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Minimax Optimality in Robust Detection of a Disorder Time
in Poisson Rate

Nicole El Karoui, Stéphane Loisel,
and Yahia Salhi

Abstract.
We consider the minimax quickest detection problem of an unobservable time of change in the rate of

an inhomogeneous Poisson process. We seek a stopping rule that minimizes the robust Lorden criterion,
formulated in terms of the number of events until detection, both for the worst-case delay and the false
alarm constraint. In the Wiener case, such a problem has been solved using the so-called cumulative sums
(cusum) strategy by Shiryaev [33, 35], or Moustakides [24] among others. In our setting, we derive the exact
optimality of the cusum stopping rule by using finite variation calculus and elementary martingale properties
to characterize the performance functions of the cusum stopping rule in terms of scale functions. These are
solutions of some delayed differential equations that we solve elementarily. The case of detecting a decrease
in the intensity is easy to study because the performance functions are continuous. In the case of an increase
where the performance functions are not continuous, martingale properties require using a discontinuous
local time. Nevertheless, from an identity relating the scale functions, the optimality of the cusum rule still
holds. Finally, some numerical illustration are provided.

AMS 2000 subject classifications: Primary 62L15; Secondary 97M30; .
Keywords: Change-Point, Robust Sequential Detection, Poisson Process.

1. Introduction. In the Poisson quickest detection problem, one observes the jumps of an
inhomogeneous counting process whose intensity suddenly changes at some unobservable disorder
time, but whose intensity is ”stable” beforehand and afterhand in some sense. As pointed in the
introduction of Basseville and Nikiforov (1993) [6] ”It should be clear that abrupt changes by no
means imply changes with large magnitude. Many change detection problems are concerned with
the detection of small changes.”. The process being sequentially observed, the problem is then to
detect the change-point as quickly as possible after it happens.

The classical fields of applications of detection problems include, among others, queueing theory,
survival analysis and reliability [6]. Our main practical motivation was the fast detection of the
onset of mortality shifts, where a proportional relationship between two mortality intensities, e.g.
the insured mortality intensity and a reference, is assumed. A sudden change in the proportional
relationship can induce serious financial consequences, and it is necessary to react as soon as
data would suggest, see Barrieu et al. (2012) [5]. Similar problem also arise in prompt detection
of shifts in insurance claims arrival. Note that in these examples, in general, no information is
known about the distribution of the date of change. Therefore, in this paper, we consider a non-
Bayesian setting in which the change-point is unknown but deterministic, in the spirit of the early
papers of Page (1954) [25] and Lorden (1971) [20]. This framework, based on the so-called Lorden
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procedure formulated as a minimax problem, belongs to the family of robust optimization, popular
in statistical learning, see for e.g. Hastie et al. (2009) [15].
The minimax robust detection problem in continuous times has gained a renewed interest since
the 90’s. For example, the problem of detecting an abrupt change on the drift of a Wiener process
is well understood. In particular, the cumulative sums strategy [25] (cusum for short) has been
shown to be optimal with regard to the Lorden procedure, see Shiryaev (1996) [34], Beibel (1996)
[8] and Moustakides (2004) [24]. Shiryaev (2009) [35] shed an interesting light on the history of
this problem, and different developments depending on the fields of application.

In the classical sequential test analysis between continuous times processes, the statistic is the
usual Log Sequential Probability Ratio process (LSPR-process) between the reference probability
P (null assumption) and the alternative assumption P̃ (H1 assumption), see Dvoretzky, Kiefer and
Wolfowitz (1953) [13] for the Poisson process. In the minimax detection problem, the test is based
in the cusum strategy, consisting on sounding an alarm as soon as the LSPR-process related to
P (no change) and P̃ (immediate change), reflected at its maximum or at its minimum, hits a
barrier m > 0. The optimality relies on the characterization of the optimal detection time through
its performance, i.e. the time until detection and the false alarm frequency, which are of critical
importance. In the Wiener case, the performance functions have a very simple and universal form,
which is a key element in the derivation of the optimality [24]. In this paper, we are interested in
the extension of this optimality result to the cusum strategies in the Poisson case, by overcoming
difficulties due to jumps and to the complex form of the performance functions, strongly related
with the scale functions introduced in Lévy process theory, e.g. Bertoin (1998) [9], Pistorius (2004)
[28], and reference therein. Note that, in discrete time, only asymptotic optimality result was shown
by Mei et al. (2011.) [21].

It is worth mentioning that the Poisson disorder problem has been widely studied in the Bayesian
setting, see Bayraktar et al. (2005) [7] and Chapter 5 of Poor and Hadjiliadis (2009) [29] and the
reference therein. The optimal detection rule is well studied for different formulation but is very
sensitive to the a priori distribution of the change time.

The remainder is organized as follows. In Section 2, we introduce the robust optimization prob-
lem, with a discussion on the criterium to be associated with this minimax problem. This discussion
is followed by a rigorous presentation of the basic tools in counting process framework. In Section
3, as in sequential test analysis, we introduce the log-sequential probability ratio process (LSPR in
short) and highlight an interesting link with the surplus process in ruin theory or with the equity
process in insurance. Time rescaling procedure allows us to compare the distributions of the LSPR
process under the probability measures P and P̃ through their realization on the same probability
space. In Section 4, we are concerned with the cusum processes, which are the log-sequential proba-
bility ratio process reflected at its running maximum or its running minimum, and show that some
solutions of differential equations driven by the counting process appear. We also define the per-
formance functions associated with the hitting time by the cusum processes of a barrier m making
the distinction between an increase and a decrease in the intensity. In Section 5, we use differential
calculus with jumps to solve a classical delay equation whose solutions may be proportional to some
ruin distribution functions, or scale functions in Lévy’s theory. Stochastic differential calculus is
used to extend Itô’s formula to a.e. differentiable monotonic functions with one jump, thanks to a
discontinuous local time. We study the performance functions associated with positive barrier with
the help of the scale functions and their primitives, and prepare the proof of their optimality by
the introduction of new, well-suited martingales. Section 6 is dedicated to the proof of optimality
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of the cusum procedure with a given false alarm constraint. The proof relies on a modified criterion
following ideas form Shiryaev (1996) [34] and Moustakides (1986, 2002) [22, 23]. To the best of our
knowledge, it is the first optimality result in the Poisson case, for the minimax problem. Finally, in
Section 7 we discuss some numerical methods suited to solve the delayed equation associated with
the scale and performance functions, and overcome numerical instability problems.

2. Problem Formulation.

2.1. General consideration. Let N be a counting process with arrival times (Ti)i≥1 and (possibly
stochastic) intensity process λ̌ = (λ̌t)t≥0. We are interested in detecting any disorder that can affect
the dynamics of such a counting process.
(i) There are different ways to model such a change which may occur at some unobservable, non
random time θ ∈ [0,∞). The best suited (and more frequently used) to the detection problem is to
keep the observed process N under the reference (or nominal) probability measure P associated with
the intensity process denoted (λt) when the change never happenes, and to change the likelihood
of occurrences by using an equivalent probability measure Pθ characterized by its likelihood ratio
Eθ0,T with respect to P. Since the change in the intensity only occurs at time θ, we have Eθ0,t = 1

for t ≤ θ. Therefore, we suppose that the intensity λ̌ undergoes a sudden change from the value λθ
to the value ρλθ, where ρ is a known positive constant number different from 1. This formulation
corresponds to the definition of a simplified Cox (1972) [10] proportional model framework, which
is widely used in life insurance and survival analysis. Formally, we consider that,

λ̌t = λt1{t<θ} + ρλt1{t≥θ}, ρ 6= 1, (1)

and denote Λt =
∫ t

0 λs ds the cumulative intensity process when no change occurs.
(ii) In sequential theory, the strategies are based on the information acquired over time. As usual,
it is modeled via a filtration (Ft) for which the process N and its intensity λ̌ are adapted. The se-
quential conditional probability ratio (SCPR on short) between t and T is given by Eθt,T = Eθ0,T /Eθ0,t
and plays a key role both in sequential testing theory and in quickest detection problems, but we
are more concerned with quickest detection procedures [6].

2.2. Robust detection problem. Our main objective is to find a stopping rule T based on the
filtration F to optimally raise an alarm for the breakpoint, with no a priori information on θ. The
first step is to define a measure that quantifies its performance.
(i) For a robust estimation, Lorden [20] procedure advocates penalizing the detection delay via its
worst-case value

CLor(T ) = sup
θ∈[0,∞]

ess sup
ω

Eθ
[
(T − θ)+

∣∣Fθ], (2)

where the ess sup takes the “worst possible observed date before the change” in the sense of
providing no information on the true change as explained in Mei et al. [21]1. In addition, the
false alarm is monitored using the average run length to false alarm given by E∞[T ] = E[T ]. With
these metrics, the quickest detection procedure reduces to solve the following minimax optimization
problem:

inf
T
{CLor(T )| E(T ) ≥ π}, where π is a given threshold. (3)

1Mathematically, it is the smallest constant number yθ such that yθ ≥ Eθ
[
(T − θ)+

∣∣Fθ], Pθ-a.s.
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This framework serves to design the optimal stopping rule T ∗ with the desired characteristics
based on a linear delay criterion, well-adapted to constant intensities. Thus, since we are working
on (possibly) random intensity process, we are looking for a criterium which is robust with respect
to time rescaling procedure, both in the criterion and the false alarm constraint, as the number
of events until detection. More precisely, we consider the following criterion, and the minimax
optimization problem,

inf
T
{C(T )| E(NT ) ≥ π}, where C(T ) = sup

θ∈[0,∞]
ess sup

ω
Eθ
[
(NT −Nθ)

+
∣∣Fθ]. (4)

In the same vein, Moustakides [24] has initiated a modification of the Lorden criterion that replaces
expected delays with Kullback-Leibler divergences.

2.3. Basic framework. We give a precise mathematical framework for the different notions in-
troduced above, concerning the counting process with varying intensity and the likelihood ratios
between the probability measures of interest. Then, we make the link with ruin theory.

2.3.1. The counting process N , and the intensity processes. The counting process N takes values
in N and its jump sizes are all equal to 1. It is defined on a measurable space (Ω,F∞), equipped with
a given filtration F = (Ft) satisfying the usual conditions and a family of equivalent probability
measures Pθ. The arrival epochs (Ti)i≥1 are F-stopping times. The reference probability measure
is the nominal probability measure P when the change never occurs, i.e. θ = ∞. The probability
measure P0, associated with immediate change, i.e. θ = 0, is also of great use. In the following, we
adopt the notation of Kyprianou [18], where P0 is known as the tilded-probability associated with
P and is denoted P̃. Henceforth, the tilded notation is referring to the quantities considered under
P̃.

