, v) \) returns \(v' \neq \bot \), then propose\((r', v') \) has been invoked with \(r' \leq r \).
- **Quasi-agreement.** At most \(k \) different non-\(\bot \) values can be returned by propose\(() \) invocations.
- **Obligation.** Let \(p_t \) being a correct process let \(Q(\ell, \tau) = \{ i \in C \mid \forall \pi, \tau_t \geq \tau : \forall q_{1\tau}^\pi \cap q_{1\tau}^\pi = \emptyset \} \). If, after time \(\tau \), (a) only \(p_t \) and processes of \(Q(\ell, \tau) \) invoke propose\(() \) and (b) \(p_t \) invokes propose\(() \) infinitely often, then at least one invocation issued by \(p_t \) returns a non-\(\bot \) value.

Differently from the obligation property stated in [7], [15], [24] the previous obligation property is \(\Sigma_x \)-aware which allows for a weaker property (the Alpha\(_x\) object used in [7] is implemented on top of \(\mathrm{AMP}[\Sigma_x] \) but its specification is not \(\Sigma_x \)-aware). More precisely, our obligation property allows concurrent invocations of propose\(() \) to return non-\(\bot \) values as soon as the quorums of the invoking processes do not intersect during these invocations.

B. The Alpha\(_x\) object used by Bouzid and Travers [7]

This section presents an implementation of an Alpha\(_x\) object on top of \(\mathrm{AMP}[\Sigma_x] \). This implementation is obtained from a modification of the algorithm proposed in [7] which is first described.

s) The obligation property used in [7]: The Alpha\(_x\) object used in [7] has the same specification as the one defined in this paper (which is close to the one defined in [15], [24]) but for the obligation property which (similarly to [15]) is defined as follows.

- **Obligation.** Let \(I = \text{propose}(r, -) \) be a terminating invocation. If every invocation \(I' = \text{propose}(r', -) \) that starts before \(I \) returns is such that \(r' < r \), then \(I \) returns a non-\(\bot \) value.

It is easy to see that this specification is not \(\Sigma_x \)-aware. In presence of concurrent invocations, it directs at most one process to decide a non-\(\bot \) value, namely, the one with the highest round number. The current outputs of \(\Sigma_x \) are irrelevant in this statement.

t) Principles: establish a priority on values: Each process \(p_i \) manages a local variable \(\text{est}_i \) (initialized to \(\bot \)) that represents its current estimate \(v \) of the value it will decide and a pair \((\text{rei}_i, \text{pos}_i) \) that defines the priority associated with \(v \) from \(p_i \)'s point of view (the aim is to decide values with the highest priority); \(\text{rei}_i = r \) means that \(r \) is the highest round seen by \(p_i \) and \(\text{pos}_i = \rho \in [1..2^r] \) is the position of \(v \) in round \(r \). The pairs \((r, \rho) \) are used to establish a priority on proposed values. The function \(g(\rho, \delta) = 2^\delta(\rho - 1) + 1 \)
(where δ is a difference between two round numbers) is used to compute the priority of a value in the following rounds. More precisely, let (r, p) and (r', p') (such that $r \leq r'$) be the pairs associated with the values v and v', respectively. Value v has lower priority than value v' at round r' if $g(p, r' - r) < p'$ or $(g(p, r' - r) = p') \land (v < v')$.

Our description of Bouzid-Travers’s algorithm (algorithm 2) is schematic. The reader will refer to [7] for more detailed presentation and a proof. The implementation of the operation propose() is made up of two sequential phases: a read phase followed by write phase.

