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In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the
isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents
(n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with
binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of
these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for
various thermodynamic conditions. Then, a systematic approach has been used to determine the
gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system.
In addition, the applicability of the isomorph theory with a density dependent gamma has been
confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic
scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of
thermodynamic conditions covering liquid and supercritical states as long as the density is not too
high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to
the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures
can be deduced from those of the pure component using a simple logarithmic mixing rule. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4919296]

I. INTRODUCTION

Accurate transport properties of fluids in both dilute
and dense phases, and in particular shear viscosity, are
often required in many industrial domains.1 However, the
appropriate modeling of these properties over a wide range of
thermodynamics conditions still remains a challenge.2,3 This
is largely due to the lack of a rigorous molecular based theory
to describe transport properties applicable to all fluid states,
despite noticeable recent progresses3 such as the Assael and
Dymond approach and its extensions based on the hard-sphere
framework.4,5

Among the most promising approaches to describe shear
viscosity in dense phases are those based on scaling and
isomorph concepts.6–10 In particular, the model based on the
so-called thermodynamic scaling has proven to be useful
in describing shear viscosity of a large variety of species
in the dense states.11,12 Furthermore, this approach can be
extended to deal with moderately dense fluid thermodynamic
conditions.13 This model relies on the assumption that the
shear viscosity of simple fluids scales with the ratio of the
density, raised at an exponent γ, divided by the temperature,
i.e., this ratio forms isomorphs on which viscosity is invariant.9

a)Author to whom correspondence should be addressed: guillaume.galliero@
univ-pau.fr.

The parameter γ is material dependent14 but can be deduced
from the equilibrium fluctuations in the canonical ensemble of
the potential energy, U, and the virial, W .9 It should be noticed
that this frame has been extended recently to deal with large
variations in density.9,15

An additional problem, when trying to model shear vis-
cosity, is linked to the difficulty in defining a molecular model
(molecular structure + effective interaction potential) adapted
to deal with both equilibrium and transport properties.16–21

Since the 1960s, a lot of progress has been performed
towards that goal, thanks to molecular dynamics (MD)
simulations.17,19,22,23 This is due to the fact that these numerical
methods allow generating “exact” thermophysical properties
(including viscosity) of a given molecular model for a set of
thermodynamic conditions. In that frame, the most popular
interaction potential is certainly the Lennard-Jones (LJ) one.24

However, recent works on thermodynamic properties25–27 and
on viscosity16,28 of fluids in various thermodynamic states
have shown that the Mie n-6 potential29 can lead to noticeable
improvements relatively to the LJ potential. Compared to the
Lennard-Jones potential, the Mie potential provides one extra
degree of freedom associated to a possible modulation of the
steepness of the repulsion contribution of the potential. This
feature is interesting because the structure of not too complex
fluids is primarily guided by short range interactions30,31 and
the viscosity varies noticeably with repulsion steepness.28,32,33

0021-9606/2015/142(17)/174501/7/$30.00 142, 174501-1 © 2015 AIP Publishing LLC
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FIG. 1. Mie potentials shape for three different repulsive exponents tested in
this work (n = 8, 12, and 36).

Furthermore, allowing variable repulsion steepness makes it
suitable in a coarse grained frame, as long as bottom-up coarse
graining leads to softer potential than the usual one.34

Thus, this work aims at checking the ability of the
thermodynamic scaling/isomorph frame to deal with the shear
viscosity of fluids composed of Mie spheres of various repul-
sive exponents. For that purpose, extensive Non-Equilibrium
Molecular Dynamics (NEMD) simulations have been per-
formed over a wide range of fluid thermodynamic conditions
and for repulsive exponents varying between 8 and 36. In
addition, the limits of this approach to deal with binary
mixtures of Mie fluids have been considered.

The article is structured as follows. In Sec. II the fluid
model and the simulation methodology are described. Then,
the main results are presented and discussed in Sec. III. Finally,
the conclusions are drawn in Sec. IV.