(i) Intensity process. As usual, the F-adapted counting process N is characterized by its intensity
process λ̌t, varying with the reference probability measure P or Pθ. In particular, when N is a P-
Poisson process with time-varying independent increments, the intensity is a deterministic function
λt giving the parameter of the Poisson distribution of Nt, with cumulative intensity parameter
Λt =

∫ t
0 λsds. Then, the Laplace transform of Nt is E[exp(αNt)] = exp(Λt(e

α − 1)) , for α > 0.
Moreover, N is a strong Markov process such that for any finite stopping time S, the process
(NS+t −NS) is a Poisson process independent of (Nt)t≤S , and more generally of FS .
(ii) Martingale characterization of the intensity. When working with a stochastic intensity,
we use a martingale to characterize the intensity process and a Wald martingale instead of the
Laplace transform. The intensity process (λt) is now assumed to be (strictly) positive and adapted
to the filtration (Ft), (predictable) with (strictly) increasing cumulative intensity process Λt. In
other words, N is a so-called Cox-process or doubly stochastic counting process [14].
a) The process Λt is said to be the P-cumulative intensity of the counting process N if the
compensated process Mt = Nt − Λt is a P-martingale (if Λt is P-integrable for any t ≥ 0 and a
local martingale if Λt is only finite a.s.). Sometimes, N is called a (P,Λ)-counting process. So, by
definition of P̃, N is a (P̃, Λ̃)-counting process, such that Λ̃t = ρΛt. Then, the compensated process

M̃t = Nt − Λ̃t is a P̃-(local) martingale.
b) The Esscher transform, generalizing the Laplace transform, is associated with the Wald
(local) martingale Et = exp

(
αNt − Λt(e

α − 1)
)
. A more convenient form for our purpose is based

on the exponential martingale denoted Eηt and defined for η > 0 as

Eηt = exp(log(η)Nt − (η − 1)Λt) = ηU
η
t , where Uηt = Nt − β(η)Λt, (5)
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with β(η) = (η − 1)/ log(η) =
∫ 1

0 η
xdx, η 6= 1, and β(1) = 1.

The differential form of (5) can easily be obtained using pathwise differential arguments,

dEηt = (η − 1)Eηt−(dNt − dΛt) = (η − 1)Eηt−dMt. (6)

Thus, any (P,Λ)-counting process N is characterized by the P-local martingales Eη, with η >
0, which are true martingales if Λt is bounded, or deterministic. In the general case (as in the
continuous case), only sufficient conditions exist [19].

3. Log(ρ)-Sequential Probability Ratio and Surplus or Equity processes.

In this section, we introduce the reference processes in our study, and propose different points of
view in their analysis, in particular via the connection with insurance theory.

3.1. Logρ-sequential probability ratio process Uρ. We come back to the sequential detection
problem in a proportional change between two (stochastic) intensity processes λt and ρλt using
sequential probability ratio (SPR). As in the classical sequential probability ratio test , the main
tool is the logρ-SPR process.

3.1.1. The logρ-sequential probability ratios Uρt = Nt − β(ρ)Λt and Xρ
t = −Nt + β(ρ)Λt. We

have seen in (5) that the process (ρU
ρ
t ) is a local martingale with expectation equal to 1 in the de-

terministic case or when ΛT is bounded. Under such an assumption, it is easy to define a probability
measure P̃ on FT by

dP̃/dP = EρT = ρU
ρ
T . (7)

(i) In the inhomogeneous Poisson case, it is well-known that the P̃-intensity of Nt is ρλt. To
extend this property to the general case, we introduce the process Ũηt = Nt − β(η)ρΛt, and study

the process Ẽηt = ηŨ
η
t under the probability measure P̃, or equivalently the process Eρt Ẽ

η
t = exp(Zt)

under the probability measure P. Since

Zt = log(ρ)Uρt + log(η)Ũηt ,

= log(ρη)Nt − Λt[(ρ− 1) + (η − 1)ρ)] = log(ρη)Nt − Λt(ρη − 1),

the process exp(Zt) is the P-local martingale Eρηt , and Ẽηt is a P̃-local martingale.

(ii) Similarly, P may be recovered from P̃ with the likelihood ratio (EρT )−1 = ρ−U
ρ
T . The remarkable

property is that the P̃-local martingale (Eρt )−1 is the P̃-local martingale Ẽ1/ρ
t ,

(Eρt )−1 = (1/ρ)(Nt−β(ρ)Λt) = (1/ρ)(Nt−β(1/ρ)ρΛt) = Ẽ ρ̃t , (8)

with ρ̃ = 1/ρ.
For convenience, we denote Xρ

t = −Uρt the dual process of the log-likelihood ratio. Note that the
process Xρ has negative jumps and belongs to the large family of spectrally negative Lévy pro-
cesses (Bertoin (1998) [9], Kyprianou (2006) [17]). In the sequel, we shall frequently drop out the
subscripts ρ or β from the notation when there is no confusion.

3.1.2. Time rescaling into a Poisson process. There are two ways to change the intensity of the
counting process N : by changing the probability measure as above, or by changing the time scale.
The first one acts on the distribution of the counting process whereas the second one acts on its
sample path. These two points of view yield to interesting interpretations of the same phenomenon.
(i) Time rescaling. We make the additional assumption that the (strictly) increasing process Λt
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converges toward +∞ as t tends to +∞, (P and P̃-a.s.). Then, the range of the inverse process Λ−1
t

is the interval [0,∞]. For any t ≥ 0, the r.v. Λ−1
t is a stopping time with respect to the filtration F.

Denote by F̂ the filtration (FΛ−1
t

). Hence it follows that, under the probability P, the time rescaled

and compensated counting process N̂t − t = NΛ−1
t
− t is a F̂-local martingale. Therefore, N̂ is a

(P, F̂)-Poisson process with intensity 1. Consequently, the interarrival times (T̂j+1−T̂j) are indepen-
dent with P-exponential distribution with parameter 1. Finally, note that the counting process N
may be obtained by the inverse time rescaling from the process N̂ . In particular, Nt/Λt = N̂Λt/Λt
goes to 1, P-a.s. and to ρ, P̃-a.s. when t goes to +∞.
(ii) Asymptotic behavior. Since N̂t/t goes to 1, when t tends to∞, P-a.s, Ûρ drifts to −∞, P-a.s

if β > 1, and Ûρ drifts to +∞ a.s if β < 1. Then, ρU
ρ
t = ρ

ÛρΛt is a (local) martingale going to 0
at infinity, in any cases, but if β(ρ) > 1 (equivalently ρ > 1) its jumps are positive and negative
when β < 1. The same property holds true after time rescaling by Λt/λ.

3.1.3. Pathwise comparison. Using these ideas, we obtain a way to simulate in the deterministic
case, on the same probability space from the (P, λ)-Poisson process N , the process (Uρt = Nt −
β(ρ)λt), and another process P̃-distributed as (Uρt ). This is illustrated in Figure 1.

0

(a) Processes Uρt and U
1/ρ
t

0

(b) Processes Uρt and U
1/ρ
ρt

Figure 1. Sample paths, for ρ > 1, of the cusum processes Uρt (left, thick line) and U
1/ρ
t (left, thick line) as well as

the processes Uρt (right, thin line) and U
1/ρ
ρt (right, thick line) when λ is time-homogeneous (set equal to 1).

Proposition 1 (Pathwise equivalence). Assume Λ deterministic. Put ρ̃ = 1/ρ. Recall that the
(P̃, λ̃)-process N has the same distribution as the (P, λ)-process (Nρt).

(i) The (P̃, λ̃)-process (Uρt = Nt − β(ρ)Λt) has the same distribution as the (P, λ)-process (U ρ̃ρt).

(ii) Observe that Uρ < U ρ̃ if β(ρ) > 1, and Uρ ≥ U ρ̃ if β(ρ) < 1. So, the process (P, Uρt ) is

stochastically dominated by the process (P̃, Uρρ̃t) when ρ > 1. That is, for any increasing function

G on the space of the paths, E(G(Uρ)) ≤ Ẽ(G(Uρρ̃.)).

Proof. (i) By the scaling property, the (P̃, ρλ)-Poisson process N has the same distribution as
the rescaled (P, λ)-Poisson process Nρt. So, the P̃-distribution of (Uρt = Nt − β(ρ)λt) is the same

as the P-distribution of Nρ t − β(ρ)λt = Nρ t − (β(ρ)/ρ)ρλt = U ρ̃ρ t, (β(ρ) = ρβ(ρ̃)).

(ii) Assume for example ρ > 1. The two processes Uρ and U ρ̃ are ordered, since Uρt ≤ U ρ̃t , for
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all t ≥ 0. Since the process (U ρ̃ρt) is distributed as (Uρt ) under P̃, then (U ρ̃t ) is distributed as (Uρρ̃t)

under P̃. So, this pathwise inequality implies the stochastic dominance of (P, Uρt ) by (P̃, Uρρ̃t). In

particular, for any increasing function G on the space of the paths, E(G(Uρ)) ≤ Ẽ(G(Uρρ̃.)).

3.2. Surplus and equity processes of an insurance company.
Here, we make an interesting connection with ruin theory about which an abundant literature
exists, see Rolski et al. [31] among many others.

