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Realistic Plant Modeling from Images

Based on Analysis-by-Synthesis

Jérôme Guénard1, Géraldine Morin1,
Frédéric Boudon2, and Vincent Charvillat1

1 IRIT - VORTEX - University of Toulouse
2 INRIA - Cirad - Montpellier

Abstract. Plants are essential elements of virtual worlds to get pleas-
ant and realistic 3D environments. Even if mature computer vision tech-
niques allow the reconstruction of challenging 3D objects from images,
due to high complexity of plant topology, dedicated methods for gen-
erating 3D plant models must be devised. We propose an analysis-by-
synthesis method which generates 3D models of a plant from both images
and a priori knowledge of the plant species.

Our method is based on a skeletonisation algorithm which allows to
generate a possible skeleton from a foliage segmentation. Then, we build
a 3D generative model, based on a parametric model of branching sys-
tems that takes into account botanical knowledge. This method extends
previous works by constraining the resulting skeleton to follow a natu-
ral branching structure. A first instance of a 3D model is generated. A
reprojection of this model is compared with the original image. Then,
we show that selecting the model from multiple proposals for the main
branching structure of the plant and for the foliage improves the quality
of the generated 3D model. Varying parameter values of the generative
model, we produce a series of candidate models. A criterion based on
comparing 3D virtual plant reprojection with the original image selects
the best model. Finally, results on different species of plants illustrate
the performance of the proposed method.

1 Introduction

Procedural methods to generate plant models can build a complex plant architec-
ture from few simple rules [1]. In his pioneering work [2], Lindenmayer proposes
the formalism of L-systems as a general framework. By carefully parameterising
these rules, it is possible to achieve a large variety of realistic plant shapes [3,4].
However, a strict recursive application of rules leads to self-similar structures and
thus, to enhance realism, irregularities may be generated through probabilistic
approaches [5,1]. Adjusting stochastic parameters to achieve realistic models re-
quires intensive botanical knowledge [6]. Another approach consists in modeling
plant irregularities as a result of the competition for space between the different
organs of the plants [7]. In this case, the volume of a plant is specified by the
user and a generative process grows a branching structure with branches com-
peting between each other. Competition can be biased to favor certain types of



structures. However, automatic control of competition parameters to achieve a
given shape is still complicated.

All these first works are derived from computer graphics community. Other
approaches use information provided by images to increase the degree of realism.
A couple of research directions should be investigated. Clearly, a plant should
follow the biological property of its species and also ressemble a picture of an
existing instance. That is typically the subject of our work. Our idea is not to
exactly reconstruct the plant from an image, including its hidden parts (which
seems impracticable) but rather to drive the instantiation of the plant 3D model
by minimising the difference between its reprojection and the original plant in
the image.

Fig. 1. On the left, an original image of a vine plant before and after a metric rec-
tification. In the middle, a possible architecture of the branching extracted with our
skeletonisation method. At the right, a corresponding 3D model of the plant.

Unlike existing methods detailed in section 2, ours must be able to get a 3D
model of a plant without any human interaction from images with possibly no
visible branches. By integrating biological knowledge of the plant species, we
propose a simple fully-automatic process to extract the structure of a plant from
the shape of its foliage. The picture can be taken in arbitrary conditions and
may be of poor quality (for example, in the vine case, the image is degraded
after a metric rectification due to the assumption that all the principal branches
are in a plane as shown at the left on the Fig. 1). We start by presenting a
new skeletonisation algorithm in section 3 in the vine case (as we can see in the
middle of the Fig. 1) and we explain a possible extension to our skeletonisation
method for other kinds of plants with 3D branching architecture in section 3.5.
Then a 3D model is generated thanks to our 3D generative model (section 4).
Finally, an analysis-by-synthesis scheme allows to improve this reconstruction
insuring that the foliage model reprojection matches closely the original foliage
like explained in section 5 (right on the Fig. 1). The last section shows results
and validation comparing with data provided by experts.