<table>
<thead>
<tr>
<th>Algorithm 2 Alpha$_x$ in AMP[Σ$_x$]: Bouzid-Travers’s implementation [7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>init $lre_i \leftarrow 0$; $est_i \leftarrow \bot$; $pos_i \leftarrow 0$.</td>
</tr>
<tr>
<td>operation propose(r, v_j):</td>
</tr>
<tr>
<td>(01) broadcast REQ$_R$(r);</td>
</tr>
<tr>
<td>(02) repeat $Q_i \leftarrow gr_i$;</td>
</tr>
<tr>
<td>(03) until $(\forall j \in Q_i : \text{RSP}_R(r, (lre_j, pos_j, est_j)))$ received from p_j;</td>
</tr>
<tr>
<td>(04) end repeat;</td>
</tr>
<tr>
<td>(05) let $rcv_i = {(lre_j, pos_j, est_j) : \text{RSP}_R(r, (lre_j, pos_j, est_j)) }$ received$}$;</td>
</tr>
<tr>
<td>(06) if $(\exists lre_i : (r, pos_i, v_i) \in rcv_i : lre_i > lre_i)$ then return(\bot) end if;</td>
</tr>
<tr>
<td>(07) $pos_i \leftarrow \max{(r, pos_i, v_i) \in rcv_i}$;</td>
</tr>
<tr>
<td>(08) $est_i \leftarrow \max{v_i \mid (r, pos_i, v_i) \in rcv_i}$;</td>
</tr>
<tr>
<td>(09) if $(est_i = \bot)$ then $est_i \leftarrow v_i$ end if;</td>
</tr>
<tr>
<td>(10) while(pos$_i < 2^\delta$) do</td>
</tr>
<tr>
<td>(11) $pos_i \leftarrow pos_i + 1$; $psti_i \leftarrow pos_i$; // this line is executed atomically</td>
</tr>
<tr>
<td>(12) broadcast REQ$_W$(r, psti$_i$, est$_i$);</td>
</tr>
<tr>
<td>(13) repeat $Q_i \leftarrow qr_i$;</td>
</tr>
<tr>
<td>(14) until $(\forall j \in Q_i : \text{RSP}_W(r, psti_i, (lre_j, pos_j, est_j)))$ received from p_j;</td>
</tr>
<tr>
<td>(15) end repeat;</td>
</tr>
<tr>
<td>(16) let $rcv_i = {(lre_j, pos_j, est_j) : \text{RSP}_W(r, psti_i, (lre_j, pos_j, est_j)) }$ received$}$;</td>
</tr>
<tr>
<td>(17) if $(\exists lre_i : (r, pos_i, v_i) \in rcv_i : lre_i > lre_i)$ then return(\bot) end if;</td>
</tr>
<tr>
<td>(18) $pos_i \leftarrow \max{(r, pos_i, v_i) \in rcv_i}$;</td>
</tr>
<tr>
<td>(19) $est_i \leftarrow \max{v_i \mid (r, pos_i, v_i) \in rcv_i}$;</td>
</tr>
<tr>
<td>(20) end while;</td>
</tr>
<tr>
<td>(21) return(est$_i$).</td>
</tr>
</tbody>
</table>

Algorithm 3

Algorithm 3 describes an implementation of the Σ$_x$-aware specification of Alpha$_x$ defined in Section V-A. This algorithm is an appropriate improvement of Algorithm 2.

To make the presentation easier, the line numbers are the same in both algorithms. The lines that are new or modified are prefixed by the letter N. These modifications concern message filtering. This filtering is used to prevent a process p_i from sending read or write-requests to the processes p_j such that p_i does not need information from p_j to complete its current invocation of propose(). Hence, such a process p_j cannot direct p_i to return \bot while it could return a non-\bot value (and additionally the values not sent by p_i cannot force other processes to return \bot).

u) Succinct description of the algorithm: the read phase: When it invokes propose(r, v), a process p_i first broadcasts a read-request message (line 01) to (a) obtain information on values proposed in previous rounds (if any) and (b) learn if other processes have started higher rounds.

When a process p_j receives such a message REQ$_R$(rd) (where rd is a round number) it redefines its pair (lre_j, pos_j) if $rd > lre_j$ (line 24) (the new position pos_j of est$_j$ is recomputed according to the values of rd and lre$_j$). In all cases, p_j sends back an answer to p_i carrying its current value est$_j$ and the associated pair (lre_j, pos_j) (line 25).