3.2.1. Surplus and equity processes. (i) a) Surplus process. Let us consider an insurance
company, receiving premiums at rate (ρ − 1)λt (with ρ > 1), when the number of claims arriving
up to time t is the counting processNt, with intensity λt and average cost by claim log ρ. The surplus
process X is written using the average cost by claim as numéraire with initial reserve z, as Xt(z) =
z + Xt. Then, the cash value of the surplus process is (log ρ)Xt(z) = (log ρ)(z −Nt) + (ρ − 1)Λt,
and

Xt(z) = z +Xt = z −Nt + β(ρ)Λt, with ρ > 1. (9)

b) Equity process. On the other hand, there is the so-called dual risk model. For such a process,
premia can be regarded as costs and claims as profits, and the surplus can be interpreted as a
capital of an economic activity where the gains come from suddenly as in research and development
(Avanzi et al. [4] (2007), Afonso et al. [1] (2013)). So, the viability condition becomes E(U1) > 0 or
β(ρ) < 0. As above, using the average gain by success as numéraire, the equity process with initial
capital z is the process z + Uρt , associated with a cash value (log ρ)Ut(z),

Ut(z) = z + Ut = z +Nt − β(ρ)Λt, with ρ < 1. (10)

(ii) Ruin or performance problem. A classical problem in insurance theory is the so-called ruin
problem. That is the computation, under the security loading condition β > 1 of the ruin probability
in infinite time given an initial capital z > 0, that is P(∃ t s.t. Xt ≤ −z). The problem may be
also formulated in terms of the dual process U = −X, as P(∃ t s.t. Ut ≥ z) = P(Ū∞ ≥ z), where
Ū∞ = supt Ut. We have seen that Ū∞ is finite a.s. Its distribution function ū(m) = P(Ū∞ ≤ m)
is well known for a long time [2]. Its analytic closed form is recalled in Theorem 5. In the equity
problem (β < 1), the ruin occurs when the minimum of the equity process attains 0. But, the main
problem concerns the performance level of U , that is the probability to attain some capital level
m (before the ruin.). Obviously, the time to ruin, that is the first time where Xt goes below the
level −z is also of particular interest.

(iii) Crossing high or low barriers and running extrema. Since we are concerned with different
processes, we give the definitions for a general right continuous (continu à droite), left limited
(limité à gauche) (càdlàg) finite variation process Zt with finite number of positive (negative)
jumps.
The general definition is the following, where as usual the infimum of the empty set is +∞,

τZm = inf{t : Zt ≥ m}, and σZb = inf{t : Zt ≤ b}. (11)

With this definition, if Z0 ≥ m, τZm = 0, a.s. and if Z0 ≤ b, σZb = 0, a.s.. The family (τZm)m is
non-decreasing, and the family (σZb )b is non-increasing. Their inverses are easily expressed in terms
of the running supremum Z̄t = sups≤t Zs or minimum Zt = infs≤t Zs, since (τZm ≥ t ⇔ Z̄t ≤ m)
and (σZb ≥ t⇔ Zt ≥ b). In particular, {τZm = +∞} = {Z̄∞ ≤ m} and {σZb = +∞} = {Z∞ ≥ b}.

(iv) Martingale property and scale functions. Since the process Ut = U0+Nt−βΛt has positive
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jumps and a decreasing drift (β > 0), the barrier b = 0 < U0 is only crossed continuously at time
σU0 by the process U.(x) and on {σU0 < +∞}, we have UσU0

= 0. Put Px(A) = P(A|U0 = x). Then,

Proposition 2. Assume β > 1.

(i) The function θm(x) = Px(σU0 < τUm) is equal to θm(x) = ū(m− x)/ū(m) on (0,m), and θm(Ut)
is a Px-martingale on [0, σU0 ∧ τUm).

(ii) Put ũ(x) = ρx ū(x). Then, θ̃m(x) = P̃x(σU0 < τUm) = ũ(m − x)/ũ(m) and θ̃m(Ut) is a P̃x-
martingale on [0, σU0 ∧ τUm).

Proof. When β > 1, it is well known that Px(σU0 < ∞) = 1, Px(Ū∞ < ∞) = 1 and Px(Ū∞ ≤
m) = ū(m− x) = Px(τUm =∞). Then

Px(τUm =∞) = Px({τUm > σU0 } ∩ {τUm =∞}) = Px(τUm > σU0 )Px=0(τUm =∞).

Then, for x ∈ (0,m), Px(τUm > σU0 ) = ū(m−x)/ū(m) := θm(x). By the Markov property, θm(Ut) =
Px(τUm > σU0 |Ft) on [0, σU0 ∧ τUm) is a Px-martingale.

Therefore, under the probability P̃x with density ρUt , the process ρ−Utθm(Ut) is a martingale
on [0, σU0 ∧ τUm) with terminal value 1{τUm>σU0 }

. So, it is natural to put ũ(x) = ρxū(x), so that

P̃x(τUm > σU0 ) = ũ(m− x)/ũ(m).

In Section 5, we will show that the functions ū and ũ belong to the family of scale functions (Bertoin
[9]), that are proportional to the inverse of the Laplace exponent ψρ(α) = log(E(exp(−αUρ1 )) =

λ(αβ(ρ) + e−α− 1) = λα(β(ρ)−β(e−α)) and ψ̃ρ(α) = log(Ẽ(exp(−αUρ1 )) = λα(β(ρ)− ρβ(e−α)) =
ρψρ̃(α).

4. Reflected counting process with drift.

We now introduce the key notions for the detection problem and also make the connection with
the similar notions in insurance. The main processes of interest is the reflection of U and X respec-
tively on their minimum and maximum. As it is emphasized by Pistorius (2004) [28], in applied
probability the reflected processes also occur in the study of water level in a dam, in queuing theory
(Asmussen (2003) [2], Prabhu (1998) [30]) and more recently in finance, for the study of Russian
options as in Peskir and Shyriaev (2002) [26].

4.1. Cusum process and surplus or equity process with dividends. We start with the definition
of the cusum process as a running maximum of the log-likelihood process. The definition depends
on the sense of variation of ρz or equivalently of the sign of ρ− 1. The corresponding concepts in
insurance are the surplus or the equity processes with dividends.

4.1.1. Cusum process and reflexion. As usual in estimation theory, the process of interest is
the maximum likelihood process; in detection theory, since the parameter is a date, the maximum
must be taken over the dates and the process of interest is supθ≤t ρ

Ut−Uθ .
(i) When ρ > 1, the maximum likelihood process is given by ρVt , where Vt = Ut + sups≤t(−Us) =
X̄t −Xt, which is the process Ut reflected at 0, or the process X reflected at its maximum. When
ρ < 1, the function ρz is decreasing and the maximum likelihood process is the process (1/ρ)Yt ,
where Yt = supθ≤t Uθ − Ut = Ūt − Ut = Xt + Ūt. The process Yt is the process U reflected at its
maximum, or the process X reflected at 0.
(ii) The process Vt = X̄t − Xt is well-defined for any ρ > 0, but a cusum process only when
ρ > 1. In the Poisson case, the process Vt = X̄t − Xt may be viewed as the Cramer-Lundberg
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Figure 2. Sample paths of the cusum processes V (left, thick line) and Y (right, thick line) as well as the associated
processes U and X (thin lines) when the intensity λ is constant.

process with negative jumps Xt reflected at its continuous maximum X̄t, see Bertoin [9] and
Kyprianou [17] for instance. In particular, when λ is constant, the symmetry principle allows us
to identify the distribution of the two random variables Vt = (X̄t − Xt) (with t being fixed) and

− infs≤tXt = −Xt = Ūt. In particular, P(Ūt ≤ m) = P(τUm ≥ t) = P(Vt ≤ m), and E(e−qτ
U
m) =

E
∫∞

0 q e−qt1{Vt≤m}dt. This property may be extended at any independent exponential time eq, with
mean 1/q, yielding to useful developments, in particular the famous Wiener-Hopf decomposition
linking the maximum and minimum up to eq.

(iii) The process Yt = Ūt − Ut is well-defined for any ρ > 0, but a cusum process only when
ρ < 1. The process Yt = Ūt − Ut is the process U reflected at its maximum. Since the process U is
decreasing between two jumps of N , the process Ūt is not continuous, and the epochs when a new
supremum of Ū is reached are times arrival of N , for which Yt = 0. As before, in the Poisson case,
the variables Yt = Ūt−Ut = sups≤t(Us−Ut) = sups≤t(Xt−Xs) and X̄t have the same distribution.

(iv) For a generic initial condition Z0, the associated cusum processes become the processes Vt(Z0)
if ρ > 1, and Yt(Z0) if ρ < 1 given by

Vt(Z0) = Z0 + Ut + sup{Z0, X̄t} = Ut(Z0) + (X̄t − Z0)+ = Vt + (Z0 − X̄t)
+, (12)

Yt(Z0) = Z0 +Xt + sup{Z0, Ūt} = Xt(Z0) + (Ūt − Z0)+ = Yt + (Z0 − Ūt)+, (13)

X̄ad
t (Z0) = (X̄t − Z0)+, Ūadt = (Ūt − Z0)+. (14)

With this notation, the increasing processes X̄ad
t (Z0) and Ūadt (Z0) are still starting from 0. In the

Poisson case, the increasing processes X̄ad
t and Ūadt are additive functionals of the processes V and

Y.
(v) Sample paths. We see in Figure 2 that the process V behaves as U(V0) above 0, jumping with

size 1 at times (Ti)i≥1. In between jumps, V decreases at rate βλ which is cut off when V reaches
0, i.e. V is reflected at 0. The process Y behaves as X(Y0) above 0, jumping at times (Ti)i≥1. In
between jumps, Y (x) increases at rate βλ., but its jumps are cut-off (reflection) when Xt is below
0 in such a way than Yt = 0.
Figure 3(a) shows a simulated path of the Poisson process Nt with intensity 3 up to time θ = 3
and 4.5 afterwards (ρ = 1.5), as well as the associated sample path of Vt(0). In the same manner,
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we depict in Figure 3(b) a simulation of a decrease in the intensity from λ = 3 to 1.5 (ρ = 0.5): we
plot the associated cusum process Yt(0) together with the counting process Nt.
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Figure 3. Simulated cusum processes V and Y with a change-point at time θ = 3 and a constant intensity 3. The
post change parameter ρ is set equal to 1.5 and 0.5 respectively. The left axis of ordinates is associated with the
cusum process and the right axis is related to non-decreasing process N . The dots in the abscissa indicate the jump
epochs Ti.

4.1.2. Insurance point of view. (i) Surplus process with dividends. We have seen that the
surplus process X of an insurance company, using the average cost by claim | log ρ| as numéraire,
and initial reserve z, is Xt(z) = z +Xt = z −Nt + β(ρ)Λt.
We now consider that the insurance company pays out dividends (De Finetti (1957) [11]) at the
same rate |ρ−1|λt, when the cash reserves come above a target level m| log ρ|. Then, the dynamics

of the surplus process X̂t(z,m) = X̂
(m)
t is driven by the following ordinary differential equation

(ODE for short), for 0 < z < m, with initial condition X̂0(z,m) = z < m,

dX̂
(m)
t = −dNt + β1(0,m)(X̂

(m)
t )dΛt, z < m. (15)

The main point established in the following proposition is that the surplus process with dividends

(X̂
(m)
t ) is a linear transform of the reflected process (Vt(z)) on the interval 0 < z < m. Mathemat-

ically speaking, this property expresses that the continuous increasing process X̄t (whose support
is the set {t; X̄t −Xt = Vt = 0}) is absolutely continuous with respect to the Lebesgue measure.

