Skip to Main content Skip to Navigation
Other publications

Yield Curve Smoothing and Residual Variance of Fixed Income Positions

Abstract : We model the yield curve in any given country as an object lying in an infinite-dimensional Hilbert space, the evolution of which is driven by what is known as a cylindrical Brownian motion. We assume that volatilities and correlations do not depend on rates (which hence are Gaussian). We prove that a principal component analysis (PCA) can be made. These components are called eigenmodes or principal deformations of the yield curve in this space. We then proceed to provide the best approximation of the curve evolution by a Gaussian Heath-Jarrow-Morton model that has a given finite number of factors. Finally, we describe a method, based on finite elements, to compute the eigenmodes using historical interest rate data series and show how it can be used to compute approximate hedges which optimise a criterion depending on transaction costs and residual variance.
Complete list of metadata

Cited literature [33 references]  Display  Hide  Download
Contributor : Lucie Label Connect in order to contact the contributor
Submitted on : Tuesday, May 12, 2015 - 4:28:19 PM
Last modification on : Friday, April 29, 2022 - 10:12:42 AM
Long-term archiving on: : Monday, September 14, 2015 - 11:22:14 PM


Files produced by the author(s)


  • HAL Id : hal-01151276, version 1



Raphaël Douady. Yield Curve Smoothing and Residual Variance of Fixed Income Positions. 2014. ⟨hal-01151276⟩



Record views


Files downloads