L. B. Afonso, R. M. Cardoso, and A. D. Reis, Dividend problems in the dual risk model, Insurance: Mathematics and Economics, vol.53, issue.3, pp.906-918, 2013.
DOI : 10.1016/j.insmatheco.2013.10.003

S. Asmussen, Applied probability and queues, 2003.

S. Asmussen and H. Albrecher, Ruin probabilities, p.12, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569254

B. Avanzi, H. U. Gerber, and E. S. Shiu, Optimal dividends in the dual model, Insurance: Mathematics and Economics, vol.41, issue.1, pp.111-123, 2007.
DOI : 10.1016/j.insmatheco.2006.10.002

P. Barrieu, H. Bensusan, N. Karoui, C. Hillairet, S. Loisel et al., Understanding, modelling and managing longevity risk: key issues and main challenges, Scandinavian Actuarial Journal, vol.8, issue.2, pp.203-231, 2012.
DOI : 10.1007/s00285-008-0202-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes in Signals and Dynamics Systems, p.22, 1986.

E. Bayraktar, S. Dayanik, and I. Karatzas, The standard Poisson disorder problem revisited. Stochastic processes and their applications, pp.1437-1450, 2005.

M. Beibel, A note on Ritov's bayes approach to the minimax property of the cusum procedure. The Annals of Statistics, pp.1804-1812, 1996.

J. Bertoin, Lévy processes, p.14, 1998.

D. R. Cox, Regression Models and Life-Tables, Journal of the Royal Statistical Society, issue.3, pp.187-220, 1972.
DOI : 10.1007/978-1-4612-4380-9_37

B. and D. Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, pp.433-443, 1957.

J. Delucia and H. V. Poor, Performance analysis of sequential tests between Poisson processes, IEEE Transactions on Information Theory, vol.43, issue.1, pp.221-238, 1997.
DOI : 10.1109/18.567689

A. Dvoretzky, J. Kiefer, and J. Wolfowitz, Sequential decision problems for processes with continuous time parameter. Testing hypotheses. The Annals of Mathematical Statistics, pp.254-264, 1953.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, 2009.

J. O. Irwin, On the frequency distribution of the means of samples from a population having any law of frequency with finite moments, with special reference to Pearson's type II, Biometrika, pp.225-239, 1927.

A. E. Kyprianou, Introductory lectures on fluctuations of Lévy processes with applications, p.9, 2006.

A. E. Kyprianou, Gerber?Shiu risk theory, 2013.
DOI : 10.1007/978-3-319-02303-8

G. Lorden, Procedures for Reacting to a Change in Distribution, The Annals of Mathematical Statistics, vol.42, issue.6, pp.1897-1908, 1971.
DOI : 10.1214/aoms/1177693055

Y. Mei, S. W. Han, and K. Tsui, Early detection of a change in Poisson rate after accounting for population size effects, Statistica Sinica, vol.21, issue.2, pp.597-600, 2011.
DOI : 10.5705/ss.2011.027a

G. V. Moustakides, Optimal Stopping Times for Detecting Changes in Distributions, The Annals of Statistics, vol.14, issue.4, pp.1379-1387, 1986.
DOI : 10.1214/aos/1176350164

URL : https://hal.archives-ouvertes.fr/inria-00076193

G. V. Moustakides, Performance of CUSUM tests for detecting changes in continuous time processes, Proceedings IEEE International Symposium on Information Theory,, p.186, 2002.
DOI : 10.1109/ISIT.2002.1023458

G. V. Moustakides, Optimality of the CUSUM procedure in continuous time. The Annals of Statistics, pp.302-315, 2004.

E. S. Page, CONTINUOUS INSPECTION SCHEMES, Biometrika, vol.41, issue.1-2, pp.100-115, 1954.
DOI : 10.1093/biomet/41.1-2.100

G. Peskir and A. N. Shiryaev, Advances in Finance and Stochastics, chapter Solving the Poisson disorder problem, pp.295-312, 2002.

P. Picard and C. Lefèvre, The probability of ruin in finite time with discrete claim size distribution, Scandinavian Actuarial Journal, vol.1, issue.1, pp.58-69, 1997.
DOI : 10.1214/aoms/1177705056

M. R. Pistorius, On Exit and Ergodicity of the Spectrally One-Sided L??vy Process Reflected at Its Infimum, Journal of Theoretical Probability, vol.17, issue.1, pp.183-220, 2004.
DOI : 10.1023/B:JOTP.0000020481.14371.37

H. V. Poor and O. Hadjiliadis, Quickest detection, 2009.
DOI : 10.1017/CBO9780511754678

N. U. Prabhu, Stochastic Storage Processes: queues, insurance risk, and dams, and data communication. Number 15, 1998.

T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels, Stochastic processes for insurance and finance, 2009.
DOI : 10.1002/9780470317044

D. Rullì-ere and S. Loisel, Another look at the Picard-Lef??vre formula for finite-time ruin probabilities, Insurance: Mathematics and Economics, vol.35, issue.2, pp.187-203, 2004.
DOI : 10.1016/j.insmatheco.2004.07.001

A. N. Shiryaev, On optimum methods in quickest detection problems. Theory of Probability & Its Applications, pp.22-46, 1963.

A. N. Shiryaev, Minimax optimality of the method of cumulative sums (cusum) in the case of continuous time, Russian Mathematical Surveys, vol.51, issue.4, pp.750-751, 1996.
DOI : 10.1070/RM1996v051n04ABEH002986

A. N. Shiryaev, On stochastic models and optimal methods in the quickest detection problems. Theory of Probability & Its Applications, pp.385-401, 2009.

S. Zacks, Exact Determination of the Run Length Distribution of a One-Sided CUSUM Procedure Applied on an Ordinary Poisson Process, Sequential Analysis, vol.10, issue.2, pp.159-178, 2004.
DOI : 10.1080/15326349108807186