Theorem 3. (i) The reflected process of Ut(V0) = V0 +Nt − βΛt at 0 is the process Vt = Ut(0) +
sup(V0, X̄t) = Ut(V0) + X̄ad

t (V0) where X̄ad
t is a continuous increasing process.

(ii) V is the unique solution of the ODE driven by the counting process N ,

Vt = V0 +Nt − β
∫ t

0
1(0,∞)(Vs)dΛs, that implies X̄ad

t =

∫ t

0
β1{Vs=0}dΛs. (16)

In other words µ− Vt = X̂
(µ)
t (µ− V0) is a surplus process in ruin theory.

(iii) When Λ is deterministic, the process (Vt) is a homogeneous strong Markov process.

Proof. a) The result is a consequence of a classical result based on differential calculus. That
is, the continuous part of a right continuous finite variation process V does not charge the set
{V. = 0}. Since the continuous part of Vt is −βΛt + X̄ad

t ,
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dX̄ad
t = β1{Vt=0}dΛt.

So, we have shown that V is solution of the ODE (16) together with the representation of the
supremum X̄ad in differential form.
b) If V and V ′ are two non-negative solutions starting from x, the difference is a continuous
differentiable process,

d(Vt − V ′t )+ = 1{Vt>V ′t }(1{Vt>0} − 1{V ′t>0})(−β)dΛt = 1{Vt>0,V ′t=0}βdΛt.

The process (Vt − V ′t )+ starting from 0 is non-negative and non-increasing; so is the null process.
Interverting the role of V and V ′, we obtain that Vt ≡ V ′t and so the uniqueness.
c) When Λt is deterministic, the strong Markov property can be easily deduced from the uniqueness
of the equation.

(ii) Equity process with dividends. For the equity process, we still have an upper constant
dividend barrier m strategy, and the ruin level at 0. An immediate amount of surplus in excess
of m is paid in the form of a dividend, see for e.g. Afonso et al. [1], Avanzi et al. [4]. Hence, the
process restarts at level m if this is overtaken by a claim. So, the process is reflected at the level
m and the m− equity process is reflected at 0 with ruin when it hits m. There is a significant
difference in the differential representation of processes V and Y due to the non-continuity of the
process Ū . Nevertheless, we can give a differential representation as in (16), for the process Y with
a discontinuous local time Ūad. The proof relies on elementary finite variation differential calculus,
recalled in the next subsection.

Theorem 4. The reflected process of Xt(Y0) = Y0 −Nt + βΛt = Y0 − Ut at 0 is the non-negative
process Yt(Y0) = Xt(0) + sup(Y0, Ūt) = Xt(Y0) + Ūadt (Y0). The jumps of the process Y are still at
some epochs of the jumps of N , with, in addition, the property that Yt = 0.
(i) The process Ūadt = (Ūt − Y0)+ is an increasing pure jump process, with differential{

dŪadt = (Ut − Ūt−)+dNt = 1{Yt=0}(1− Yt−)dNt, Ūad0 = 0,

dYt = −j(Yt)dNt + βdΛt, j(y) = y ∧ 1.
(17)

(ii) Y is the unique solution of the ODE (16), driven by the counting process N . In the Poisson
case, Y is a strong Markov process.

Proof. (i) The relation dŪadt = (Ut − Ūt−)+dNt expresses that Ūadt is an increasing pure jumps
process, with jumps size Ut − Ūt− = 1 − Yt− since Yt = 0. Since the process U jumps by 1 as N
does, by the definition of Y = Ūadt − U , we see that

dYt = −(Yt−1{Yt=0} + 1{Yt>0})dNt + βdΛt = −j(Yt−)dNt + βdΛt,

where j(x) = x ∧ 1.
The last equality (Yt−1{Yt=0} + 1{Yt>0}) = j(Yt−) is true, since the only case where a jump of Y
at time t is different of 1 is when Yt = 0.
(ii) If Y and Y ′ are two non-negative solutions starting from x, the difference Φt is a pure jump
process, starting from 0 such that dΦt = d(Yt−Y ′t ) = (j(Yt−)− j(Y ′t−))dNt. On the interval [0, T1),
Φt = 0, and j(Yt) − j(Y ′t )) = 0. Then, at T1 the jump of Φt is 0, and ΦT1 = 0. Using the same
argument between the successive dates of jumps of N , we see that the process Φt is still equal to
0.
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4.1.3. Cusum performances of reflected processes. (i) Cusum performances. The cusum rule
is defined as the first time τρ,cus

m where the cusum process V or Y exceeds a given level m > 0,
and the cusum performance is measured via the cusum criterion {Ẽ(Nτρ,cus

m
−Nθ

∣∣Fθ), θ < τρ,cus
m },

and the false alarm constraint is expressed with the help of E(Nτρ,cus
m

). Using a change of time

argument, we are concerned in the Poisson case with the functions C̃cus
m (x) = Ẽx(Nτρ,cus

m
) and

Ccus
m (x) = Ex(Nτρ,cus

m
), for 0 ≤ x < m, since outside these functions are equal to 0.

The pathwise equivalence (Proposition 1) allows us to work only under the probability P (or Px)
with the cusum processes with parameters ρ and ρ̃ = 1/ρ, and their stopping times τρ,cus

m and τ ρ̃,cus
m ,

since Ẽx(Nτρ,cus
m

) = Ex(N
τ ρ̃,cus
m

). Moreover, the distinction between cusum processes and reflected
processes is not necessary before proceeding to the optimality results.
(ii) Links with reflected processes. As described in Theorems 3 and 4, the reflected processes
V and Y do not cross upper barrier m with the same regularity, since V increases only by jumps
Y only continuously. So, these two processes behaves differently.
a) In what follows, for a given ρ, τVm and τYm denotes the hitting times of m by the processes
V ρ
t and Y ρ

t , while τ̃Vm and τ̃Ym denotes the hitting time of m by the processes V ρ̃
t and Y ρ̃

t , with
ρ̃ = 1/ρ. The performance functions are denoted hm(x) = Ex(NτVm

), gm(x) = Ex(NτYm
), and

h̃m(x) = Ex(Nτ̃Vm
) = Ẽx(NτVm

), g̃m(x) = Ẽx(Nτ̃Ym
) = Ẽx(NτYm

).

Although τUm may be infinite when ρ > 1, it has been shown that τVm is finite Px-a.s. for any m ≥ 1.
Similarly, and σX0 may be infinite when ρ < 1, but it has been shown that σY0 is finite Px-a.s. for
any x > 0. Different proofs are given depending on the context: in the ruin theory, the finiteness of
the time to ruin with dividends can be found in Asmussen and Albrecher [3, Ch. VIII] for instance,
whereas in the reliability theory more complete results is given in Zacks [36].
b) In the Poisson case, thanks to the Markov property of the reflected processes, the performance
functions are associated with different martingales, defined on [0, τ cus

m ),

Under Px, Hm
t = Nt + hm(Vt)− hm(V0), Gmt = Nt + gm(Yt)− gm(Y0). (18)

Under P̃x, H̃m
t = Nt + h̃m(Vt)− h̃m(V0), G̃mt = Nt + g̃m(Yt)− g̃m(Y0).

But the restriction to the Poisson case is not necessary, since the martingale property is stable by
time rescaling. Moreover, below, we will use differential calculus to extend the martingale property
at all R+.
(iii) Pathwise comparison. Thanks to identity β(ρ) = 1/ log(ρ)

∫ 1
0 ρ

x dx, the functions ρ 7→ β(ρ)
and ρ 7→ −Uρt = β(ρ)Λt − Nt are increasing for ρ > 1, and decreasing for ρ < 1. The same
properties hold true for their variations across any interval ]s, t]. Therefore, for any s < t and ρ̃ ≤ ρ,
Uρt −U

ρ
s < U ρ̃t −U

ρ̃
s , and V ρ

t (0) < V ρ̃
t (0) when Y ρ

t (0) > Y ρ̃
t (0). Since, V ρ

t (x)− V ρ
t (0) = (x− X̄ρ

t )+,
and ρ 7→ X̄ρ

t is increasing, the process ρ 7→ V ρ
t (x) is decreasing in ρ, and the family of stopping

times (τρ,Vm (x)) is increasing in ρ > 1. The same inequalities applied at Yt(y) = sups≤t(Us − Ut)
yield to reverse inequalities. So, we obtain the inequalities,{

h̃ρm(x) = hρ̃m(x) ≤ hρm(x), when ρ > 1,

g̃ρm(x) = gρ̃m(x) ≥ gρm(x), when ρ < 1.
(19)

5. Differential calculus, Delayed equation, and Martingale.

The use of the finite variation calculus allows us to characterize the scale functions, and the perfor-
mance functions from their martingale property. In the Poisson case, stochastic differential formula
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yields to show that these functions are solutions of a delayed differential equation (DDE in short)
defined on the domain (0,m). The latter is similar to the one satisfied by the scale functions ū and
ũ defined in Proposition 2, but with drift and first order boundary condition at 0 induced by the
reflection at 0. Such a condition is said to be a Neumann condition. An additional difficulty comes
from discontinuities of the performance functions at m. Fortunately, we only need ordinary finite
variation differential calculus.

5.1. Finite variation calculus, delay equation and Pollaczek-Khintchine formula. Recall the
deterministic differential rule for a càdlàg finite variation function φ on R+, with finite number of
jumps δφ(s) = φ(s)− φ(s−), and a.e. differentiable with left-hand derivative φ′,

φ(z) = φ(0) +

∫ z

0
φ′(u)du+

∑
α≤z

φ(α)− φ(α−). (20)

In distribution theory, the function φ is differentiable, with distribution differential,

φ(du) = φ′(u)du+
∑

{α,δφ(α)6=0}

δφ(α) δα(du), δφ(x) = φ(x)− φ(x−).

Before proceeding to the introduction of the differential formula in stochastic calculus, we give an
immediate application of the above differential rule to delayed equations.

