J. Bouillard, A. Vignes, O. Dufaud, L. Perrin, and D. Thomas, Ignition and explosion risks of nanopowders, Journal of Hazardous Materials, vol.181, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.jhazmat.2010.05.094

URL : https://hal.archives-ouvertes.fr/hal-00517668

E. S. Hecht, Single particle studies of pulverized coal oxy-combustion, 2013.

D. Kim, S. Choi, C. R. Shaddix, and M. Geier, Effect of CO2 gasification reaction on char particle combustion in oxy-fuel conditions, Fuel, vol.120, pp.130-140, 2014.
DOI : 10.1016/j.fuel.2013.12.004

. Haynes, Effect of CO2 and steam gasification reactions on the oxy-combustion of pulverized coal char, Combustion and Flame, vol.159, issue.11, pp.3437-3447, 2012.

S. Granata, T. Faravelli, and E. Ranzi, A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes, Combustion and Flame, vol.132, issue.3, pp.533-544, 2003.
DOI : 10.1016/S0010-2180(02)00465-0

S. Benfell, J. A. Gupta, D. J. Lucas, and . Harris, The effects of pressure on coal reactions during pulverised coal combustion and gasification, Progress in Energy and Combustion Science, vol.28, issue.5, pp.405-433, 2002.

L. Chen, S. Z. Yong, and A. F. Ghoniem, Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling, Progress in Energy and Combustion Science, vol.38, issue.2, pp.156-214, 2012.
DOI : 10.1016/j.pecs.2011.09.003

P. A. Libby and T. R. Blake, Theoretical study of burning carbon particles, Combustion and Flame, vol.36, pp.139-169, 1979.
DOI : 10.1016/0010-2180(79)90056-7

G. Huang, F. J. Vastola, and A. W. Scaroni, Temperature gradients in the gas phase surrounding pyrolyzing and burning coal particles, Energy & Fuels, vol.2, issue.4, pp.385-390, 1988.
DOI : 10.1021/ef00010a003

K. Leistner, A. Nicolle, D. Berthout, P. Da, and C. , Kinetic modelling of the oxidation of a wide range of carbon materials, Combustion and Flame, vol.159, issue.1, pp.64-76, 2012.
DOI : 10.1016/j.combustflame.2011.06.006

R. H. Essenhigh, M. K. Misra, and D. W. Shaw, Ignition of coal particles: A review, Combustion and Flame, vol.77, issue.1, pp.3-30, 1989.
DOI : 10.1016/0010-2180(89)90101-6

A. Makino and C. K. Law, An analysis of the transient combustion and burnout time of carbon particles, Proceedings of the Combustion Institute, pp.2067-2074, 2009.
DOI : 10.1016/j.proci.2008.07.036

D. Spalding, The prediction of mass transfer rates when equilibrium does not prevail at the phase interface, International Journal of Heat and Mass Transfer, vol.2, issue.4, pp.283-313, 1961.
DOI : 10.1016/0017-9310(61)90119-3

A. Makino and C. Law, Ignition and extinction of co flame over a carbon rod, Combustion Science and Technology, vol.73, pp.4-6, 1990.

C. Zou, L. Cai, and C. Zheng, Numerical research on the homogeneous/heterogeneous ignition process of pulverized coal in oxy-fuel combustion, International Journal of Heat and Mass Transfer, vol.73, pp.207-216, 2014.
DOI : 10.1016/j.ijheatmasstransfer.2014.01.078

E. S. Hecht, C. R. Shaddix, and J. S. Lighty, Analysis of the errors associated with typical pulverized coal char combustion modeling assumptions for oxy-fuel combustion, Combustion and Flame, vol.160, issue.8, pp.1499-1509, 2013.
DOI : 10.1016/j.combustflame.2013.02.015

M. Zhang, J. Yu, and X. Xu, A new flame sheet model to reflect the influence of the oxidation of CO on the combustion of a carbon particle, Combustion and Flame, vol.143, issue.3, pp.150-158, 2005.
DOI : 10.1016/j.combustflame.2005.05.010

R. Lewtak and A. Milewska, Application of different diffusion approaches in oxy-fuel combustion of single coal char particles, Fuel, vol.113, pp.844-853, 2013.
DOI : 10.1016/j.fuel.2013.01.053

O. Deutschmann, R. Schmidt, F. Behrendt, and J. Warnatz, Numerical modeling of catalytic ignition, Symposium (International) on Combustion, pp.1747-1754, 1996.
DOI : 10.1016/S0082-0784(96)80400-0