2 State of the Art: Generating Plants from Images

Realistic plants are challenging objects to model and recent advances in auto-
matic modeling can be explained by the convergence of computer graphics and



computer vision [8]. We start this state of the art with the first method of plant
modeling from images. Then, we continue with the ones starting by reconstruct-
ing clouds of 3D points. After, we talk about other methods using several images
to finish with approaches using a single image as ours.

A pioneering work on the reconstruction of trees from images was made by
Shlyakhter et al. [9] who reconstruct the visual hull of the tree from silhouettes
deduced from the images. A skeleton is computed from the hull using a Medial
Axis Transform (MAT) and is used as main branches. Branchlets and leaves are
then generated with an L-system. The skeleton determined from the MAT does
not necessarily look like a realistic branching system. Also, the density of the
original tree is not taken into account.

Quan et al. [10,11] and Tan et al. [12] also use multiple images to reconstruct a
3D model of trees or plants. In order to avoid searching features correspondances
in different images, they use views close to each other (more than 20 images for
any plants). Thus, they obtain a quasi-dense cloud of points by structure from
motion. For simple plants, a parametric model is first fitted on each set of points
representing a leaf. They then generate branches based on information given
by the user. For trees, they start by reconstructing visible branches to create
branch pattern that they combine in a fractal way until reaching leaves. Reche-
Martinez et al. [13] propose another reconstruction from multiple images, based
on billboards. Neubert et al. [14] construct a volume encompassing the plant in
the form of voxels using image processing techniques and fill it with particles.
Particles paths toward the ground and a user given general skeleton define the
branching system.

Wang et al. [15] model different species of trees using images of tree samples
from the real world which are analysed to extract similar elements. A stochastic
model to assemble these elements is also derived and parameterised from the
image. The resulting model can generate many similar trees. The goal in this
case is not necessarily to reconstruct a specific tree instance corresponding to an
image. Similarly, Li et al. [16] propose a probabilistic approach to reconstruct
a tree parameterized from videos. For these methods, the only source of infor-
mation is the given images leading to template branching patterns. If the set of
patterns is rich enough, it will produce aesthetically pleasing results, but without
guarantee to be representative of its species. Additionally, a user must specify
a draft of the structure on the image to avoid segmentation. Talton et al., in
[17], propose to fit a grammar-based procedural methods using Markov Chain
Monte Carlo technique to model objects from a 2D or 3D binary shape. Their
results are aesthetically very convincing but their optimisation routine requires
long computation time.

Other approaches explore the use of a single image [18,19]. In [18], from a
manual segmentation of the plant in the image, they extract a skeleton. A 3D
representation of the branches is derived from visible parts, then the leaves are
added. Here, an user sketching step is required. In [19], a graph topology is first
extracted from a single image of a branching system (a tree without foliage).
Then the 3D tree model is reconstructed by rotating the branches.



In general, methods of the literature, such as [12] and [18] require visible
branches to learn about the structure of the skeleton. In our case, branches are
directly derived from the foliage structure. Fig. 16 (top row) shows branching
structures devised manually by experts from image: we see that the branches
are deduced on one hand from the knowledge of a space filled by a branch and
its attached leaves and on the other hand from the silhouette of the foliage.
We propose a generalised recursive skeletonisation algorithm together with an
analysis-by-synthesis mechanism to determine the branches and their attached
foliage that is the 3D model. Our approach is fully-automatic, that is, does not
require any user interaction.

3 Skeletonisation

3.1 General Field Skeletonisation Method

Skeletonisation is a classical topic in image processing. We have followed and
completed the analysis of different approaches as proposed in [20] and as illus-
trated in Tab. 1. This table summarises the different properties that skeletons
respect like the thinness or the robustness and compares them to our require-
ments shown in the left column. All these properties are detailed in [20].