5.1.1. Finite variation calculus and delay differential equation. An immediate application is
the study of delayed differential equation by a fixed point method. Special attention is paid to the
simplest form of the delayed equation (21), whose solutions are the scale functions, ū(x) and ũ(x)
introduced in Proposition 2. As explained in the next subsection, the martingale property of these
functions taken at m− Uρ. on the domain (0,m) is enough to show that they satisfy the following
DDE.

Theorem 5. Let us consider the delayed equation on [0,∞), whose finite variation non-negative
solution u, (null on [−∞, 0)), is continuous with only a jump at 0, u(0) > 0,

βu′(x) = u(x)− u(x− 1), β > 0. (21)

This delayed equation is stable under some simple transformations,
(i) a) Assume β = β(ρ). If u is solution of (21), then ρxu(x) is solution of (21) with new
coefficient β̃(ρ) = β(ρ)/ρ = β(1/ρ) := β(ρ̃).

b) If u is solution of (21), then û(x) =
∫ x

0 u(z)dz, equal to 0 for x ≤ 0, is solution of the delayed
differential equation with drift,

βû′(x) = û(x)− û(x− 1) + βu(0) β > 0, u(0) = û′(0). (22)

(ii) The derivative is a solution (null for x < 0) of the convolution equation,

u′(x) = (1/β) 1[0,1)(x)u(0) + (1/β)

∫ 1

0
u′(x− z)dz a.e. (23)

(iii) Pollaczek-Khintchine formula. Assume β > 1. Let (Ui) be an i.i.d. sample of a uniformly
distributed r.v. on [0, 1] with sum Sn =

∑n
i=1 Ui, , and ν an independent geometrical r.v. with

distribution on j ≥ 0 given by P(ν = j) = (1− 1/β)β−j. Then,

u′(x) = u(0)/(β − 1)P(Sν ∈ [x− 1, x)) = u(0)(W (x)−W (x− 1)). (24)
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where W (x) = 1/(β − 1)P(Sν ≤ m), and W (0) = 1/β.
(iv) When β > 1, the Ū∞-cumulative distribution function ū(x) = P(Ū∞ ≤ x) is the solution of the
delayed equation equal to ū(x) = P(Sν ≤ x).

Proof. (i) a) The derivative of ρx u(x) = uρ(x) is u′ρ(x) = log(ρ)ρx u(x) + ρx u′(x). The relation
β(ρ) log(ρ) = ρ− 1, and some algebra yield to the equality

(β(ρ)/ρ)u′ρ(x) = β(ρ̃)u′ρ(x) = uρ(x)− uρ(x− 1).

b) The integral equation is based on formula (27) given that
∫ x

0 u
′(z)dz = u(x)− u(0). Then, the

delayed equation of the primitive function û differs from the previous one by the addition of the
constant u(0)β. The function W (0) by definition satisfies W (0)β = 1.
(ii) The delayed function u(x)− u(x− 1) is continuous on (0,∞) outside of x = 1 and x = 0, with
jumps of size −u(0) and u(0). By the differential formula (27) ,

u(x+ 1)− u(x) = u(0)1[0,1)(x) +

∫ x

(x−1)+

u′(y)dy,= u(0)1[0,1)(x) +

∫ 1

0
u′(x− u)du,

where in the last equality we have used that u′(x) = 0, for x < 0. The last term may be interpreted
as the convolution with the uniform distribution

∫ 1
0 u
′(x − u)du = E(u′(x − U)), with U being

uniformly distributed in [0, 1].
(iii) When β > 1, by an iterative procedure and the introduction of the r.v. ν, we obtain the integral
representation (24). In particular, the martingale property satisfied by the scale function ū(m) =
P(Ū∞ ≤ m) implies that ū is solution of the delayed equation, with ū(0) = P(Ū∞ = 0) = 1− 1/β
equal to P(Sν = 0). Thus, both distribution functions ū(x) and P(Sν ≤ x) are solutions of the
same DDE, with the same initial condition. So, they are identical, i.e. P(Ū∞ ≤ m) = P(Sν ≤ m).
Thanks to the first part of the theorem, the function ũ(x) = ρxū(x) is solution of the DDE with
coefficient β̃. For the case β < 1, we can invert the role of u and ũ.

We now complete the identification between the solution of the delayed equation and the scale
function, defined as the function whose Laplace transform is the inverse of the Laplace exponent
of the Lévy process (Bertoin [9]).

Corollary 1 (Laplace transform and scale functions). Assume β(ρ) > 1.
Let ψρ(α) = αλ(β(ρ)− β(e−α)) be the Laplace exponent of the Lévy process (P, Uρ).
(i) Then, the Laplace transform of 1

λ(β−1) ū(x) satisfies

1

λ(β − 1)

∫ ∞
0

e−αxū(x)dx =
1

αλ(β − 1)
E(e−αSν ) =

(
αλ(β(ρ)− β(e−α))

)−1
. (25)

Then, 1
λ(β−1) ū(x) = 1/ψρ(α) is the inverse of the Laplace exponent of Uρ, and so by definition the

scale function W (x, λ) of (P, Uρ) in the sense of Lévy processes.

(ii) The Laplace exponent of the Lévy process (P̃, Uρ) is ψρ(α− log(ρ)), which is the inverse of the

Laplace transform of the function 1
λ(β−1)ρ

x ū(x). So, W̃ (x, ρλ) = ρxW (x, λ) is the scale function

of the Lévy process (P̃, Uρ) = (P̃, Ũ ρ̃).

Proof. (i) In Proposition 2, we calculated the Laplace exponent of the Lévy process Uρ as ψρ(α) =
αλ(β(ρ)− β(e−α)), where λ is the intensity of the Poisson process N .
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Since β > 1, by independence, the Laplace transform of Sν is easy to calculate, and

1

αλ(β − 1)
E(e−αSν ) =

1− 1/β

αλ(β − 1)

∞∑
n=0

(β(e−α)/β)n =
(
αλ(β − β(e−α))

)−1
= ψρ(α)

The function W (x), solution of the DDE with βW (0) = 1 is the scale function of Uρ when the
intensity of N is 1, and W (x)/λ is the scale function when the intensity is λ.
(ii) Assume β > 1, and introduce the P̃-Laplace exponent of the Uρ,

ψ̃ρ(α) =

∫ ∞
0

e−αxρxW (x)dx = ψρ(α− log(ρ)), α > log(ρ).

By similar transformations as in Subsubsection 3.1.1, ψρ(α− log(ρ)) is the P̃-Laplace exponent of
Uρ, since ρU

ρ
1 is the density of P̃ with respect to P. ρxW (x) is the scale function of (P̃, Uρ), or also

the scale function (P̃, U ρ̃).

Other computations related to delayed differential equations associated with the performance
functions are performed at the end of this section, with different boundary conditions and drifts.
The solutions are only depending on the scale function and their primitives.

5.2. Stochastic differential calculus.

5.2.1. Generic calculation with discontinuity. Let us consider a generic finite variation process
Z driven by a Poisson process N , and solution of the stochastic equation,

dZt = σ(Zt−)dNt + b(Zt)dΛt (26)

For instance, in the family of such processes, we find the processes U (σ(x) = 1, b(x) = −β) and
X (σ(x) = −1, b(x) = β), as well as the processes V (σ(x) = 1{x≥0}, b(x) = −β1{x>0}, see (16))
and Y ( σ(x) = −1{x≥0}j(x), b(x) = β1{x≥0}, see (17).)
Let us consider a continuous finite variation function φ as above. By composition with the finite
variation process Zt, the process φ(Zt) is still of finite variation in time and

dφ(Zt) = (φ(Zt− + σ(Zt−))− φ(Zt−)) dNt + φ′(Zt) b(Zt) dΛt. (27)

Moreover, when φ has only one discontinuity at m, the process φ(Zt) has additional jumps due to
φ, when Zt = Zt− = m and δφm = φ(m) − φ(m−) 6= 0. Since the number of continuous crossings
at the level m by Z is discrete, we denote this process Jm,Zt =

∑
s≤t 1{Zs=Zs−=m}. So, we have to

add to the previous formula the term δφ(m) Jm,Zt .

Theorem 6. Let Jm,Z be the number of continuous crossings of m, i.e. Jm,Zt =
∑

s≤t 1{Zs=Zs−=m}.
Recall that Mt = Nt − Λt is a Px-local martingale.
(i) If φ is a.e. differentiable, continuous except at the level m with jump δφ(m) = φ(m)− φ(m−),
put ∆σφ(x) = φ(x+ σ(x))− φ(x). Then, for any function α (positive or bounded), the differential
formula becomes,

dφ(Zt) + δφ(m)dJm,Zt + α(Zs−)dNs = ∆σφ(Zt−)dNt + φ′(Zt) b(Zt) dΛt, (28)

= −φ′(Zt−)b(Zt−)dMt + (∆σφ+ φ′ b+ α)(Zt−)dNt.

(ii) The left-hand side is a local martingale if and only if φ is solution of the delayed equation

∆σφ(z) + φ′(z) b(z) + α(z) = 0, a.e. (29)
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In particular, since the process ū(m−Uρt ) is a martingale in the domain (0,m), the last condition
implies after the change of variable x = m− z, that for x > 0

ū′(x)β = ū(x)− ū(x− 1) a.e..
The applications to the performance functions are of two types. On one hand, they allow us to
extend the martingale property of the processes Hm and Gm defined in (18) at any time. On the
other hand, they allow us to precise the Neumann delayed equation satisfied by the performance
functions. As before, any results can be given on the same probability space. We frequently use
the notation Nm,Z

t =
∫ t

0 1[0,m](Zs−)dNs and the definition of the performance functions given in
Section 4.1.3.

Proposition 7. (i) Let us consider the process V solution of the differential equation (16).

a) The process Hm
t = hm(Vt)− hm(V0) +Nm

t − hm(m−)Jm,dt is the Px- local martingale

dhm(Vt) + dNm
t − hm(m−)dJm,dt = dHm

t = βh′m(Vt−)dMt. (30)

b) So, hm is the Neumann solution with jump at m, of the delayed equation

βh′m(x) = hm(x+ 1)− hm(x) + 1, x ∈ (0,m), h′(0) = 0, h(x) = 0, x ≥ m. (31)

(ii) Let us now consider the process Yt solution of the differential equation (17). The function gm
is continuous at m.
a) The process Gmt = gm(Yt)− gm(Y0) +Nm,Y

t is the following Px- local martingale ,

dgm(Yt) + dNm,Y
t = dGmt = βg′m(Yt−)dMt. (32)

b) So, gm is the continuous solution of the Cauchy delayed equation,

βg′m(x) = gm(x)− gm((x− 1)+)− 1, x ∈ (0,m), gm(x) = 0, x ≥ m. (33)

Proof. The proof is immediate from Theorem 6, and the differential equations of V and Y .
The same delayed equations (31) and (33) hold true for the tilded-functions using the parameter
β̃ = β(1/ρ) = β(ρ)/ρ instead of β. The resolution of the delayed equations is postponed to the
next subsection.