II. MODELS AND THEORY

A. The Mie fluid model

In this work, we consider fluids composed of spheres
whose inter-particle interactions are described by the so-
called Mie n-6 potential.35 This potential is characterized by

TABLE I. Exponents deduced from thermodynamic scaling of viscosity (γ)
and from W -U correlations (Γ) for different Mie n-6 pure fluids. R is the
virial-potential energy correlation coefficient. Γ and R have been computed
at ρ∗= 1 and T ∗= 2.

n γ γ from diffusion data59 Γ R

8 3.65 3.5 3.75 0.988
12 5.05 5.0 5.05 0.989
18 7.15 7.1 0.989
24 9.3 9.1 9.1 0.990
36 13.7 13.4 13.3 0.989

a repulsive term in r−n and an attractive term in r−6, where
r is the centre to centre distance between the two interacting
spheres considered and n is the stiffness of the repulsion. It
can be expressed as

UMie (r) =



n
n − 6

( n
6

) 6
n−6

ε

(
σ

r

)n
−

(
σ

r

)6


if r ≤ rc

0 if r > rc
,

(1)

where ε is the potential strength, σ is the sphere “diameter,”
and rc is the cutoff radius (taken equal to 2.5σ in this work).
In mixtures composed of Mie fluids of different repulsion
exponents, a simple arithmetic combining rule has been
employed on the n exponent.36

In this work, n was chosen to vary between 8 and 36,
which yields very different potential shapes (see Fig. 1). This
range of n covers the values that are usually employed to de-
scribe real fluids.27,28 It should be noticed that this potential re-
duces to the well known Lennard-Jones potential when n = 12.

The Mie n-6 fluids are strongly non-conformal as exhib-
ited by their van der Waals constant that varies from 1.26
to 0.52, respectively.27 However, as shown in Fig. 2, they
exhibit a strong correlation between the virial, W , and the
potential energy, U , during canonical (NVT) molecular dy-
namics simulations. The values of the correlation coefficient R
=⟨∆W∆U⟩/

(⟨(∆U)2(∆W )2⟩) are provided in Table I and
confirms quantitatively that a strong correlation exists between
the virial and potential energy fluctuations (R ≈ 0.99).

This result supports the use of the thermodynamic scaling,
and more generally the concept of isomorph, for such fluids.9

FIG. 2. Fluctuations, per particle, of virial, ∆W ∗, versus fluctuations of potential energy, ∆U∗, for the Mie 8-6 fluid (left figure) and the Mie 36-6 fluid (right
figure). The results correspond to NVT simulations at ρ∗= 1 for three different T ∗.
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In the following sections dimensionless units are used,22

T∗ =
kBT
ε

, ρ∗ =
Nσ3

V
,P∗ =

Pσ3

ε
,and η∗ = η

σ2

√
Mε

(2)

as well as the reduced viscosity given by6

ηr = η
ρ−2/3
n

(MkBT)1/2 , (3)

where kB is the Boltzmann constant, T is the temperature, N
is the total number of particles in the simulation box, V is the
volume of the simulation box, P is the pressure, M is the mass
of one particle, η is the shear viscosity, and ρn is the number
density (= N

V
).

B. Molecular dynamics simulations

1. Computation of shear viscosity

Non-equilibrium molecular dynamics simulations have
been performed to compute the shear viscosity of Mie fluids
for various thermodynamic states. To do so, the boundary
driven NEMD scheme of Müller-Plathe37 is used. This
approach is based on a momentum exchange between the
central and the edge parts of the simulations box and is
compatible with periodic boundary conditions. This exchange
generates a biperiodical shear stress, which combined with the
computation of the shear rate allows a direct estimation of the
shear viscosity of the studied system at the stationary state.37

This approach has shown to be efficient to compute the shear
viscosity of simple fluids including Mie fluids.28,32,36

2. Numerical details

The simulations have been performed using a homemade
code already validated on various fluid types including the
Mie ones.32,36,38–40 The equations of motion are integrated
by using the velocity Verlet algorithm and a reduced time
step δt∗ = 0.002. Classical periodic boundaries with Verlet
neighbor’s lists are employed.22 The targeted temperature is
maintained by applying a Berendsen thermostat.41 The sub-
block method is used to compute error bars. The NEMD
scheme is applied with a subdivision of the simulation box
in 24 slabs. An exchange frequency equal to 500 has been
chosen to avoid shear thinning,40,42,43 a point that has been
verified during simulations. The slabs where the exchanges are
performed, as well as their first neighbors, have been discarded
to compute the shear rate. Simulations have been performed on
1500 particles during at least 1.5 × 107 non-equilibrium time
steps at the steady state to compute shear viscosity of the Mie
fluid. Using these parameters, the error bars on viscosity are
lower than 5% in most cases. They are omitted in the figures
for sake of clarity.