Then, when it has received a response from each process in its current quorum qr$_i$, as supplied by Σ$_x$ (lines 02-04), p_i returns \bot if it has received an answer indicating that another process has started a round higher than lre$_i$ (lines 05-06). Otherwise, lre$_i = r$ is the greatest round number known by p_i. In that case, p_i update pos$_i$ to the greatest position associated with round r it has seen and adopts the corresponding value v as its current estimate est$_i$ (lines 07 and 08). Moreover, if $v = \bot$, p_i adopts v_i into est$_i$, namely, the value it proposes to the Alpha$_x$ object (line 09).

v) Modification of the read phase: A process p_j records in $r_{\text{req-set}}$ the set of processes to which it has already sent a REQ$_R$(r) message (lines N01 and N02-2) and sends read-request messages REQ$_R$(r) only to the processes p_j that belong to its quorum qr$_i$ (line N02-1).
Then, when it stops waiting for response messages, it considers only the responses sent by the processes of its last quorum plus its own response (lines N05-1 and N05-2).

x) Modification of the write phase: The message exchange pattern of that phase is modified similarly to what has been done for the read phase (lines N12, N14-1, N14-2, N17-1 and N17-2).

Algorithm 3 Alpha$_x$ in AM\mathcal{P}[Σ_k] as defined in Section V

```
init lre$_i$ ← 0; est$_i$ ← ⊥; pos$_i$ ← 0.

operation propose($r; v_i)$:
(N01) r$_{req\ set}_i$ ← ⌀;
(N02-1) send REQ$_R(r)$ to each $p_j$, $j \in Q_i \setminus r_{req\ set}_i$;
(N02-2) r$_{req\ set}_i$ ← r$_{req\ set}_i$ ∪ Q$_i$;
(N03) until ($\forall j \in Q_i$ : RSP$_R(r, (lre_j, pos_j, est_j))$ received from $p_j$) end repeat;
(N04) end repeat;
(N05-1) let rcv$_i$ = \{(lre$_j$, pos$_j$, est$_j$) : \}
(N05-2) RSP$_R(r, (lre$_j$, pos$_j$, est$_j$)) received from Q$_i$ \};
(N06) if ($\exists lre : (lre, −, −) \in rcv_i ; lre > lre_i$) then return(⊥) end if;
(N07) pos$_i$ ← max{pos$_i$ | (r, pos$_i$, v) ∈ rcv$_i$};
(N08) est$_i$ ← max{est$_i$ | (r, est$_i$, v) ∈ rcv$_i$};
(N09) if (est$_i = ⊥$) then est$_i$ ← vi end if;
(N10) while(pos$_i$ < vi) do
(N11) pos$_i$ ← pos$_i$ + 1; est$_i$ ← pos$_i$; if this line is executed atomically
(N12) w$_{req\ set}_i$ ← ⌀;
(N13) repeat Q$_i$ ← qr$_i$;
(N14-1) send REQ$_W(r, (lre$_j$, pos$_j$, est$_j$)) to each $p_j$, $j \in Q_i \setminus w_{req\ set}_i$;
(N14-2) w$_{req\ set}_i$ ← w$_{req\ set}_i$ ∪ Q$_i$;
(N14) until ($\forall j \in Q_i$ : \}
(N15) RSP$_W(r, (lre$_j$, pos$_j$, est$_j$)) received from $p_j$ end repeat;
(N16) end repeat;
(N17-1) rcv$_i$ ← \{(lre$_j$, pos$_j$, est$_j$) : \}
(N17-2) RSP$_W(r, (lre$_j$, pos$_j$, est$_j$)) received from Q$_i$ \};
(N19) if ($\exists lre : (lre, −, −) \in rcv_i ; lre > r$) then return(⊥) end if;
(N20) pos$_i$ ← max{pos$_i$ | (r, pos$_i$, v) ∈ rcv$_i$};
(N21) est$_i$ ← max{est$_i$ | (r, est$_i$, v) ∈ rcv$_i$};
(N22) end while;
(N23) return(est$_i$).
```

when RSP$_R(rd)$ received from p_j:
(N24) if rd > lre$_i$ then pos$_i$ ← g(pos$_i$, rd − lre$_i$); lre$_i$ ← rd end if;
(N25) send RSP$_R(rd, (lre$_i$, pos$_i$, est$_i$)) to p_j.

when RSP$_W(rd, pos, est)$ received from p_j:
(N26) if rd ≥ lre$_i$ then pos$_i$ ← g(pos$_i$, rd − lre$_i$); lre$_i$ ← rd
(N27) case pos$_i$ > pos$_i$ then est$_i$ ← est$_i$ ≤ pos$_i$ ≤ pos$_i$
(N28) pos$_i$ = pos$_i$ then est$_i$ ← max{vi, est$_i$}
(N29) pos$_i$ < pos$_i$ then nop
(N30) end case;
(N31) end if;
(N32) send RSP$_W(rd, pos, (lre$_i$, pos$_i$, est$_i$)) to p_j.