5.2.2. Computation of the performance functions with the help of scale functions. The per-
formance functions hm(x) = Ex(NτVm

) and gm(x) = Ex(NτYm
) are solutions of the DDEs (31)

and (33) respectively, with different boundary conditions. Thanks to Theorem 5, the functions
hm(m−z) = km(z) and gm(y) are linear combinations of the scale functions W and their primitive

Ŵ (z) =
∫ z

0 W (y)dy (without restriction on the value of the parameter β(ρ)). The functions W and

W̃ are defined by 0 for x < 0 and
for ρ > 1, W (x) =

1

(β − 1)
P(Ūρ∞ ≤ x), W̃ (x) = ρxW (x),

for ρ < 1, W (x) = ρ−xW̃ (x), W̃ (x) =
1

ρ(β̃ − 1)
P̃(Ūρ∞ ≤ x).

(34)

The following results are not new, and similar closed formulae may be derived directly from [28].
Nevertheless, in the Poisson case, our proofs are very elementary and do not appeal to the excursion
theory. Given our simplified framework, we only need elementary differential calculus.
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Theorem 8 (Closed formulas). (i) The performance functions gm(y) and g̃m(y), extended by 0
for y < 0, are continuous solutions on (0,m), null for y > m of the delayed equations,

β g′m(y) = gm(y)− gm(y − 1)− 1, β̃g̃′m(y) = g̃m(y)− g̃m(y − 1)− 1, (35)

Then, gm(y) =

∫ m

y
W (z)dz, g̃m(y) =

∫ m

y
ρW̃ (z)dz, y ∈ [0,m]. (36)

(ii) The modified performance functions km(z) = hm(m − z), and k̃m(z) = h̃m(m − z), extended
by 0 for z < 0, are solutions on (0,m) of the delayed equations (35),

β k′m(y) = km(y)− km(y − 1)− 1, β̃k̃
′
m(y) = k̃m(y)− k̃m(y − 1)− 1. (37)

satisfying the Neumann condition k′m(m−) = 0, k̃
′
m(m−) = 0.

Then, km and k̃m are linear combinations of (W, Ŵ ), or (W̃ ,
̂̃
W ), and

hm(x) = W (m− x)
W (m)

W ′(m)
−
∫ m−x

0
W (y)dy, hm(m−) = W (0)

W (m)

W ′(m)
, (38)

h̃m(x) = ρ
(
W̃ (m− x)

W̃ (m)

W̃ ′(m)
−
∫ m−x

0
W̃ (y)dy

)
, h̃m(m−) = ρW (0)

W̃ (m)

W̃ ′(m)
. (39)

Proof. (i) Recall that the primitive of any solution u of the delayed equation is solution of the
delayed equation (35) with drift βu(0). When the drift is one, the reference solution is the scale
function W since W (0) = 1/β. When the drift is −1, the reference solution is −W (y). Associated
with the boundary condition gm(m) = 0, we obtain the relation (36). Similarly, the same relation
holds true for the tilded equation, with the drift condition β̃ũ(0) = −1. So, the reference solution

is −ρW̃ (y) whose value at 0 is −ρW (0) = −1/β̃.
(ii) The function km(z) is solution of the linear delayed equation with drift −1, and Neumann
condition k′m(0) = 0. So, we are looking for solutions which are linear combinations of W and

Ŵ . Since the constant is equal to −1, the coefficient of Ŵ is given by −1. However, we need an
additional term proportional to W (z) to satisfy the Neumann condition k′m(m−) = 0. Therefore,

we are looking for a function km(z) = αmW (z) − Ŵ (z), with left-derivative at m equal to 0, i.e.
αmW

′(m−)−W (m) = 0. The formula (38) gives an explicit form at the relation hm(x) = km(z) =

αmW (m− x)− Ŵ (m− x).

(iii) For the tilded equation, just as for g̃m, the coefficient of
̂̃
W is −ρ. We are also looking for a

coefficient α̃m such that α̃mW̃
′(m−) − ρW̃ (m) = 0. So, the closed formula (39) is based on this

observation.
(iii) Assume now a λ-intensity and a scale function W (x, λ) = (1/λ)W (x). So the solution of
the delayed equation when the scale function is W (x, λ) is λW (x, λ) = W (x), and yield to the
invariance by scaling of the performance function gm(x) = Ex(NτYm

). The same argument holds
true for the other performance functions.

6. Optimality of the cusum stopping rule.

Since the cusum process depends on the value of ρ, we reintroduce the distinction between ρ > 1
associated with the process V and the performance functions hm and h̃m and ρ < 1 associated
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with the process Y and the performance functions gm and g̃m. The aim is to prove the optimal-
ity of the stopping time τVm (resp. τYm) in the family of finite stopping times T with finite cusum
performance, i.e. C(T ) = supθ∈[0,∞] ess supω Ẽ ((NT −Nθ)

+|Fθ), and satisfying the false alarm
constraint: E[NT ] ≥ E[NτVm

] = E[Nm
τm ] = hm(0), (resp. E[NT ] ≥ E[Nm

τYm
] = gm(0)).

The first step is to provide an equivalent criterion which allows us to work only with the probability
measure P.

6.1. Cusum criterion and its modification. The value of the cusum criterion associated with
a cusum stopping rule τVm or τYm is easy to obtain from the martingale properties established in
Proposition 7 since the functions h̃m and g̃m are decreasing. But showing its optimality is more
complex. In order to take the false alarm constraint into account we work under the same probability
measure P. Therefore, in the same vein as Shiryaev [34] and Moustakides [24], we introduce a
modification of the Lorden criterion, providing a convenient lower bound for the conditional worst
case performance, still reached by the same cusum stopping times. A useful tool is an integration
by parts formula under the probability P̃x.

Proposition 9. Let us consider the process ΓTt := Ẽx(
∫ T
t dNs

∣∣Ft). Let (Z̄t) be a càdlàg monotonic
adapted process whose jumps occur only at the jump epochs of N as X̄t or −Ūt. Then, we have

Ẽx
[ ∫ T

t
ΓTαdρ

Z̄α
∣∣Ft] = Ẽx

[ ∫ T

t
(ρZ̄s− − ρZ̄t)dNs

∣∣Ft]. (40)

Several important consequences under the probability measures Px can be made explicit.

(i) When (Z̄ = X̄ad, T = τVm := τm), or (Z̄ = −Ūad, T = τYm := τm), we have

ρx(h̃m(x)− h̃m(0)) = ρEx
( ∫ τm

0
ρVs−dNs

)
− h̃m(0) Ex(ρVτm ), (41)

ρ−y(g̃m(y)− g̃m(0)) = ρEy
( ∫ τm

0
ρ−Ys−dNs

)
− g̃m(0) Ey(ρ−Yτm ). (42)

a) So, Hρ
t =

∫ t
0 ρ

VsdNm,V
s − ρmh̃m(m−)Jm,Vt + ρVt(h̃m(Yt)− h̃m(0)) is a Px-martingale

b) and Gρ,mt = ρ
∫ t

0 ρ
−Ys−dNm,Y

s + ρ−Yt(g̃m(Yt)− g̃m(0)) is a Px-martingale.

(ii) When ΓTt is bounded by C(T ), the following lower bounds hold:

for ρ > 1, ρE
[ ∫ T

t
ρVs−dNs

∣∣Ft] ≤ C(T ) Ẽ
(
ρVT
∣∣Ft), (43)

for ρ < 1, ρE
[ ∫ T

t
ρ−Ys−dNs

∣∣Ft] ≤ C(T ) E
(
ρ−YT

∣∣Ft). (44)

(iii) h̃m(0) and g̃m(0) are respectively the cusum bounds of the stopping times τVm (ρ > 1) and τYm
(ρ < 1).

Proof. (i) We start with calculation under the probability P̃x and take the primitive of ΓTt with

respect to the increasing process ρZ̄ . To prove the equalities, it is equivalent to introduce any
stopping times S ≤ T , and work with the expectations in place of conditional expectations. Using
integration by parts formula, we show that (40) is equivalent to

Ẽ
[ ∫ T

S

ΓTαdρ
Z̄α
]

= Ẽ
[ ∫ T

S

(

∫
(α,T ]

dNu)dρZ̄α
]
,

= Ẽ
[ ∫ T

S

dNu(

∫
(S,u)

dρZ̄α)
]

= Ẽ
[ ∫ T

S

dNu(ρZ̄u− − ρZ̄S )
]
.
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(ii) The first application is the comparison of the performance functions.
a) Starting with T = τVm =: τm and Z̄ = X̄ad, the process ΓTt is a function of Vt, ΓTt = h̃m(Vt).

Since ρX̄
ad

t only increases when V = 0, the equality (40) at t = 0 for x ≤ m becomes

h̃m(0) Ẽx(ρX̄
ad
τm − 1) = Ẽx(

∫ τm

0
(ρX̄

ad
s− − 1)dNs) = Ẽx(

∫ τm

0
ρX̄

ad
s−dNs)− h̃m(x).

So, Ẽx(
∫ τm

0 ρX̄
ad
s dNs)− h̃m(0)Ẽx(ρX̄

ad
τm ) = h̃m(x)− h̃m(0).

b) This form is well-adapted to pass from P̃x to Px since P̃x/Px = ρUτm−U0 . Using that ρUt−U0 is
a density martingale, together with the relation Ut(U0) + X̄ad

t (U0) = Vt(U0), we can replace X̄ad

by V̄ ad − U0 in the previous equality to obtain the result under Px; in other words,

ρ−x
(
Ex(

∫ τm

0
ρVsdNs)− h̃m(0)Ex(ρVτm )

)
= h̃m(x)− h̃m(0).