’Homotopic’ and ’connected’ are topology preserving properties. As the foliage
may have holes, we prefer not to be attached to its topology. For the same reason,
reconstruction is not very relevant. On the opposite robust is an important
property, since the foliage may not be stable (for example, the foliage may change
in case of wind). Being reliable means that any point in the foliage should be
visible from a point on the skeleton. For our setting, it is not necessary to request
a branch in each bump of silhouette. The transformation invariance property (in
particular affine invariance) is not important in our setting as we do depend on
orientation. For example, vine branches grow vertically. In our case, the smooth
property is important to get realistic branches but we do not need a centred
skeleton. Finally, we shall see that for plants more complex than vines, the
hierarchic nature of the skeleton is used (section 3.5). For these reasons, we
choose to adapt the general field method, and in particular the work of Cornea
[21], since their approach fits the best our needs.

Cornea et al. original method [21] consists in computing the skeleton (Fig.
2 (c)) from a vector field (Fig. 2 (b)). For each interior pixel pi of the binary

shape B, a force vector
−→
fi is computed as a weighted average of unit vectors to

the boundary pixels:

−→
fi =

∑

mj∈Ω

1

||−−−→mjpi||2

−−−→mjpi

||−−−→mjpi||

where Ω contains the contour pixels mj of B (Fig. 2 (a)). Then, points where
the magnitude of the force vector vanishes, so-called critical points (Fig. 2 (b)),
are connected by following the force direction pixel by pixel. The results of this
method can be seen in Fig. 2. The problem here is that this method is not robust



Table 1. Summary of properties achievable by different skeletonisation methods. In
green, the characteristics compliant with our needs.

Medial
Axis

Thinning Distance
Field

Geometric General
Field

Our
needs

G: general G [22] G G [23] G [21]

Homotopic Y Y Y Y Y N N N

Connected Y Y Y Y N Y

Reconstruction Y N N N N N N N

Robust N N N N N Y Y Y Y

Reliable Y Y N N N

Transf. Invariance Y N Y Y Y Y N

Centred Y Y Y N N

Smooth N N N Y Y Y

Hierarchic Y N N Y Y Y Y

Fig. 2. Cornea et al. original method. (a) shape B with contours pixels ∈ Ω represented
in red. (b) vector field with critical points in blue. (c) extracted skeleton in green.

to the holes in the binary shape. Furthermore, sometimes only one branch grows
when two or more are required.

3.2 A New Computation of the Vector Field

By redefining the set of contour points, we manage to use Cornea’s vector field
method to get a realistic skeleton in 2D.

Based on botanical expertise, we assume that different branches of relatively
similar size coexist and share the space of the plant crown. A large convex
silhouette is usually explained by more than one branch. For the skeleton to
reflect this hierarchy of branches, we propose a strategy to partition the foliage
surface into subsets by positioning artificial contour points in the shape. Fig. 3
shows that by adding contour points within the shape, we define an appropriate
branch set.

We compute a probability map P on B containing, for each interior point

pi, the probability to be considered as a contour point. The new force vector
−→
fi



Fig. 3. At the left, the skeleton (in green) extracted with Cornea’s original method. A
spatial partition can be generated (red lines) to constraint the skeleton to have more
branches. At the right, the skeleton computed by Cornea’s method when all red points
are considered as contour points.

does not depend only on the points mj ∈ Ω but on all the points of B. The new
formula to compute the vector field is:

−→
fi =

∑

mj∈Ω

1

||−−−→mjpi||2

−−−→mjpi

||−−−→mjpi||
+

∑

pj∈B\Ω

j �=i

Pj

||−−→pjpi||2

−−→pjpi

||−−→pjpi||
(1)

We can see that if Pj = 0 for all the interior points, equation 1 is equiva-
lent to Cornea’s original computation whereas if some interior points have high
probability they act as a repulsive force on the positioning of the branches.

3.3 Definition of the Probability Map

We assume here that n the number of branches is given. We compute the prob-

ability map P with an iterative algorithm. The first step is the choice of cuts
in B. The cuts are segments with one starting point and one ending point and
represent the possible positions of the separations between the n branches in
the shape. Assuming that the shoots grow vertically from the cane, we propose
to place trivially the ending points ei, i = 1..n− 1 of the cuts uniformly in the
bottom of B (Fig. 4). Then, the starting points are computed one by one. To
do that, we compute the DCE (Discrete Curve Evolution) of Ω as in [24]. It
provides a simplified polygonal boundary composed of N vertices (sl),l=1..N like
shown in Fig. 5. Usually, we choose N = 2n. An angle αl can be associated with
each vertex, representing clockwise angle between the 2 segments around the
vertex. A set of points (ck),k=1..K uniformly discretises the polygon.

