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Abstract—Sample measures of top centile contributions to the
total (concentration) are downward biased, unstable estimators,
extremely sensitive to sample size and concave in accounting for
large deviations. It makes them particularly unfit in domains
with power law tails, especially for low values of the exponent.
These estimators can vary over time and increase with the
population size, as shown in this article, thus providing the
illusion of structural changes in concentration. They are also
inconsistent under aggregation and mixing distributions, as the
weighted average of concentration measures for A and B will
tend to be lower than that from A ∪ B. In addition, it can be
shown that under such fat tails, increases in the total sum need
to be accompanied by increased sample size of the concentration
measurement. We examine the estimation superadditivity and
bias under homogeneous and mixed distributions.
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I. INTRODUCTION

Vilfredo Pareto noticed that 80% of the land in Italy

belonged to 20% of the population, and vice-versa, thus both

giving birth to the power law class of distributions and the

popular saying 80/20. The self-similarity at the core of the

property of power laws [?] and [?] allows us to recurse and

reapply the 80/20 to the remaining 20%, and so forth until one

obtains the result that the top percent of the population will

own about 53% of the total wealth.

It looks like such a measure of concentration can be

seriously biased, depending on how it is measured, so it is

very likely that the true ratio of concentration of what Pareto

observed, that is, the share of the top percentile, was closer

to 70%, hence changes year-on-year would drift higher to

converge to such a level from larger sample. In fact, as we

will show in this discussion, for, say wealth, more complete

samples resulting from technological progress, and also larger

population and economic growth will make such a measure

converge by increasing over time, for no other reason than

expansion in sample space or aggregate value.

The core of the problem is that, for the class one-tailed

fat-tailed random variables, that is, bounded on the left and

unbounded on the right, where the random variable X ∈
[xmin,∞), the in-sample quantile contribution is a biased

estimator of the true value of the actual quantile contribution.

Let us define the quantile contribution

κq = q
E[X|X > h(q)]

E[X]

where h(q) = inf{h ∈ [xmin,+∞) ,P(X > h) ≤ q} is the

exceedance threshold for the probability q.

For a given sample (Xk)1≤k≤n, its "natural" estimator κ̂q ≡
qthpercentile

total , used in most academic studies, can be expressed,

as

κ̂q ≡

∑n
i=1 Xi>ĥ(q)Xi∑n

i=1 Xi

where ĥ(q) is the estimated exceedance threshold for the

probability q :

ĥ(q) = inf{h :
1

n

n∑

i=1

x>h ≤ q}

We shall see that the observed variable κ̂q is a downward

biased estimator of the true ratio κq , the one that would hold

out of sample, and such bias is in proportion to the fatness of

tails and, for very fat tailed distributions, remains significant,

even for very large samples.

II. ESTIMATION FOR UNMIXED PARETO-TAILED

DISTRIBUTIONS

Let X be a random variable belonging to the class of

distributions with a "power law" right tail, that is:

P(X > x) ∼ L(x)x−α (1)

where L : [xmin,+∞) → (0,+∞) is a slowly varying

function, defined as limx→+∞
L(kx)
L(x) = 1 for any k > 0.

There is little difference for small exceedance quantiles

(<50%) between the various possible distributions such as

Student’s t, Lévy α-stable, Dagum,[?],[?] Singh-Maddala dis-

tribution [?], or straight Pareto.

For exponents 1 ≤ α ≤ 2, as observed in [?], the law of

large numbers operates, though extremely slowly. The problem

is acute for α around, but strictly above 1 and severe, as it

diverges, for α = 1.

A. Bias and Convergence

1) Simple Pareto Distribution: Let us first consider φα(x)
the density of a α-Pareto distribution bounded from below by

xmin > 0, in other words: φα(x) = αxα
minx

−α−1
x≥xmin

, and

P(X > x) =
(
xmin

x

)
α. Under these assumptions, the cutpoint

of exceedance is h(q) = xmin q
−1/α and we have:

κq =

∫∞

h(q)
xφ(x)dx

∫∞

xmin
xφ(x)dx

=

(
h(q)

xmin

)
1−α = q

α−1

α (2)

1
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If the distribution of X is α-Pareto only beyond a cut-point

xcut, which we assume to be below h(q), so that we have

P(X > x) =
(
λ
x

)
α for some λ > 0, then we still have

h(q) = λq−1/α and

κq =
α

α− 1

λ

E [X]
q

α−1

α

The estimation of κq hence requires that of the exponent α as

well as that of the scaling parameter λ, or at least its ratio to

the expectation of X .