C. Viscosity modeling

1. Thermodynamic scaling of viscosity

In simple dense fluids,6 the reduced shear viscosity, as
well as other dynamic properties,14 is invariant when ργ

T
is

constant (so-called an isomorph9), i.e., ηr = f
(
ργ

T

)
. In this

frame, f is an unknown function and γ is a parameter specific
of the considered fluid that is closely related to the steepness
of the repulsion between the molecules of the considered
fluid.11,15 Recently, this approach has been modified to be
applicable to a wider range of thermodynamic conditions,
towards low to moderate density conditions13 and towards
very high densities.44

To deal with low to moderate density conditions, one
has to use the reduced residual viscosity, ηr

res, instead of
the total reduced shear viscosity.6,13 The residual viscosity
is defined as ηres = η − η0, where η0 is the zero-density
viscosity that can be evaluated from the kinetic theory46,47

for the Mie fluids. The rationale for that choice relies on
the fact that linear momentum transfer is composed of two
contributions at the microscopic scale, one due to particle
translation from one place to another (“ideal” part) and
one due to interaction/collisions (“configurational” part).13,40

Thus, shear viscosity can be decomposed into a sum of
two contributions. The first contribution, due to translations
and equal to the zero-density viscosity,40–43 is dominant at
low density (gas state) and the second contribution, due
to collisions, is dominant at high density (liquid state). As
thermodynamic scaling describes the behavior of the fluid due
to interactions and not the “ideal” part, it is physically sensible
to employ the reduced residual viscosity instead of the reduced
total viscosity. Indeed, in the seminal article of Ashurst and
Hoover on thermodynamic scaling,6 it is already proposed to
do so. Another practical reason is that when using reduced
total viscosity instead of the residual reduced one, the former
diverges at zero density.13 In this frame, the thermodynamic
scaling leads to the following relation:

ηrres = g

(
ργ

T

)
, (4)

where g is an unknown function.
To deal with very dense states, it has been shown recently

that γ should be taken as density dependent, and so, ργ should
be replaced by a function h(ρ).9,44,45 In this frame, for a Mie
n-6 fluid,

h (ρ) = αρn/3 + (1 − α)ρ2, (5)

where α = 3(Γ − 2)/(n − 6) and Γ is deduced during NVT
simulations from the potential energy and virial fluctuations
thanks to the relation Γ = ⟨∆W∆U⟩ / (∆U)2.44,45 It should
be noticed that Γ corresponds to the slopes of the WU plots in
the least squares frame.

2. Viscosity correlation

Starting from the shear viscosity values computed using
NEMD simulations, the knowledge of the zero density
viscosity is required in order to compute the residual viscosity,
cf. Eq. (4). To do so, for the Mie fluids studied in this work, the
Chapman-Enskog solution of the Boltzmann equation is em-
ployed.46 The zero density viscosity writes in dimensionless
units,

η∗0 =
5

16Ωv


T∗

π
, (6)
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where Ωv is the collision integral that is temperature and
potential dependent. To computeΩv, we have used the accurate
correlation proposed by Fokin et al.,47 which applies to the Mie
n-6 fluid,

ln (Ωv) = −2
n

ln (T∗) + ln
(
1 − 2

3n

)
+

4

i=1
ai (n)

(
1

T∗

) i−1
2

,

(7)

where ai (n) = ai1 +
ai2
n
+

ai3
n2 +

ai4
n3 . The constants ai1, ai2,

ai3, and ai4 are provided in Fokin et al.47

As it will be shown in Sec. III, for the thermodynamic
range studied in this work, the γ parameter in the thermo-
dynamic scaling approach can be considered as a constant.
However, the function g in Eq. (4) is not theoretically known
even if recent progress has been recently achieved.14,48–50 So,
in this work, we have employed an empirical relation51 to
describe the reduced residual viscosity,