Then a new probability ρk to be a starting point is computed for each point
ck taking into account two values:

– the proximity to an inward angle:

ρ1k ∼
N
∑

l=1

1

d(ck, sl)
(1−

αl

2π
)



Fig. 4. At the left, examples of cuts with n = 4 and n = 5 branches. Ending points
are represented in blue and starting points in green. At the right new vector fields.

Fig. 5. DCE algorithm examples. At the left, the original image with the contour
points around the foliage. The two other images show the DCE algorithm with a 24-
point polygon in the middle and a 8-point polygon on the right. The inward angles are
represented in blue.

– the distance along a boundary to the set H of already chosen starting points :

ρ2k ∼ min
c∈H

d(ck, c).

The mix probability ρk is proportional to φ(ρ1k, 1, σ) + φ(ρ2k, 1, σ) where
φ(., 1, σ) represents the gaussian function with a mean equals to 1 and a standard
deviation equals to σ (here, σ = 0.4).

A starting point {ck} is selected according to the probability ρk. Then it is
associated with an ending point ei and accepted if:

∣

∣

∣

∣

#pixels ∈ B on the left of (eick)

#pixels ∈ B
−

i

n

∣

∣

∣

∣

≤ τ (2)

where τ is a parameter allowing the created partitions of the binary shape to
have the same size or not. In the vines case, τ = 15%.

Finally, when all the cuts have been accepted, the new vector field is computed
like shown at the right part of Fig. 4.

3.4 Adjusting First Order Branches

We now have a vector field coherent with the n branches assumption. We want
to extract branches from this vector field. For each row i of the image and each



area p of the partition that we can see at the left part of Fig. 4, we extract the
attracting point api which is the one with the smallest vector norm. Each branch
bp is a Catmull-Rom curve adjusted on the attracting points a

p
i , using a least

square criterion.
An example of skeleton can be seen in Fig. 6.

Fig. 6. A final skeleton with 5 branches

The following algorithm summarises the proposed approach:

ALGORITHM:

input: binary shape B and number of branches n.
output: a skeleton model of the plant consisting in n branches.

∗ Compute the DCE of B with N = 2n vertices and extract candidate {ck}
uniformly along the polygon.

∗ Initialise H = ∅.
∗ Place the ending points {ei, i = 1..n− 1} in the bottom of B.
∗ For i from 1 to n− 1
· Compute ρk for each (ck).
· while (!equation (2))
◦ Randomly select a starting point c among {ck}\H in function of ρk and

an ending point among {ei}.
· H = H ∪ c.

∗ Compute the probability map P .
∗ Compute the vector field using equation (1).
∗ Extract the points api for each row i of each area p of the partition.
∗ Adjust a branch in each area p of the partition.
∗ For each node of each branch, extract a foliage width.



3.5 Higher Order Branches and Depth Information

In the case of the vines, all the main branches are assumed in a same plane
and there are only first order branches. We adapt this planar setting to a more
recursive structure and to a 3D setting where rotational symmetry is assumed,
like in typical monopodial plants (i.e. plants organised around a main trunk).

Iterative Skeletonisation Algorithm

An automatic colour based segmentation computes a 2D binary shape from the
foliage. Then, the branches are extracted using a modified version of our algo-
rithm presented above. The ending points are placed on the vertical line passing
through the trunk of the monopodial tree and the condition (2) is replaced by a
condition checking that the angle between the cut and the trunk is coherent (i.e.
around π

2 in the bottom of the tree, π
6 in the top and with an angle computed

linearly between these two values for an intermediate cut). This algorithm is
applied recursively to get second order branches for each partition. We can see
an example of cuts with a Liquidambar tree in Fig. 7.