(ii) a) The same argument can be used when starting with T = τYm =: τm and Z̄ = −Ūad, since
ΓTt = g̃m(Yt). We have to pay attention to the discontinuities of Ūad, but not in the left-hand side
of the equality since the support of Ūad is the set {Yt = 0}. Then, we still have

Ẽy(
∫ τm

0
ρ−Ū

ad
s−dNs)− g̃m(0)Ẽy(ρ−Ū

ad
τm ) = g̃m(y)− g̃m(0).

We also have that ρUt−U0 is a Py-martingale, and Ut(U0)− Ūad
t (U0) = U0 − Yt(U0). So by identifi-

cation, we obtain that Ẽy(ρ−Ū
ad
τm ) = Ey(ρUτm−Ū

ad
τm ) = ρy Ey(ρ−Yτm ).

b) The other term involves the left limit of Ūad, so we use the identity Ut− Ūad
t−(y) = y−Yt−(y) +

(Ut − Ut−). Since Ut − Ut− = 1 at any jump dates of N , we have

Ẽy(
∫ τm

t
ρ−Ū

ad
s−dNs) = Ey(

∫ τm

t
ρUs−Ū

ad
s−dNs) = ρy Ey(

∫ τm

t
ρ ρ−Ys−dNs).

So as before,

ρy
(
Ey(
∫ τm

0
ρ ρ−Ys−dNs)− g̃m(0)Ey(ρ−Yτm )

)
= g̃m(x)− g̃m(0).

This formula differs from the one involving the process V by the fact that dNt a.e. Vt − Vt− = 1
but −(Yt − Yt−) 6= 1.
(iii) a) The last application is relative to the cusum bounds. If ΓTt is bounded by C(T ), and ρZ̄t

is non-decreasing, the left-hand side of (40) is dominated by C(T )Ẽ
[
ρZ̄T − ρZ̄t

∣∣Ft].
From the right-hand side, we deduce that Ẽ

[ ∫ T
t (ρZ̄s− − ρZ̄t)dNs

∣∣Ft] ≤ C(T )Ẽ
[
ρZ̄T − ρZ̄t

∣∣Ft].
Since ρZ̄t is Ft-measurable, and ρZ̄tΓTt ≤ C(T )ρZ̄t , we also have the simplified relation Ẽ

[ ∫ T
t ρZ̄s−dNs

∣∣Ft] ≤
C(T )Ẽ

(
ρZ̄T

∣∣Ft).
b) The monotony property is verified for instance if (ρ > 1, X̄) or (ρ < 1,−Ū). Assume
ρ > 1 and Z̄ = X̄. As previously, we can transform this inequality as a P-inequality, since
the conditional density of P̃ with respect to P is ρUT /ρUt , so that as in the case of functions,

E
[ ∫ T

t ρV sdNs

∣∣Ft] ≤ C(T )E
(
ρVT
∣∣Ft).

Assume ρ < 1 and Z̄ = −Ū . Using the same argument as in the case of functions, we obtain
E
[ ∫ T

t ρ(1−Y s−)dNs

∣∣Ft] ≤ C(T )E
(
ρ−YT

∣∣Ft).
c) When T = τm, at time 0, we have E(

∫ τm
0 ρV sdNs) = h̃m(0)E(ρYτm ), and

E(
∫ τm

0 ρ1−Ys−dNs) = g̃m(0)E(ρ−Vτm ). It thus follows that h̃m(0) and g̃m(0) are respectively the
cusum bounds of the stopping times τVm (ρ > 1) and τYm (ρ < 1).
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6.2. Optimality .
(i) False alarm constraint. The optimality of the cusum stopping time τm is to be restricted to
the class of stopping times with finite cusum performance and satisfying the false alarm constraint,
E(Nτm) ≤ E(NT ) < +∞. So, it is sufficient to prove that

E
( ∫ T

0
ρVsdNs

)
≥ h̃m(0) E

(
ρVT
)
, given E(NT ) = E(Nτm) = hm(0). (45)

Proposition 7 provides useful tools to reformulate these inequalities in a more tractable form,
by introducing the V -processes Nm,V

t =
∫ t

0 1[0,m)(Vs−)dNs and
∫ t

0 ρ
VsdNm

s , or the Y -processes

Nm,Y
t =

∫ t
0 1[0,m)(Ys−)dNs and

∫ t
0 ρ

1−Ys−dNm
s . We first start with the case ρ < 1, being the

simplest from the optimality point of view.

Theorem 10 (Optimality result for a decrease in the intensity). Assume ρ < 1, and consider cusum
process Y . Let T be a stopping time with finite cusum performance, and false alarm constraint
E(NτYm

) = E(NT ) < +∞.
(i) The function ψ(y) = ρ−(m−y)gm(y)− g̃m(y)/ρ, defined on [0,m] is positive.
(ii) g̃m(0) is a lower bound for the criterion

ρE
( ∫ T

0
ρ−Ys−dNs

)
/E
(
ρ−YT

)
≥ g̃m(0), given E(NT ) = E(NτYm

) = gm(0). (46)

(iii) τYm is an optimal detection rule for the problem (4) under the false alarm constraint E(NT ) =
E(NτYm

) = gm(0).

Proof. Assume ρ < 1. The cusum process is the process Y , with cusum stopping time τYm (τm in
short). Recall that Nm,Y

t =
∫ t

0 1[0,m)(Ys−)dNs.
(i) Indeed, by Proposition 9, and from the continuity of the function gm, for any stopping time S
such that E(Nm,Y

S ) <∞, we have gm(0) = E(Nm,Y
S +gm(YS)). The false alarm constraint becomes:

E(
∫ T

0 1[m,∞)(Ys−)dNs) = E(gm(YT )).

By Proposition 9, we know that
∫ t

0 ρ
1−Ys−dNs + ρ−Yt(g̃m(Yt)− g̃m(0)) is a martingale, null at time

0, so that

E
( ∫ T

0
ρ1−Ys−dNm

s − g̃m(0)ρ−YT + ρ−YT g̃m(YT )
)

= 0.

Therefore, we have to show that, for ρ < 1,

E
( ∫ T

0
ρ1−Ys−1[m,∞)(Ys−)dNs − ρ−YT g̃m(YT )

)
≥ 0,

if E(
∫ T

0 1(m,∞)(Ys−)dNs − gm(YT )) = 0. The idea is to control the term ρ1−Ys−1[m,∞)(Ys−) by
ρ1−m1[m,∞)(Ys−) since the difference is still nonnegative (ρ < 1). So, the inequality will be proved

if we show that ρ1−mgm(YT )− ρ−YT g̃m(YT ) is nonnegative in expectation.
(ii) a) Let us study the function ψ(y) = ρ−(m−y)gm(y)− g̃m(y)/ρ, equal to 0 when y ≥ m, using
the description of the functions gm and g̃m given in Theorem 8 in terms of the scale functions.
Recall that gm(y) =

∫m
y W (z)dz and g̃m(y) =

∫m
y ρW̃ (z)dz.

b) The derivative ψ′(y) is negative since A = log(ρ)ρ−(m−y)gm(y) is negative and

ψ′(y)−A = −ρ−(m−y)W (y) + ρ W̃ (y)/ρ = ρyW (y)− ρ−(m−y)W (y),

= ρyW (y)(1− ρ−m) ≤ 0, (ρ < 1).20



So ψ′(y) is negative and ψ(y) is non-negative. Thus, the lower bound is verified.

(iii) We have seen in Proposition 9 that the lower bound is an equality for τYm . Thus, the optimality
is proved.

The case ρ > 1 is more delicate, since the performance functions are discontinuous at the level m,

with jumps −hm(m−) = −W (0) W (m)
W ′(m) and −h̃m(m−) = −ρW (0) W̃ (m)

W̃ ′(m)
, where the last equalities

are given in Theorem 8, together with the following formulae:

hm(z) = W (m− z)hm(m−)

W (0)
−
∫ m−z

0

W (y)dy,

h̃m(z) = ρm−zW (m− x)
h̃m(m−)

W (0)
−
∫ m−z

0

ρyW (y)dy.

Theorem 11 (Optimality result for an increase in the intensity). Assume ρ > 1, and consider
the cusum process V . Let T be a stopping time with finite cusum performance, and false alarm
constraint E(NτVm

) = E(NT ) < +∞.
(i) The function φm(z) is continuous and non-negative on [0,m), where

φm(m− z) =
h̃m(m−)

hm(m−)
ρm−z hm(z)− h̃m(z) = ρ

∫ m−z

0

W̃ (y)dy − h̃m(m−)

hm(m−)
ρm−z

∫ m−z

0

W (y)dy. (47)

(ii) h̃m(0) is a lower bound for the criterion

E
( ∫ T

0
ρVsdNs

)
/E
(
ρVT
)
≥ h̃m(0), given E(NT ) = E(NτVm

) = hm(0). (48)

(iii) τVm is an optimal detection time for the false alarm constraint E(NT ) = E(NτVm
) = hm(0).

Proof. Recall that Nm,V
t =

∫ t
0 1[0,m)(Vs−)dNs and Jd,m. is the number of continuous down cross-

ings of m by V .
(i) By Proposition 7, since the decreasing function hm has a jump of −hm(m−) at m, for any stop-

ping time T , we have: hm(0) = E(Nm
T + hm(VT )− hm(m−) Jd,mT .

Similarly, the false alarm constraint becomes:

E(
∫ T

0 1[m,∞)(Vs−)dNs + hm(m−) Jd,mT ) = E(hm(VT )).

From Proposition 9, and the martingale property, we know that

E
( ∫ T

0 ρVsdNm,V
s − h̃m(0)ρVT ) = E

(
h̃m(m−)ρmJd,mT − ρVT h̃m(VT )

)
.

So, we have to show that for ρ > 1,

E
( ∫ T

0 ρVs1[m,∞)(Vs−)dNs + h̃m(m−)ρmJd,mT − ρVT h̃m(VT )
)
≥ 0,

given that E(
∫ T

0 1(m,∞)(Vs−)dNs + hm(m−) Jd,mT ) = E(hm(VT )).

(ii) Since, only a limited information is accessible about the variable Jd,mT , we modify the criterion

by multiplying the constraint by h̃m(m−)
hm(m−)ρ

m, and by making the difference. The inequality becomes

E
( ∫ T

0
(ρVs − h̃m(m−)

hm(m−)
)ρm1[m,∞)(Vs−)dNs +

h̃m(m−)

hm(m−)
ρm hm(VT )− ρVT h̃m(VT )

)
≥ 0.
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In fact, this inequality is true pathwise, since h̃m(m−) ≤ hm(m−),

a) Since h̃m(m−)
hm(m−)ρ

m ≤ ρm, the first term is obviously non-negative since Vs ≥ m+ 1.

b) The second term is explained by the properties of the function φm(z), where φm(m − z) =
h̃m(m−)
hm(m−)ρ

m−zhm(z)−h̃m(z), whose left limit at m is equal to 0 and so the function φm is continuous.