ηrres = b1


eb2X

b3 − 1 + b4Xb5


, (8)

where b1, b2, b3, and b4 are adjusted numerical parameters and
X = ρ∗γ

T ∗ . The first term in the bracket of Eq. (8) is a modified
Avramov’s model.14 The last term is an empirical term used
to describe ηrres in the low density (and/or high temperatures)
regime, i.e., when X is small. It should be noticed that Eq. (8)
ensures that ηrres tends to zero when the density tends to zero.
The fitting to determine all the bi and γ for each Mie fluid
has been performed so as to minimize the Average Absolute
Deviation (AAD) between the estimated total viscosity and
the molecular dynamics simulation results.

III. RESULTS

A. Pure Mie fluids

In this section, we aim at testing the applicability of the
thermodynamic scaling/isomorph theory on Mie fluids. To
do so, we have performed extensive NEMD simulations on
the Mie n-6 fluid (n = 8, 12, 18, 24, and 36) to compute
its viscosity for various thermodynamic conditions covering
liquid and supercritical states. More precisely, T∗ ranges from
0.8 to 6 and ρ∗ varies from 0.6 to 1.1. Then, we have deduced
the residual reduced viscosity for each Mie n-6 fluid by using
the procedure described in Sec. II.

1. Classical thermodynamic scaling

In this subsection, we aim at showing that the reduced
residual ηrres of Mie fluids is a function of ργ

T
(with T∗ varying

from 0.8 to 6 and ρ∗ varying from 0.6 to 1.1), in which the
coefficient γ is taken as a constant and is a function of n only.
Equation (8) was used to determine the optimal values of γ
for each n with the procedure described in Subsection II C 2.
The values are provided in Table I.

As clearly exhibited in Fig. 3, the thermodynamic scaling
with γ taken as a constant is well adapted to describe the
reduced residual shear viscosity of Mie n-6 fluids for all sys-
tems studied here. As expected, ηrres increases monotonously
with ργ

T
on the thermodynamic range studied and tends to zero

FIG. 3. Reduced residual viscosity for different Mie n-6 fluids versus
ρ∗γ/T ∗ for the γ values indicated in Table I. Symbols correspond to MD
simulation results and dotted lines to the correlations.

when ργ

T
tends to zero. Furthermore, empirical Eq. (8) is able

to correlate accurately the simulation results for all Mie n-6
fluids over the full range of thermodynamic conditions tested,
see Table II. Quantitatively, Eq. (8) combined with Eq. (6)
allows an estimation of the total viscosity with AAD between
1.9% and 2.3% and Maximum absolute Deviations (MxD)
between 6.9% and 7.6% compared to NEMD simulation
results. Such deviations are as good as those obtained using
the most accurate empirical correlations dedicated to deal with
model fluids38,52 and real fluids.53–56

Concerning the behavior of γ with the repulsion exponent
n, the results are consistent with the literature on similar model
fluids,57–59 see Table I. In particular, γ increases noticeably
with the repulsion exponent n. Interestingly, this increase is
linear on the studied range of n and is well described by

γ =
n

2.78
+ 0.68. (9)

This behavior is consistent with the fact that γ = n/3
when dealing with a purely repulsive model fluid (soft
spheres) interacting through an r−n potential.6 Qualitatively,
the difference between the Mie and the soft sphere models is
due to the attractive term which leads to an effective repulsive
part of the potential noticeably steeper that the r−n term
alone.57–59

These findings can be used to shed light on the modeling
of thermophysical properties of real simple fluids using the
Mie potential. As an example, Avendaño et al.60 have shown
that the SF6 is adequately modeled by a Mie 19.02-8.8 sphere

TABLE II. Deviations between the viscosity correlation, Eq. (8), and MD
simulation results for different Mie n-6 pure fluids.

n Number of data points AAD (in %) MxD (in %)

8 54 2.1 7.4
12 55 2.0 7.1
18 57 2.3 6.9
24 61 2.2 7.6
36 54 1.9 7.4
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when dealing with thermodynamic properties. This potential
corresponds to a relatively high repulsive exponent compared
to the usual values for spherical fluids (typically around 12).
This is fully consistent with the value γ = 8 obtained when
Boned et al.51 applied the thermodynamic scaling to the
reduced residual viscosity of SF6, a value that was noticed
as particularly high for a spherical fluid (γ of argon is
approximately equal to 5 as shown in Ref. 13).