Fig. 7. An example of skeleton for the Liquidambar tree

Depth of Branches

To generate 3D information, we drew inspiration from Zeng et al. [19] and Okabe
et al. [25]. The goal is to deduce depth information for the branches in the 2D
skeleton to make a realistic plant from other views, preserving the appearance
from the original viewpoint as it is shown in Fig. 8. First, we compute the convex
hull of our 2D skeleton. Then, revolving this convex hull around the line passing
through the trunk, we obtain a encompassing volume of the plant. Considering an
orthographic projection onto the ground, for each branch which does not touch
the 2D convex hull, we change depth information for that the end of this branch
touches the boundary of the bounding volume. We have two possibilities, at the
front or at the back. We choose the one which maximises the angles between the
projections of all the branches to the ground, adding the branch one by one.

4 3D Generative Model

Now we have a possible structure of the plant, the next step is to generate a 3D
model of this plant. To do that, we need to build a 3D generative model thanks
to all the a priori knowledge of the plant.



Fig. 8. At the left, we can see the 2D convex hull of the foliage, in the middle, the-
bounding volume and at the right, the final 3D skeleton of a Liquidambar tree

In our work, we combine procedural methods to generate a plant and image
based approaches. Procedural methods makes it possible to take into account
botanical constraints such as possible regular arrangements of organs (for in-
stance leaves). The procedural model uses stochastic parameters in the position-
ning of the branchlets and the leaves.

We choose to generate the constrained model with L-systems, using the L-Py
modeller [26]. An L-system [1] is a formal grammar, most commonly used to
model the growth processes of plant development. The main idea of L-systems is
to rewrite a string of modules representing the structure of the plant. Rewriting
rules express the creation and change of state of the various modules of the
plant over time. Our model include a deterministic part which is controlled by
the understanding of plant images and a stochastic part to allow a more realistic
result. The model is deduced by both learning from a large number of plants
and also knowledge given by specialists.

We choose to generate our model in two stages: the branching system model
and the foliage.

Branching System Model

Each branch is set by a number of 3D nodes which are the control nodes of
the branch. From each of these nodes one or more lateral branches of the same
nature may grow. Then, to model the 3D structure, each branch is a generalised
cylinder along a curve passing through all nodes. A B-Spline curve is built with
a local interpolation scheme of degree 3 [27]. A radius is assigned to each of
these nodes to determine the radius of the generalised cylinder in these nodes.
This radius is linearly interpolated between two nodes. Textures taken from real
images are then applied to branches.

Foliage Model

We begin by extracting leaf textures from real images. At each node defining
the branches structure is also assigned a value R which is the radius of the
cylinder encompassing the leaves. Thus, to model the foliage, branchlets are
generated randomly along the branches. Stems are placed along main branches
and branchlets. Their density and their length is a random variable distributed
normally with mean R and standard deviation R

4 . On each of these stems a leaf
modeled by a Bezier surface is placed on which a randomly chosen texture is
mapped (Fig. 9b.).



Fig. 9. Example with the case of vine. (a) Branch structure modelisation. (b) Textures
of vine leaves.

5 Reprojection Criterion

The last step goals to evaluate the quality of the 3D reconstructed 3D model.
We reproject the 3D model in an image with the same viewpoint of the original
image. We obtain a binary shape Ii (1 if foliage, 0 elsewhere). In the same
way, the original segmented foliage forms a second binary image B. The error
reprojection is computed as:

errori =
#((Ii − B)2 == 1)

#pixels(B)
(3)

Fig. 10 illustrates the comparison between the projections and the original
image.

Fig. 10. At the left, the original image. At the right, the reprojected model. In the
middle, the projection errors map. White pixels correspond to pixels where the original
image and the reprojected one are superposed and red pixels are wrong pixels.