Table I shows the bias of κ̂q as an estimator of κq in the

case of an α-Pareto distribution for α = 1.1, a value chosen

to be compatible with practical economic measures, such as

the wealth distribution in the world or in a particular country,

including developped ones.1 In such a case, the estimator is

extemely sensitive to "small" samples, "small" meaning in

practice 108. We ran up to a trillion simulations across varieties

of sample sizes. While κ0.01 ≈ 0.657933, even a sample size

of 100 million remains severely biased as seen in the table.

Naturally the bias is rapidly (and nonlinearly) reduced for α

further away from 1, and becomes weak in the neighborhood

of 2 for a constant α, though not under a mixture distribution

for α, as we shall se later. It is also weaker outside the top

1% centile, hence this discussion focuses on the famed "one

percent" and on low values of the α exponent.

TABLE I: Biases of Estimator of κ = 0.657933 From 1012

Monte Carlo Realizations

κ̂(n) Mean Median STD
across MC runs

κ̂(103) 0.405235 0.367698 0.160244

κ̂(104) 0.485916 0.458449 0.117917

κ̂(105) 0.539028 0.516415 0.0931362

κ̂(106) 0.581384 0.555997 0.0853593

κ̂(107) 0.591506 0.575262 0.0601528

κ̂(108) 0.606513 0.593667 0.0461397

In view of these results and of a number of tests we have

performed around them, we can conjecture that the bias κq −
κ̂q(n) is "of the order of" c(α, q)n−b(q)(α−1) where constants

b(q) and c(α, q) need to be evaluated. Simulations suggest that

b(q) = 1, whatever the value of α and q, but the rather slow

convergence of the estimator and of its standard deviation to

0 makes precise estimation difficult.

2) General Case: In the general case, let us fix the thresh-

old h and define:

κh = P (X > h)
E[X|X > h]

E[X]
=

E[X X>h]

E[X]

so that we have κq = κh(q). We also define the n-sample

estimator:

κ̂h ≡

∑n
i=1 Xi>hXi∑n

i=1 Xi

where Xi are n independent copies of X . The intuition

behind the estimation bias of κq by κ̂q lies in a difference

of concavity of the concentration measure with respect to

1This value, which is lower than the estimated exponents one can find in
the literature – around 2 – is, following [?], a lower estimate which cannot
be excluded from the observations.

an innovation (a new sample value), whether it falls below

or above the threshold. Let Ah(n) =
∑n

i=1 Xi>hXi and

S(n) =
∑n

i=1 Xi, so that κ̂h(n) =
Ah(n)

S(n)
and assume a

frozen threshold h. If a new sample value Xn+1 < h then the

new value is κ̂h(n+1) =
Ah(n)

S(n) +Xn+1
. The value is convex

in Xn+1 so that uncertainty on Xn+1 increases its expectation.

At variance, if the new sample value Xn+1 > h, the new value

κ̂h(n + 1) ≈ Ah(n)+Xn+1−h
S(n)+Xn+1−h = 1 − S(n)−Ah(n)

S(n)+Xn+1−h , which is

now concave in Xn+1, so that uncertainty on Xn+1 reduces its

value. The competition between these two opposite effects is in

favor of the latter, because of a higher concavity with respect

to the variable, and also of a higher variability (whatever its

measurement) of the variable conditionally to being above

the threshold than to being below. The fatter the right tail

of the distribution, the stronger the effect. Overall, we find

that E [κ̂h(n)] ≤
E [Ah(n)]

E [S(n)]
= κh (note that unfreezing the

threshold ĥ(q) also tends to reduce the concentration measure

estimate, adding to the effect, when introducing one extra

sample because of a slight increase in the expected value of

the estimator ĥ(q), although this effect is rather negligible).

We have in fact the following:

Proposition 1. Let X = (X)ni=1 a random sample of size

n > 1
q , Y = Xn+1 an extra single random observation, and

define: κ̂h(X ) Y ) =

∑n
i=1 Xi>hXi + Y >hY∑n

i=1 Xi + Y
. We remark

that, whenever Y > h, one has:

∂2κ̂h(X ) Y )

∂Y 2
≤ 0.

This inequality is still valid with κ̂q as the value ĥ(q,X )Y )
doesn’t depend on the particular value of Y > ĥ(q,X).