It should be noticed that when dealing with non-spherical
fluids, usually the larger the non-sphericity, the higher the
repulsive exponent of the spherical potential.13 For example,
this effect has been noted for chain molecules interacting
through a Lennard-Jones site-site potential both at low
densities61 and in the dense regime.13

2. Thermodynamic scaling with a density dependent
parameter

As shown recently,9,44,45 when dealing with a large range
of densities, in the dense regime, γ cannot be taken as density
independent, and so, ργ should be replaced by a function h(ρ)
to define the isomorphs. In Mie n-6 fluids, h(ρ) can be fully
determined using Eq. (5) which only requires the computation
of Γ = ⟨∆W∆U⟩ / (∆U)2 at a given state point, i.e., the slope
of the WU plot. This has been done during NVT simulations at
ρ∗ = 1 and T∗ = 2 for all Mie n-6 studied in this work. Results
are provided in Table I and shown in Fig. 4.

Results provided in Fig. 4 clearly exhibit that the reduced
residual viscosity scales very well with h(ρ)/T , confirming the
applicability of the approach without any fitting procedure.
One can however note a non-monotonous behavior when
h(ρ)/T becomes small and negative. Thus, the improvement
over the approach considering γ as a constant (see Sec. III A 1)
is not obvious for the studied systems. This is mainly because
we have not performed simulation in very dense systems
(ρ∗ ≤ 1.1) and probably because of the non-negligible error
bars of the computed shear viscosity for the densest systems
(up to 5%).

In addition, as already shown in Ref. 59 for similar model
fluids, it is interesting to note that γ deduced from the whole

FIG. 4. Reduced residual viscosity for different Mie n-6 fluids versus
h(ρ∗)/T ∗. Symbols correspond to MD simulation results.

set of viscosity data and Γ computed from the ∆U − ∆W
correlation at one state point (ρ∗ = 1 and T∗ = 2) are very
close to each other, see Table I.

B. Thermodynamic scaling of binary mixtures

In the literature, some studies were dedicated to mixtures,
e.g., Refs. 44 and 62, but to the best of our knowledge,
none were dedicated to make a link (thanks to a mixing rule)
between the γ values obtained in pure fluids and in mixtures.
This is the purpose of this subsection while considering γ
as density independent. The Mie n-6 fluid is relevant for
such a study since it is based on a simple molecular model
(spherical molecules, only repulsive/dispersive interactions)
and the associated value of γ varies strongly with n, see
Subsection III A 1. Thus, we have studied a binary mixture
composed of Mie 8-6 and Mie 36-6 particles (having the same
size, energy and mass parameters) in various proportions:
0.125, 0.25, 0.5, 0.75, and 0.875 in mole fraction. This
choice allows working on a mixture composed of species
corresponding to very different values of γ, 3.65 and 13.7,
respectively.

Extensive NEMD simulations have been performed to
compute the viscosities of these mixtures for the same ther-
modynamic conditions as in pure fluids, i.e., T∗ ranges from
0.8 to 6 and ρ∗ varies from 0.6 to 1.1. To deduce the resid-
ual reduced viscosity of the mixtures and to apply the ther-
modynamic scaling approach, a scheme similar to that used
to deal with pure fluids has been applied, see Sec. II C 2.
Wilke’s method63 combined with the correlation method of
Fokin et al.47 has been used to estimate the zero-density shear
viscosity of these mixtures. It should be noted that, despite
the limitations of the Wilke’s method, this approach leads to
errors which are lower than the error bars of the simulation
results for the systems studied here (relatively dense and not
very asymmetric mixtures). Finally, Eq. (8) has been applied
to determine the optimal value of γ for each composition of the
mixture. Results are provided in Table III and shown in Fig. 5.