The idea now is to improve the proposed 3D model using an analysis-by-
synthesis strategy which allows to merge information from the a priori botani-
cal knowledge and from the image. An increasing number of authors propose to
use external knowledge for easing reconstruction from images. Indeed providing
knowledge about the scene to be reconstructed simplifies the image processing
steps. In [28], Tu et al. define generative models for faces, text, and generic
regions which are activated by bottom-up proposals learnt using probabilistic
methods. These proposals are then accepted or rejected using a stochastic cri-
terion. Yuille et al. [29] claim that this approach, which allows to deal with



the complexity of natural images, has intriguing similarities to the brain. They
present a method where low level features are used to make bottom-up pro-
posals, finally validated by high-level models. In a similar analysis-by-synthesis
method where a priori knowledge consists in geometric and mechanical proper-
ties, Gupta et al. [30] iteratively make proposals for interpreting parts (blocks)
of the image. We use a similar approach, but not iterative.

In our case, we give more freedom to the generative model. For example, we
do not impose the number of branches of the plant that we do not a priori know.
Thanks to all the knowledge of the plant, we can model each parameter (like
the position of the cuts, the leaves densities or the number of branches) by a
random variable, and thus generate numerous models.

We select the best candidate proposed by the generative model using the
following formula:

Mi0 = argmax
Mi

p(Mi|Ii) = argmax
Mi

p(Mi)p(Ii|Mi) (4)

We choose p(Ii|Mi) = 1−errori = 1− #((Ii−B)2==1)
#pixels(B) and p(Mi) is a product

of terms which are probabilities function of all the knowledge of the plant. For
the vine case example, one of the term of p(Mi) is a gaussian representing the
probability of the number of shoots. Fig. 11 shows different error maps. White
pixels correspond to pixels where the reprojected model and the original image
are superposed.

Fig. 11. Different errors maps with different numbers of branches, different distribu-
tions of leaves and different densities. The map outlined in red is the error map of the
selected 3D model because there is the smallest percentage of gray pixels.

6 Results and Validation

Our method has been tested on a large number of images and videos. Some
results are shown in Fig. 15, 14 and 12. To validate our model, we use the error
criterion of equation (3). The average error for the case of vines is 6.9%, 7.2% for



Fig. 12. Vine plants modelisation. At the top the original images. At the bottom,
rendering of automatically generated vine models using our approach.

Fig. 13. Reprojection errors according to the number of tested models. Different varia-
tions are tested as the number of branches or the leaves density. For example, if we test
different 3D models with only one leaves distribution and 1 leaves density, the error is
almost 10%. Then, this error decreases when we add different leaves distributions or
different leaves density.



Fig. 14. Walnut. At the left, the original image. At the right, the 3D model with the
same viewpoint.

Fig. 15. Liquidambar. At the left, the original image. In the middle, the 3D model
with the same viewpoint. At the right, the 3D model with an other viewpoint.

Fig. 16. Expert skeletons. At the top, a viticulture expert has drawn skeletons on vine
images (in red). At the bottom, the projections of the skeletons of our method (in
yellow).



Table 2. The first row represents the number of the vine image. The second and the
third rows represent the numbers of shoots drawn by the experts. The last row represent
the number of shoots of the 3D models generated with our method from these images.

Image 1 2 3 4 5 6 7 8 9

First expert estimation 3 6 5 5 6 5 3 7 7

Second expert estimation 2 6 4 5 4 4 2 5 4

Our method 2 5 4 5 6 6 3 5 6

the Walnut and 8.5% for the Liquidambar. In Fig. 13, we show the reprojection
error according to the number of tested models for an example of vine (the third
example of Fig. 12). It is interesting to note that the greater is the number
of tested models, the lower is the reprojection error. The curve decreases very
quickly between 1 and 15, fairly quickly until 100. This proves the effectiveness
of our skeletonisation method which restricts significantly the search space. This
curve illustrates the importance to test several models but of course, the final
selected model is not necessarily the last one.

A second validation is to compare our solution to the one provided by viticul-
ture experts (Fig. 16). It seems difficult to find a significant measure by compar-
ing the ground truth to our skeletons. Furthermore, for us, the most important
is the final appearance with leaves. Indeed, for the first example in Fig. 16, our
algorithm found a very similar skeleton to the expert one at the left but it is not
the one which has been validated by our method at the right. So, we used our
algorithm on the drawn ground truth skeletons with different leaves distribu-
tions and different leaves densities to find the best 3D model. The improvement
of the reprojection criterion in comparison to our automatically generated skele-
ton is only 0.2% in average. This small difference proves the performance of our
method which does not require human intervention.