We face a different situation from the common small sample

effect resulting from high impact from the rare observation

in the tails that are less likely to show up in small samples,

a bias which goes away by repetition of sample runs. The

concavity of the estimator constitutes a upper bound for the

measurement in finite n, clipping large deviations, which

leads to problems of aggregation as we will state below

in Theorem 1. In practice, even in very large sample, the

contribution of very large rare events to κq slows down the

convergence of the sample estimator to the true value. For a

better, unbiased estimate, one would need to use a different

path: first estimating the distribution parameters
(
α̂, λ̂

)
and

only then, estimating the theoretical tail contribution κq(α̂, λ̂).
Falk [?] observes that, even with a proper estimator of α and

λ, the convergence is extremely slow, namely of the order of

n−δ/lnn, where the exponent δ depends on α and on the

tolerance of the actual distribution vs. a theoretical Pareto,

measured by the Hellinger distance. In particular, δ → 0 as

α → 1, making the convergence really slow for low values of

α.

Documents de Travail du Centre d'Economie de la Sorbonne - 2014.90



EXTREME RISK INITIATIVE —NYU SCHOOL OF ENGINEERING WORKING PAPER SERIES 3

20000 40000 60000 80000 100000
Y

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Κ!"Xi#Y"

Fig. 1: Effect of additional observations on κ
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Fig. 2: Effect of additional observations on κ, we can see

convexity on both sides of h except for values of no effect to

the left of h, an area of order 1/n

III. AN INEQUALITY ABOUT AGGREGATING INEQUALITY

For the estimation of the mean of a fat-tailed r.v. (X)ji , in

m sub-samples of size ni each for a total of n =
∑m

i=1 ni,

the allocation of the total number of observations n between

i and j does not matter so long as the total n is unchanged.

Here the allocation of n samples between m sub-samples does

matter because of the concavity of κ.2 Next we prove that

global concentration as measured by κ̂q on a broad set of data

will appear higher than local concentration, so aggregating

European data, for instance, would give a κ̂q higher than

the average measure of concentration across countries – an

"inequality about inequality". In other words, we claim that

the estimation bias when using κ̂q(n) is even increased when

dividing the sample into sub-samples and taking the weighted

average of the measured values κ̂q(ni).

Theorem 1. Partition the n data into m sub-samples N =
N1∪ . . .∪Nm of respective sizes n1, . . . , nm, with

∑m
i=1 ni =

n, and let S1, . . . , Sm be the sum of variables over each sub-

sample, and S =
∑m

i=1
Si be that over the whole sample.

2The same concavity – and general bias – applies when the distribution is
lognormal, and is exacerbated by high variance.

Then we have:

E [κ̂q(N)] ≥
m∑

i=1

E

[
Si

S

]
E [κ̂q(Ni)]

If we further assume that the distribution of variables Xj is

the same in all the sub-samples. Then we have:

E [κ̂q(N)] ≥
m∑

i=1

ni

n
E [κ̂q(Ni)]

In other words, averaging concentration measures of sub-

samples, weighted by the total sum of each subsample,

produces a downward biased estimate of the concentration

measure of the full sample.

Proof. An elementary induction reduces the question to the

case of two sub-samples. Let q ∈ (0, 1) and (X1, . . . , Xm)
and (X ′

1, . . . , X
′
n) be two samples of positive i.i.d. random

variables, the Xi’s having distributions p(dx) and the X ′
j’s

having distribution p′(dx′). For simplicity, we assume that

both qm and qn are integers. We set S =
m∑

i=1

Xi and

S′ =
n∑

i=1

X ′
i. We define A =

mq∑

i=1

X[i] where X[i] is the i-

th largest value of (X1, . . . , Xm), and A′ =

mq∑

i=1

X ′
[i] where

X ′
[i] is the i-th largest value of (X ′

1, . . . , X
′
n) . We also set

S′′ = S + S′ and A” =

(m+n)q∑

i=1

X ′′
[i] where X ′′

[i] is the i-th

largest value of the joint sample (X1, . . . , Xm, X ′
1, . . . , X

′
n).