L. L. Raja, R. J. Kee, and L. R. Petzold, Simulation of the transient, compressible, gas-dynamic behavior of catalytic-combustion ignition in stagnation flows, Symposium (International) on Combustion, vol.27, issue.2, pp.2249-2257, 1998.
DOI : 10.1016/S0082-0784(98)80074-X

M. Matalon, Complete Burning and Extinction of a Carbon Particle in an Pxidizing Atmosphere, Combustion Science and Technology, vol.3, issue.3-4, pp.115-127, 1980.
DOI : 10.1080/00102208008952430

J. C. Lee, R. A. Yetter, and F. L. Dryer, Transient numerical modeling of carbon particle ignition and oxidation, Combustion and Flame, vol.101, issue.4, pp.387-398, 1995.
DOI : 10.1016/0010-2180(94)00207-9

P. A. Libby and T. R. Blake, Burning carbon particles in the presence of water vapor, Combustion and Flame, vol.41, p.123, 1981.
DOI : 10.1016/0010-2180(81)90047-X

A. Makino and C. Law, Quasi-steady and transient combustion of a carbon particle: Theory and experimental comparisons, Symposium (International) on Combustion, vol.21, issue.1, p.183, 1988.
DOI : 10.1016/S0082-0784(88)80245-5

V. M. Janardhanan and O. Deutschmann, Modeling diffusion limitation in solid-oxide fuel cells, Electrochimica Acta, vol.56, issue.27, pp.9775-9782, 2011.
DOI : 10.1016/j.electacta.2011.08.038

O. Deutschmann, Interactions between transport and chemistry in catalytic reactors, 2001.

O. Deutschmann, L. Maier, U. Riedel, A. Stroemman, and R. Dibble, Hydrogen assisted catalytic combustion of methane on platinum, Catalysis Today, vol.59, issue.1-2, pp.141-150, 2000.
DOI : 10.1016/S0920-5861(00)00279-0

T. Schoenfeld, The AVBP handbook, 2008.

V. Granet, S. Menon, O. Vermorel, G. Staffelbach, T. Poinsot et al., Large-Eddy Simulation of a swirled lean premixed gas turbine combustor: a comparison of two compressible codes, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
DOI : 10.2514/6.2013-171

F. Cadieux, J. A. Domaradzki, T. Sayadi, S. Bose, and F. Duchaine, DNS and LES of separated flows at moderate Reynolds numbers, Proceedings of the Summer Program, p.77, 2012.

T. Poinsot, J. Dombard, V. Moureau, N. S. Staffelbach, and V. Bodoc, Experimental and numerical study of the influence of small geometrical modifications on the dynamics of swirling flows, Proceedings of the Summer Program, p.1, 2012.

H. B. Toda, O. Cabrit, K. Truffin, G. Bruneaux, and F. Nicoud, Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow, Physics of Fluids, vol.26, issue.7, p.75108, 2014.
DOI : 10.1063/1.4890855

C. F. Curtiss and R. B. Bird, Multicomponent Diffusion, Industrial & Engineering Chemistry Research, vol.38, issue.7, pp.2515-2522, 1999.
DOI : 10.1021/ie9901123

O. Cabrit, Wall modeling of the flow inside solid rocket motor nozzles, 2009.

O. Cabrit and F. Nicoud, Direct numerical simulation of a reacting turbulent channel flow with thermochemical ablation, Journal of Turbulence, vol.42, issue.44, pp.1-33, 2010.
DOI : 10.1080/00102208608923872

URL : https://hal.archives-ouvertes.fr/hal-00803379

H. Schlichting and K. Gersten, Boundary Layer Theory, 2000.
DOI : 10.1007/978-3-662-52919-5

J. C. Koh and J. P. Hartnett, Skin friction and heat transfer for incompressible laminar flow over porous wedges with suction and variable wall temperature, International Journal of Heat and Mass Transfer, vol.2, issue.3, pp.185-198, 1961.
DOI : 10.1016/0017-9310(61)90088-6

E. A. Hamza, Suction and injection effects on a similar flow between parallel plates, Journal of Physics D: Applied Physics, vol.32, issue.6, pp.656-663, 1999.
DOI : 10.1088/0022-3727/32/6/010

D. E. Rosner, Convective diffusion as an intruder in kinetic studies of surface catalyzed reactions, AIAA Journal, vol.2, issue.4, pp.593-610, 1964.
DOI : 10.2514/3.2393

L. Duan and M. P. Martín, Procedure to Validate Direct Numerical Simulations of Wall-Bounded Turbulence Including Finite-Rate Reactions, AIAA Journal, vol.47, issue.1, pp.244-251, 2009.
DOI : 10.2514/1.38318