In Tab. 2, we can see the number of shoots drawn by two differents experts
from vines images. The last row shows the number of shoots of the 3D models
generated with our method from the same images. We almost reconstruct a 3D
model with the same number of shoots drawn by one of the two experts.

For the 3D case, we have shown that our method can reconstruct realistic 3D
trees from a single image. However, the branching system is mostly based on
branches.

7 Conclusion

Combining analysis and synthesis, we have proposed a new fully-automatic
method of plant modeling from a low resolution image without any branching
pattern unlike [12,19].

The leading contribution of this paper is a new skeletonisation algorithm
able to extract the structure of a plant from an image of its foliage. Then, we
built 3D parametric generative models for different plants using the knowledge
about the species. A final analysis-by-synthesis step improves the quality of



the final 3D model by comparing the original image with a large number of
3D models generating varying different parameters of the 3D generative model.
The skeletons are used to make proposals to the 3D generative model. The
reprojection criterion insures the similarity between the proposed 3D model and
the original image. We further validated our proposed model by comparing it to
ground truth given by experts in the case of vine.

In future work, we are first interested in extending our setting to non monopo-
dial plant. The current algorithm can be applied to non monopodial plants, like
the Walnut, but the result is still not very satisfying. Moreover, we could inves-
tigate the automatisation of the use of a priori. Indeed, the construction of the
generative model could be done by learning from a large data set avoiding the
necessity prior knowledge on the branching structure of the plant species. The
process would be evolving in loop, where the analysis could give feedback to the
generative models.
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cedural modeling. ACM Trans. Graph. 30(2), 11:1–11:14 (2011)

18. Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L.: Single image tree modeling. ACM
SIGGRAPH, 1–7 (2008)

19. Zeng, J., Zhang, Y., Zhan, S.: 3d tree models reconstruction from a single image.
In: ISDA, pp. 445–450 (2006)

20. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and al-
gorithms. TVCG, 530–548 (May 2007)

21. Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical
curve-skeletons of 3d objects. The Visual Computer (2005)

22. Yang, X., Bai, X., Yang, X., Liu, W.: An efficient quick thinning algorithm. In:
Proceedings of the 2008 Congress on Image and Signal Processing, CISP, vol. 3,
pp. 475–478. IEEE Computer Society, Washington, DC (2008)

23. Bai, X., Latecki, L.J., Society, I.C., Yu Liu, W.: Skeleton pruning by contour parti-
tioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29,
449–462 (2007)

24. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of
visual parts. PAMI, 1185–1190 (2000)

25. Okabe, M., Owada, S., Igarashi, T.: Interactive design of botanical trees using
freehand sketches and example-based editing. Computer Graphics Forum 24(3),
487–496 (2005)

26. Boudon, F., Pradal, C., Cokelaer, T., Prusinkiewicz, P., Godin, C.: L-py: an l-
system simulation framework for modeling plant development based on a dynamic
language. Frontiers in Plant Science 3(76) (2012)

27. Piegl, L., Tiller, W.: The NURBS book, 2nd edn. Springer-Verlag New York, Inc.
(1997)

28. Tu, Z., Chen, X., Yuille, A.L., Zhu, S.C.: Image parsing: Unifying segmentation,
detection, and recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A.
(eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 545–576.
Springer, Heidelberg (2006)

29. Yuille, A., Kersten, D.: Vision as bayesian inference: Analysis by synthesis? intro-
duction: Perception as inference. Psychology, 1–15 (2006)

30. Gupta, A., Efros, A.A., Hebert, M.: Blocks world revisited: Image understanding
using qualitative geometry and mechanics. In: Daniilidis, K., Maragos, P., Paragios,
N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 482–496. Springer, Heidelberg
(2010)