The q-concentration measure for the samples

X = (X1, ..., Xm), X
′ = (X ′

1, ..., X
′
n) and

X
′′ = (X1, . . . , Xm, X ′

1, . . . , X
′
n) are:

κ =
A

S
κ′ =

A′

S′
κ′′ =

A′′

S′′

We must prove that he following inequality holds for expected

concentration measures:

E [κ′′] ≥ E

[
S

S′′

]
E [κ] + E

[
S′

S′′

]
E [κ′]

We observe that:

A = max
J⊂{1,...,m}

|J|=θm

∑

i∈J

Xi

and, similarly A′ = maxJ′⊂{1,...,n},|J ′|=qn

∑
i∈J ′ X

′
i and

A′′ = maxJ′′⊂{1,...,m+n},|J ′′|=q(m+n)

∑
i∈J′′ Xi, where we

have denoted Xm+i = X ′
i for i = 1 . . . n. If J ⊂

{1, ...,m} , |J | = θm and J ′ ⊂ {m+ 1, ...,m+ n} , |J ′| =
qn, then J ′′ = J ∪ J ′ has cardinal m + n, hence A + A′ =∑

i∈J′′ Xi ≤ A′′, whatever the particular sample. Therefore

κ′′ ≥ S
S′′

κ+ S′

S′′
κ′ and we have:

E [κ′′] ≥ E

[
S

S′′
κ

]
+ E

[
S′

S′′
κ′

]

Let us now show that:

E

[
S

S′′
κ

]
= E

[
A

S′′

]
≥ E

[
S

S′′

]
E

[
A

S

]
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If this is the case, then we identically get for κ′ :

E

[
S′

S′′
κ′

]
= E

[
A′

S′′

]
≥ E

[
S′

S′′

]
E

[
A′

S′

]

hence we will have:

E [κ′′] ≥ E

[
S

S′′

]
E [κ] + E

[
S′

S′′

]
E [κ′]

Let T = X[mq] be the cut-off point (where [mq] is the

integer part of mq), so that A =
m∑

i=1

Xi Xi≥T and let B =

S − A =
m∑

i=1

Xi Xi<T . Conditionally to T , A and B are

independent: A is a sum if mθ samples constarined to being

above T , while B is the sum of m(1−θ) independent samples

constrained to being below T . They are also independent of

S′. Let pA(t, da) and pB(t, db) be the distribution of A and

B respectively, given T = t. We recall that p′(ds′) is the

distribution of S′ and denote q(dt) that of T . We have:

E

[
S

S′′
κ

]
=

∫∫
a+ b

a+ b+ s′
a

a+ b
pA(t, da) pB(t, db) q(dt) p

′(ds′)

For given b, t and s′, a → a+b
a+b+s′ and a → a

a+b
are two increasing functions of the same variable a, hence

conditionally to T , B and S′, we have:

E

[
S

S′′
κ

∣∣∣∣T,B, S′

]
= E

[
A

A+B + S′

∣∣∣∣T,B, S′

]

≥ E

[
A+B

A+B + S′

∣∣∣∣T,B, S′

]
E

[
A

A+B

∣∣∣∣T,B, S′

]

This inequality being valid for any values of T , B and S′, it

is valid for the unconditional expectation, and we have:

E

[
S

S′′
κ

]
≥ E

[
S

S′′

]
E

[
A

S

]

If the two samples have the same distribution, then we have:

E [κ′′] ≥
m

m+ n
E [κ] +

n

m+ n
E [κ′]

Indeed, in this case, we observe that E
[

S
S′′

]
= m

m+n . In-

deed S =
∑m

i=1 Xi and the Xi are identically distributed,

hence E
[

S
S′′

]
= mE

[
X
S′′

]
. But we also have E

[
S′′

S′′

]
=

1 = (m + n)E
[
X
S′′

]
therefore E

[
X
S′′

]
= 1

m+n . Similarly,

E

[
S′

S′′

]
= n

m+n , yielding the result.

This ends the proof of the theorem.

Let X be a positive random variable and h ∈ (0, 1). We

remind the theoretical h-concentration measure, defined as:

κh =
P (X > h)E [X |X > h ]

E [X]

whereas the n-sample θ-concentration measure is κ̂h(n) =
A(n)
S(n) , where A(n) and S(n) are defined as above for an n-

sample X = (X1, . . . , Xn) of i.i.d. variables with the same

distribution as X .