Interestingly, as exhibited in Fig. 5, the thermodynamic
scaling applies well to the studied mixtures. Furthermore, the
empirical relation given in Eq. (8) is able to correlate well
the results, the deviations being similar to that on pure fluids,
see Table III. The values of γ computed from the simulation
results on the mixtures are shown in Fig. 6. As expected, they
vary smoothly and monotonously with concentration between
those obtained on pure fluids.

TABLE III. Results on the thermodynamic scaling of viscosity for different
mixtures composed of Mie 8-6 and Mie 36-6 species.

Mole fraction
of Mie 36-6 γ

Number of
data points

AAD (in %)
using Eq. (8)

MxD (in %)
using Eq. (8)

0 3.65 59 2.3 7.1
0.125 4.2 96 1.5 4.4
0.25 5.05 28 1.3 4.9
0.5 7.1 51 1.3 4.8
0.75 9.7 27 1.4 4.2
0.875 11.65 90 1.5 5.7
1 13.7 54 1.9 7.4
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FIG. 5. Reduced residual viscosity for different binary mixtures composed
of Mie 36-6 and Mie 8-6 fluids versus ρ∗γ/T ∗ for the γ values indicated in
Table III.

An interesting point is to check whether it is possible to
deduce these values of γ in mixtures from those of the pure
components. For that purpose, we have first tested a one-fluid
approximation developed for the Mie fluid thermodynamic
properties.36 Such an approach consists in defining the repul-
sive exponent, n1−fluid, of the pseudo-compound “equivalent”
to the mixture by(

n1−fluid − 6
n1−fluid

)1/2

=


i


j
xix j

(
ni j − 6

ni j

)1/2

, (10)

where xi is the mole fraction of component i and ni j is the
repulsive exponent between particles i and j. Fig. 6 indicates
that such an approximation combined with Eq. (9) yields a
reasonable estimate of the values of γ in Mie mixtures, despite
a systematic underestimation that is maximum at equimolar
composition.

In addition to the one-fluid approximation approach, we
have tested several empirical mixing rules on γ. It has been
found that the one based on the following relation:

ln (γMix) = x1 ln (γ1) + (1 − x1) ln (γ2) (11)

FIG. 6. γ values for binary mixtures composed of Mie 36-6 and Mie 8-6
fluids against the Mie 36-6 mole fractions, xMie 36-6.

is the most accurate one as clearly shown in Fig. 6, the
deviation from the simulation results being at most 2.5%. In
addition, when using Eq. (11) to estimate gamma in mixtures,
the correlation of the MD viscosity using Eq. (8) is as good as
those obtained with a full fit, AAD and MxD being within 0.2%
of those provided in Table III. Eq. (11) is so very interesting
as it allows yielding an estimate of γ in mixture directly from
the pure component values and the composition.

IV. CONCLUSIONS

We have tested the applicability of the so-called thermo-
dynamic scaling and isomorph theory to model the reduced
residual shear viscosity of Mie n-6 fluids and binary mixtures
of Mie n-6 fluids, n varying from 8 to 36. To do so, a
viscosity database of these model fluids has been created using
NEMD simulations for various thermodynamic conditions
(0.8 ≤ T∗ ≤ 6 and 0.6 ≤ ρ∗ ≤ 1.1).

It has been found that the thermodynamic scaling with
a constant gamma parameter is well respected in such model
fluids both in pure fluids and mixtures in the studied density
range. In addition, the applicability of the isomorph theory
with a density dependent gamma has been confirmed in
pure fluids. However, this approach does not show noticeable
improvements over the assumption of a constant gamma when
density is not too high (i.e., ρ∗ ≤ 1.1) as in the systems studied
in this work. When combined with an empirical equation,
the thermodynamic scaling frame can be used efficiently to
correlate the viscosity results with deviations below 8% in all
cases.

Rather interestingly, it has been found that γ increases
noticeably with the repulsion exponent n in a linear manner,
consistently with what known for soft spheres. Such a
result could be interesting to estimate the effective repulsion
exponent from viscosity data of coarse grained molecular
model of simple real fluids.

In mixtures, the values of γ computed from the simulation
results vary smoothly and monotonously between those
obtained on pure fluids. Hence, it has been found that a simple
logarithmic mixing rule allows to estimate accurately γ in
mixture directly from the pure component values and the
composition.
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