Theorem 4: Algorithm 3 implements an Alpha$_x$ object as defined in Section V-A.

VI. SOLVING k-SET AGREEMENT IN AM\mathcal{P}[ΠΣ$_{x,y}$]

This section presents a simple algorithm that implements k-set agreement in AM\mathcal{P}[ΠΣ$_{x,y}$] for $k \geq xy$. It is similar to the one presented in [7]: it uses a base algorithm (similar to the one introduced in [15]) that solves x-set agreement in AM\mathcal{P}[ΠΣ$_{x,1}$] and then assuming $k \geq xy$ (as in [1], [7]) it uses y instances of this base to solve k-set agreement in AM\mathcal{P}[ΠΣ$_{x,y}$].

y) x-Set agreement in AM\mathcal{P}[ΠΣ$_{x,1}$]: Algorithm 4 solves x-set agreement in AM\mathcal{P}[ΠΣ$_{x,1}$]. A process p_i invokes ks$_{propose}_{x,1}(v_i)$ where v_i is the value it proposes. It decides a value d when it executes the statement return(d) which terminates its invocation. The local variable r_i is the local round number (as it is easy to see, each process uses increasing round numbers and no two distinct processes use the same round numbers).

A process loops until it decides. If during a loop iteration p_i is such that leader$_i = i$ (leader$_i$ is one of the two local outputs provided by ΠΣ$_{x,1}$), p_i invokes the Alpha$_x$ object to try to deposit its value v_i into it (the success depends on the concurrency and quorums pattern). If a non-⊥ value is returned by this invocation, p_i broadcasts it (with the reliable broadcast operation). A process decides as soon as it is delivered a decision() message.

Algorithm 4 x-set agreement in AM\mathcal{P}[ΠΣ$_{x,1}$] (p_i’s code)

```
operation ks$_{propose}_{x,1}(v_i)$:
(01) deci$_i$ ← ⊥; r$_i$ ← i;
(02) while (deci$_i$ = ⊥) do
(03) if (leader$_i$ = i) then Alpha$_x$.propose($r_i$, v$_i$);
(r$_i$ ← r$_i$ + 1) end if;
(04) end while;
(05) rel$_{broadcast}$ decision(deci$_i$).
```

Theorem 5: Algorithm 4 solves the x-set agreement in AM\mathcal{P}[ΠΣ$_{x,1}$].

Proof Validity and agreement properties. Let us first observe that, due to the test of line 02, the default value ⊥ cannot be decided. The fact that a decided value is a proposed value follows then from the validity of the underlying Alpha$_x$ object. Similarly, the fact that at most k non-⊥ values are decided follows directly from the quasi-agreement property of the underlying Alpha$_x$ object.

Termination property. It follows from the reliable broadcast operation that, at soon as a process decides (invokes return()) each correct process eventually delivers the same decision() message and decides (if not yet done). The proof is by contradiction: assuming that no process decides, we show that at least one correct process executes rel$_{broadcast}$() (and consequently, all correct processes decide).

Let p_ℓ be a correct process that appears in the definition of the eventual partial leadership property of ΠΣ$_x$. It follows from the definition of p_ℓ that we eventually have forever leader$_i = \ell$.

Let R_ℓ be the set of the identities of the processes p_j (with $j \neq \ell$) such that we have leader$_j = j$ infinitely often. It follows from the contrapositive of the eventual partial leadership property of ΠΣ$_x$ that there is a time τ_{R_ℓ} such that $\forall j \in R_\ell, \forall \tau_1, \tau_2 \geq \tau_{R_\ell}; q_{R_\ell}^1 \cap q_{R_\ell}^2 = \emptyset$, from which we conclude that $R_\ell \subseteq Q(\ell, \tau_{R_\ell})$ (this is the set defined in the obligation property of Alpha$_x$).