Theorem 2. For any n ∈ N, we have:

E [κ̂h(n)] < κh

and

lim
n→+∞

κ̂h(n) = κh a.s. and in probability

Proof. The above corrolary shows that the sequence

nE [κ̂h(n)] is super-additive, hence E [κ̂h(n)] is an increasing

sequence. Moreover, thanks to the law of large numbers,
1
nS(n) converges almost surely and in probability to E [X]
and 1

nA(n) converges almost surely and in probability to

E [X X>h] = P (X > h)E [X |X > h ], hence their ratio

also converges almost surely to κh. On the other hand,

this ratio is bounded by 1. Lebesgue dominated convergence

theorem concludes the argument about the convergence in

probability.

IV. MIXED DISTRIBUTIONS FOR THE TAIL EXPONENT

Consider now a random variable X , the distribution of

which p(dx) is a mixture of parametric distributions with

different values of the parameter: p(dx) =
∑m

i=1 ωipαi
(dx).

A typical n-sample of X can be made of ni = ωin samples

of Xαi
with distribution pαi

. The above theorem shows that,

in this case, we have:

E [κ̂q(n,X)] ≥
m∑

i=1

E

[
S(ωin,Xαi

)

S(n,X)

]
E [κ̂q(ωin,Xαi

)]

When n → +∞, each ratio
S(ωin,Xαi

)

S(n,X)
converges almost

surely to ωi respectively, therefore we have the following

convexity inequality:

κq(X) ≥

m∑

i=1

ωiκq(Xαi
)

The case of Pareto distribution is particularly interesting.

Here, the parameter α represents the tail exponent of the

distribution. If we normalize expectations to 1, the cdf of Xα

is Fα(x) = 1−
(

x
xmin

)−α

and we have:

κq(Xα) = q
α−1

α

and
d2

dα2
κq(Xα) = q

α−1

α
(log q)2

α3
> 0

Hence κq(Xα) is a convex function of α and we can write:

κq(X) ≥
m∑

i=1

ωiκq(Xαi
) ≥ κq(Xᾱ)

where ᾱ =
∑m

i=1 ωiα.

Suppose now that X is a positive random variable with

unknown distribution, except that its tail decays like a power

low with unknown exponent. An unbiased estimation of the

exponent, with necessarily some amount of uncertainty (i.e.,

a distribution of possible true values around some average),

would lead to a downward biased estimate of κq.
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Because the concentration measure only depends on the tail

of the distribution, this inequality also applies in the case of

a mixture of distributions with a power decay, as in Equation

1:

P(X > x) ∼
N∑

j=1

ωiLi(x)x
−αj (3)

The slightest uncertainty about the exponent increases the

concentration index. One can get an actual estimate of this

bias by considering an average ᾱ > 1 and two surrounding

values α+ = α+ δ and α− = α− δ. The convexity inequaly

writes as follows:

κq(ᾱ) = q1−
1
ᾱ <

1

2

(
q1−

1
α+δ + q1−

1
α−δ

)

So in practice, an estimated ᾱ of around 3/2, sometimes

called the "half-cubic" exponent, would produce similar results

as value of α much closer ro 1, as we used in the previous

section. Simply κq(α) is convex, and dominated by the second

order effect
ln(q)q

1− 1
α+δ (ln(q)−2(α+δ))
(α+δ)4 , an effect that is exac-

erbated at lower values of α.

To show how unreliable the measures of inequality concen-

tration from quantiles, consider that a standard error of 0.3 in

the measurement of α causes κq(α) to rise by 0.25.

V. A LARGER TOTAL SUM IS ACCOMPANIED BY

INCREASES IN κ̂q

There is a large dependence between the estimator κ̂q and

the sum S =
n∑

j=1

Xj : conditional on an increase in κ̂q the

expected sum is larger. Indeed, as shown in theorem 1, κ̂q and

S are positively correlated.

For the case in which the random variables under concern

are wealth, we observe as in Figure 3 such conditional

increase; in other words, since the distribution is of the class of

fat tails under consideration, the maximum is of the same order

as the sum, additional wealth means more measured inequality.

Under such dynamics, is quite absurd to assume that additional

wealth will arise from the bottom or even the middle. (The

same argument can be applied to wars, epidemics, size or

companies, etc.)

VI. CONCLUSION AND PROPER ESTIMATION OF

CONCENTRATION

Concentration can be high at the level of the generator, but

in small units or subsections we will observe a lower κq . So

examining times series, we can easily get a historical illusion

of rise in, say, wealth concentration when it has been there all

along at the level of the process; and an expansion in the size

of the unit measured can be part of the explanation.3

Even the estimation of α can be biased in some domains

where one does not see the entire picture: in the presence

of uncertainty about the "true" α, it can be shown that, unlike

other parameters, the one to use is not the probability-weighted

3Accumulated wealth is typically thicker tailed than income, see [?].
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Fig. 3: Effect of additional wealth on κ̂

exponents (the standard average) but rather the minimum

across a section of exponents [?].