A. Ern and V. Giovangigli, Eglib: A general-purpose fortran library for multicomponent transport property evaluation

F. N. Selle and T. Poinsot, Actual Impedance of Nonreflecting Boundary Conditions: Implications for Computation of Resonators, AIAA Journal, vol.42, issue.5, pp.958-964, 2007.
DOI : 10.2514/1.1883

URL : https://hal.archives-ouvertes.fr/hal-00910165

D. H. Rudy and J. C. Strikwerda, A nonreflecting outflow boundary condition for subsonic navier-stokes calculations, Journal of Computational Physics, vol.36, issue.1, pp.55-70, 1980.
DOI : 10.1016/0021-9991(80)90174-6

P. Crumpton, J. Mackenzie, and K. Morton, Cell Vertex Algorithms for the Compressible Navier-Stokes Equations, Journal of Computational Physics, vol.109, issue.1, pp.1-15, 1993.
DOI : 10.1006/jcph.1993.1194

P. Lax and B. Wendroff, Systems of conservation laws, Communications on Pure and Applied Mathematics, vol.47, issue.2, pp.217-237, 1960.
DOI : 10.1002/cpa.3160130205

P. D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Communications on Pure and Applied Mathematics, vol.12, issue.3, pp.381-398, 1964.
DOI : 10.1002/cpa.3160170311

O. Colin and M. Rudgyard, Development of High-Order Taylor???Galerkin Schemes for LES, Journal of Computational Physics, vol.162, issue.2, pp.338-371, 2000.
DOI : 10.1006/jcph.2000.6538

E. S. Hecht, C. R. Shaddix, A. Molina, and B. S. Haynes, Effect of co2 gasification reaction on oxy-combustion of pulverized coal char, Proceedings of the combustion institute, pp.1699-1706, 2011.

L. R. Radovic, H. Jiang, and A. A. Lizzio, A transient kinetics study of char gasification in carbon dioxide and oxygen, Energy & Fuels, vol.5, issue.1, pp.68-74, 1991.
DOI : 10.1021/ef00025a011

R. H. Hurt and J. M. Calo, Semi-global intrinsic kinetics for char combustion modeling??????Entry 2 has also been referred to as ???Langmuir kinetics.??? The present paper adopts common chemical engineering usage, in which the designation ???Langmuir??? is applied to the equilibrium adsorption isotherm, and when the isotherm is applied within the derivation of a kinetic law for a heterogeneous reaction the result is referred to as a Langmuir???Hinshelwood (LH) kinetic law, or Langmuir???Hinshelwood???Hougen???Watson (LHHW) kinetic law. There are many LH kinetic forms???entry 2 is valid for the special case of no surface reaction between adsorbed species., Combustion and Flame, vol.125, issue.3, pp.1138-1149, 2001.
DOI : 10.1016/S0010-2180(01)00234-6

V. Cozzani, Reactivity in Oxygen and Carbon Dioxide of Char Formed in the Pyrolysis of Refuse-Derived Fuel, Industrial & Engineering Chemistry Research, vol.39, issue.4, pp.864-872, 2000.
DOI : 10.1021/ie990534c

M. E. Coltrin, R. J. Kee, F. M. Rupley, and E. Meeks, Surface chemkin III: A fortran package for analyzing heterogeneous chemical kinetics at a solid-surface-gas-phase interface
DOI : 10.2172/481906

T. A. Brabbs, F. E. Belles, and S. A. Zlatarich, Shock???Tube Study of Carbon Dioxide Dissociation Rate, The Journal of Chemical Physics, vol.38, issue.8, pp.1939-1944, 1963.
DOI : 10.1063/1.1733900

G. Miessen, F. Behrendt, O. Deutschmann, and J. Warnatz, Numerical studies of the heterogeneous combustion of char using detailed chemistry, proceedings of the 6th Intl Congress on Toxic combustion, pp.609-613, 2001.
DOI : 10.1016/S0045-6535(00)00234-4

A. Makino, An attempt for applying formulation of the carbon combustion in the stagnation flowfield to some experimental comparisons related to the boundary layer combustion, Combustion and Flame, vol.161, issue.6, pp.1537-1546, 2014.
DOI : 10.1016/j.combustflame.2013.12.003

V. Giovangigli, Multicomponent flow modeling, 1999.
DOI : 10.1007/978-1-4612-1580-6

K. K. Kuo, Principles of combustion Creslaf (version 4. 0): A fortran program for modeling laminar, chemically reacting, boundary-layer flow in cylindrical or planar channels, Tech. rep., Sandia National Labs., Albuquerque, NM (United States); Sandia National Labs, 1986.