Let us notice that, due to test of line 03, there is a
finite time \(\tau_a \) after which the only processes that invoke \(\text{Alpha}_a \cdot \text{propose}() \) are the processes in \(R_f \cup \{ t \} \). Moreover (as by the contradiction assumption no process decides) it follows that, after \(\tau_a, p_t \) invokes \(\text{Alpha}_a \cdot \text{propose}() \) infinitely often. Let \(\tau_b \) be a time greater than \(\max(\tau_{R_t}, \tau_a) \) from which we have \(R_f \subseteq Q(\ell, \tau_{R_t}) \subseteq Q(\ell, \tau_b) \).

As after \(\tau_b \) (a) only processes in \(R_f \cup \{ t \} \) invoke \(\text{Alpha}_a \cdot \text{propose}() \), (b) \(p_t \) invokes \(\text{Alpha}_a \cdot \text{propose}() \) infinitely often and (c) \(R_f \subseteq Q(\ell, \tau_b) \), we conclude from the obligation property of \(\text{Alpha}_a \) that at least one invocation of \(p_t \) returns a value \(d \neq \bot \) and consequently executes \(\text{rel} \cdot \text{broadcast} \). This contradicts the fact that no process decides and concludes the proof of the theorem. □

z) \(k \)-Set agreement in \(\text{AMP}[\Pi \Sigma_{x,y}] \): As in [1], [7], a simple \(k \)-set algorithm can be obtained by launching concurrently \(y \) instances of Algorithm 4, the \(j \)th one relying on the component \(FD[j] \) of the failure detector \(\text{AMP}[\Pi \Sigma_{x,y}] \). A process decides the value returned by the first of the \(y \) instances that locally terminates. As there are \(y \) instances of Algorithm 4 and at most \(x \) values can be decided in each of them, it follows that at most \(xy \) different values can be decided. Moreover, as at least one \(FD[j] \) is a \(\Pi \Sigma_{x,y} \) failure detector, it follows that the correct processes decide (if not done before) at least one of the \(y \) instances of Algorithm 4. Let us observe that, in such a “worst” case where the processes decide in the same instance, at most \(x \) values are decided.

VII. \(\Omega_k \) is not necessary for \(k\)-set agreement when \(1 < k < n - 1 \)

Lemma 3: Let \(1 < k < n - 1 \). \(\Omega_k \) cannot be built in \(\text{AMP}[\Pi \Sigma_{k,1}] \).

Theorem 6: Let \(1 < k < n - 1 \). \(\Omega_k \) is not necessary for solving \(k\)-set agreement in \(\text{AMP}[\emptyset] \).

Let \(X(k) \) denote the (still unknown) weakest failure detector such that \(k\)-set agreement can be solved in \(\text{AMP}[X(k)] \). The following corollary shows that, when \(1 < k < n - 1 \), \(\Omega_k \) is neither necessary nor sufficient for solving the \(k\)-set agreement problem.

Corollary 1: Let \(1 < k < n - 1 \). \(\Omega_k \not\subset \text{AMP} X(k) \).

VIII. Conclusion

As indicated in the abstract, this paper is a new step in the quest for discovering the weakest failure detector for \(k\)-set agreement in asynchronous message-passing systems prone to any number of process failures. It has presented a new failure detector denoted \(\Pi \Sigma_{x,y} \) which enjoys many noteworthy features and an associated algorithm that solves \(k\)-set agreement for \(k \geq xy \). It has also shown that the weakest failure detector (that still remains to be discovered) and \(\Omega_k \) (a well-studied failure detector) cannot be compared.

More generally, an important issue that remains to be solved lies in capturing the “weakest” type of shared memory that has to be emulated for solving \(k\)-set agreement in asynchronous message-passing systems.

References

[7] Bouzid Z. and Travers C., (Anti-\(\Omega_k \times \Pi \Sigma_{x,y} \))-Based \(k\)-Set Agreement Algorithms. Proc. 12th Int’l Conf. on Principles of Distributed Systems (OPDIS’10), Springer Verlag LNCS #6490, pp. 190-205, 2010.