One must not perform analyses of year-on-year changes in

κ̂q without adjustment. It did not escape our attention that

some theories are built based on claims of such "increase"

in inequality, as in [?], without taking into account the true

nature of κq , and promulgating theories about the "variation"

of inequality without reference to the stochasticity of the

estimation − and the lack of consistency of κq across time

and sub-units. What is worse, rejection of such theories also

ignored the size effect, by countering with data of a different

sample size, effectively making the dialogue on inequality

uninformational statistically.4

The mistake appears to be commonly made in common

inference about fat-tailed data in the literature. The very

methodology of using concentration and changes in concen-

tration is highly questionable. For instance, in the thesis by

Steven Pinker [?] that the world is becoming less violent,

we note a fallacious inference about the concentration of

damage from wars from a κ̂q with minutely small population

in relation to the fat-tailedness.5 Owing to the fat-tailedness

of war casualties and consequences of violent conflicts, an

adjustment would rapidly invalidate such claims that violence

from war has statistically experienced a decline.

A. Robust methods and use of exhaustive data

We often face argument of the type "the method of mea-

suring concentration from quantile contributions κ̂ is robust

and based on a complete set of data". Robust methods, alas,

tend to fail with fat-tailed data, see [?]. But, in addition, the

problem here is worse: even if such "robust" methods were

deemed unbiased, a method of direct centile estimation is

still linked to a static and specific population and does not

4Financial Times, May 23, 2014 "Piketty findings undercut by errors" by
Chris Giles.

5Using Richardson’s data, [?]: "(Wars) followed an 80:2 rule: almost eighty
percent of the deaths were caused by two percent (his emph.) of the wars".
So it appears that both Pinker and the literature cited for the quantitative
properties of violent conflicts are using a flawed methodology, one that
produces a severe bias, as the centile estimation has extremely large biases
with fat-tailed wars. Furthermore claims about the mean become spurious at
low exponents.
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aggregage. Accordingly, such techniques do not allow us to

make statistical claims or scientific statements about the true

properties which should necessarily carry out of sample.

Take an insurance (or, better, reinsurance) company. The

"accounting" profits in a year in which there were few claims

do not reflect on the "economic" status of the company and it

is futile to make statements on the concentration of losses per

insured event based on a single year sample. The "accounting"

profits are not used to predict variations year-on-year, rather

the exposure to tail (and other) events, analyses that take into

account the stochastic nature of the performance. This dif-

ference between "accounting" (deterministic) and "economic"

(stochastic) values matters for policy making, particularly

under fat tails. The same with wars: we do not estimate the

severity of a (future) risk based on past in-sample historical

data.

B. How Should We Measure Concentration?

Practitioners of risk managers now tend to compute CVaR

and other metrics, methods that are extrapolative and noncon-

cave, such as the information from the α exponent, taking

the one closer to the lower bound of the range of exponents,

as we saw in our extension to Theorem 2 and rederiving the

corresponding κ, or, more rigorously, integrating the functions

of α across the various possible states. Such methods of

adjustment are less biased and do not get mixed up with

problems of aggregation –they are similar to the "stochastic

volatility" methods in mathematical finance that consist in ad-

justments to option prices by adding a "smile" to the standard

deviation, in proportion to the variability of the parameter

representing volatility and the errors in its measurement. Here

it would be "stochastic alpha" or "stochastic tail exponent"6

By extrapolative, we mean the built-in extension of the tail in

the measurement by taking into account realizations outside

the sample path that are in excess of the extrema observed.7 8
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6Also note that, in addition to the centile estimation problem, some authors
such as [?] when dealing with censored data, use Pareto interpolation for
unsufficient information about the tails (based on tail parameter), filling-in the
bracket with conditional average bracket contribution, which is not the same
thing as using full power-law extension; such a method retains a significant
bias.

7Even using a lognormal distribution, by fitting the scale parameter, works
to some extent as a rise of the standard deviation extrapolates probability mass
into the right tail.

8We also note that the theorems would also apply to Poisson jumps, but
we focus on the powerlaw case in the application, as the methods for fitting
Poisson jumps are interpolative and have proved to be easier to fit in-sample
than out of sample, see [?].
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