By the definition of the functions hm and h̃m, it is easy to verify that the contribution of the
functions W (m− x) and W̃ (m− x) is canceled, and

φm(x) = ρ
∫ x

0 W̃ (ydy)− h̃m(m−)
hm(m−)ρ

x
∫ x

0 W (y)dy, φ(0) = 0.

But this representation is not well-adapted to study the sign of its derivative. Therefore, using
the previous notation km(z) = hm(m − z) and k̃m(z) = h̃m(m − z), we come back to the initial

definition φm(x) = h̃m(m−)
hm(m−)ρ

xkm(z)− k̃m(z) and to the following form of the derivative:

φ′m(x) =
h̃m(m−)

hm(m−)
log ρ ρxkm(x) + (

h̃m(m−)

hm(m−)
ρxk′m(z)− k̃

′
m(x)).

Since h̃m(m−)
hm(m−) log ρ ρm−zkm(z) is non-negative, we essentially have to study the relation between

the derivatives, B(x) = h̃m(m−)
km(m−) ρ

xk′m(x)− k̃
′
m(x).

c) Recall that

h̃m(m−)
W (0) = ρ W̃ (m)

W̃ ′(m)
and W̃ ′(m)

W̃ (m)
= log ρ+ W ′(m)

W (m) = log ρ+ W (0)
hm(m−) .

Given that k̃m(x) = ρW (0)

h̃m(m−)
W̃ (x)− ρ

∫ x
0 ρ

yW (y)dy and W̃ ′(z) = ρz[log ρW (z) +W ′(z)], it follows

k̃
′
m(x) = ρxW (x)

[ h̃m(m−)

W (0)
log(ρ)− ρ

]
+ ρx

h̃m(m−)

W (0)
W ′(x).

Between brackets, the coefficient of − ρW (0)
hm(m−)ρ

xW (x) is

ρW (0)

h̃m(m−)
− log ρ = W̃ ′(m)

W̃ (m)
− log ρ = W ′(m)

W (m) = W (0)
hm(m−) .

Then, after some algebra we obtain a remarkable identity on the derivatives:

k̃
′
m(x) = ρx

h̃m(m−)

hm(m−)
[−W (x) +

hm(m−)

W (0)
W ′(x)) = ρx

h̃m(m−)

hm(m−)
k′m(x). (49)

In other words, the function B(x) = h̃m(m−)
hm(m−) ρ

xk′m(x) − k̃
′
m(x) is the null function, and φ′m(x) =

h̃m(m−)
hm(m−) log ρ ρzkm(z) is positive, and increasing on (0,m). So, the function φm(x) is convex, in-

creasing, on (0,m).
(iii) Consequently, the function φm(m − z) is positive, decreasing on [0,m] and still convex. The
lower bound is established. We have seen in Proposition 9 that the lower bound is an equality for
τVm . The optimality is proved.

Remark 1. These theorems give the infimum of the worst mean number of jumps until detection,
i.e. supθ∈[0,∞] ess sup

ω
Ẽ
[
(NT − Nθ)

+
∣∣Fθ] for a class of stopping times with preassigned rate of

false alarm, E(NT ) ≥ π. The bounds depend on whether an increase or a decrease in intensity is
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investigated. As observed by Basseville and Nikiforov [6], this result is important not only for the
cusum algorithm, but in general, since in some sense, these lower bounds play the same role in the
change detection theory as the Cramer-Rao lower bound in estimation theory.

7. Numerical illustrations.

In this section we provide an illustration of the performance of the cusum procedure. Recall that
the latter depends only on the performance functions hm, h̃m, gm and g̃m, given in Theorem 8 in
terms of the scale functions, and their primitive. Therefore, we give a closed formula for the scale
function and its primitive.

7.1. Closed formulas for the scale function. For β > 1, recall from Equation (34) that the scale
function is given as W (x) = P(Sν ≤ x)/(β − 1).
(i) The r.v. ν has a geometric distribution with parameter 1/β, i.e. P(ν = n) = (1 − (1/β))β−n,
and Sn =

∑n
i=1 Ui the sum of n v.a Ui being i.i.d. and uniformly distributed on (0, 1). The density

p∗nu of Sn is known as the Irwin-Hall density [16] equal to 0 when x ≥ j and to

p∗nu (x) =
1

(n− 1)!

bxc∑
k=0

(−1)k
(
n

k

)
(x− k)n−1, when 0 < x < j. (50)

Therefore, the r.v. Sν =
∑ν

i=0 Ui has a Dirac mass at 0 with probability 1− (1/β), and a density

distribution p∗νu (x) = (1− (1/β))
∑∞

j=1 β
−jp∗ju (x).

(ii) Integrating p∗νu allows one to derive the cumulative distribution and thus the scale function W
(for β > 1) as follows:

W (x) =
1

β

bxc∑
k=0

(−1)k

k!

(
(x− k)/β

)k
exp

(
(x− k)/β

)
. (51)

Similarly, upon elementary calculations and noting that (−1)k

k!

∫ x
0 y

keydy = ex
∑k

j=0
(−x)j

j! − 1, we

can derive the closed form of the primitive Ŵ (x) =
∫ x

0 W (y)dy as follows:

Ŵ (x) =

bxc∑
k=0

(
e(x−k)/β

( k∑
i=0

(−1)j

j!

(
(x− k)/β

)j)− 1
)
. (52)

In Figure 4, we depict the scale function as a function of x for β > 1 and β < 1. We fix the
parameters β respectively equal to 1.5 and 0.5. When β < 1, one should permute the role of W
and W̃ in order to use Equations (51) and (52) as W is not anymore a cumulative distribution

function. Thus, to compute the scale function W , we first compute W̃ using (52) to characterize

P̃(Sν ≤ x) with β(ρ)/ρ and then write W (x) = ρ−xW̃ (x).
(iii) In Figure 5, for a fixed threshold level m = 5.5, we represent the performance of the cusum
procedure for different values of ρ both for an increase and a decrease of the intensity. This figure
was depicted using the series representation of W and Ŵ and the performance functions closed
forms in Equations (38), (39) and (36). This represents the average delay until detection as well as
the false alarm constraint. We observe that the detection is quicker as ρ moves off the critical value
1. Moreover, as noted in Section 5, we can see that the functions hm and g̃m have similar behavior.
This is also the case for h̃m and gm. However, when ρ increases, we observe an instability in the
numerical calculation of h̃. This phenomenon is not present for gm, see Figure 6, even for large ρ.
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Figure 4. Scale function W (x) for different values of ρ.
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Figure 5. Performance of the cusum as a function of the parameter ρ with m = 5.5.

7.2. Numerical issues. (i) For ρ > 1, when either m or ρ becomes too large, some numerical
instability may arise in the numerical calculation of h̃m(0) (Figures 6(a) and 7). This is mainly due
to the particular series representation of the scale function W , where we are summing alternating
individual terms that increase fast in absolute value. The phenomenon has also been observed for
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Figure 6. Numerical (in-)stability in the calculation of h̃m(0) and gm(0) as a function of ρ for m = 5.5.

a long time in sequential hypotheses tests, DeLucia and Poor [12], or in ruin theory by Picard and
Lefèvre [27] or Rullière and Loisel [32], where the scale function W plays also a central role. In any
case, the problem is to find a well-conditioned algorithm to solve the delayed equation.
(ii) In DeLucia and Poor [12], a synthesis and fine analysis of the problem are proposed and
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Figure 7. h̃m(0) as a function of the post-change parameter ρ for m = 15.

different solutions are tested, for example a solution based on the inversion of the Laplace transform
given in Corollary 1. As tested in [12], the best approach is based on a recursive solution: ”a method
that may be useful in solving other than the first-order DDE’s”. The idea is to solve the problem
recursively on the discrete intervals, [0, 1), [1, 2)....[k, k+ 1) using that on [0, 1), W (x) = (1/β)ex/β,
and on [k, k+ 1), Qk(ξ) = e−(k+ξ)/βW (k+ ξ)), ξ ∈ (0, 1). It is clear that Q0 is a constant function
and Qk is a polynomial of degree k. On the other hand, the a.e. continuity of W induces a continuity
constraint on the polynomials Qk at 0 and 1, i.e. Qk(1) = Qk+1(0). Moreover, the DDE (21) implies
a hierarchical relation on the polynomials derivatives Q′k(ξ) = −αQk−1(ξ) with α = (1/β)e1/β. This
recursion defines a set of polynomials that falls into the definition of Appell polynomials, introduced
by Picard and Lefèvre [27] in ruin theory. Applying Taylor’s formula to Qk(ξ), we obtain the
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expansion Qk(ξ) =
∑k

i=0Qk−i(0) (αξ)i

i! where the coefficients Qj(0) can be deduced recursively.
(iii) As pointed by DeLucia and Poor [12], this method is useful to avoid the unstable numerical
outputs observed on the computation of W for large ρ. In Figure 8, we plot the function h̃m(0),
for a range of ρ where the instability may arise with a fixed barrier level m = 5.5. We thus
depict the function W obtained separately from the recursive (dashed line) as well as the series
representation (solid line). The series form is numerically unstable, whereas the recursive solution
remains accurate.
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Figure 8. Series and recursive representation based computation of the performance function h̃m(0) for m = 5.5.

8. Conclusion.

Initially motivated by a problem of quickest detection of change in some longevity patterns, we have
considered and solved the exact optimality of the minimax robust detection of a disorder time in
the Poisson rate, with a self-contained presentation. In this Lorden-type context, the cusum stop-
ping rule is shown to be optimal both for an increase or a decrease in intensity after the change.
Given the abundant literature on sequential testing and quickest detection, it may be surprising
that this classical problem has not been solved earlier. We believe that this is due to the differ-
ence between the cases of increase and decrease, the former featuring non-continuous performance
functions and requiring the use of a discontinuous local time.
As scale functions appear in the proof, one may wonder if it is possible to extend this result to a
broader class of Lévy processes. This is left for further research, as well as some detailed analysis
of the adaptation of this detection strategy for different sets of insurance data and the comparison
with other detection strategies.
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