
HAL Id: hal-01148648
https://hal.science/hal-01148648

Submitted on 5 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous decentralized convex optimization
through short-term gradient averaging
Jerome Fellus, David Picard, Philippe-Henri Gosselin

To cite this version:
Jerome Fellus, David Picard, Philippe-Henri Gosselin. Asynchronous decentralized convex optimiza-
tion through short-term gradient averaging. European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Apr 2015, Bruges, Belgium. �hal-01148648�

https://hal.science/hal-01148648
https://hal.archives-ouvertes.fr

Asynchronous decentralized convex optimization

through short-term gradient averaging

Jerome Fellus1, David Picard1 and Philippe-Henri Gosselin1 ∗

1- ETIS - UMR CNRS 8051 - ENSEA - Universite de Cergy-Pontoise

Abstract. This paper considers decentralized convex optimization over a network

in large scale contexts, where large simultaneously applies to number of training

examples, dimensionality and number of networking nodes. We first propose a cen-

tralized optimization scheme that generalizes successful existing methods based on

gradient averaging, improving their flexibility by making the number of averaged

gradients an explicit parameter of the method. We then propose an asynchronous

distributed algorithm that implements this original scheme for large decentralized

computing networks.

1 Introduction

Recent successes of stochastic optimization methods based on averaged gradients have

renewed the interest for gradient-based schemes to solve large convex problems [7, 8].

However, very large problems such as training a SVM [2] with Terabytes of input data

are still computationally challenging. Meanwhile, the burgeoning of data-collecting

devices (e.g., mobile phones, sensor networks, etc) leads to a logical spread of potential

input data into many remote collections that can rarely be gathered into a single site.

These computational and massive data spread challenges raise the need for distributed

optimization algorithms. In spite of at least three decades of intensive research in this

field [13], massively distributed optimization algorithms have proved inescapable in

applicative contexts only a few years ago.

Stochastic Gradient Descent schemes (SGD) [3], where only one training example

is randomly drawn at each optimization step, have unlocked the problematic complex-

ity of the original full-gradient descent method. Unfortunately, computing gradients

on single examples entails a high instability that must be compensated by a decreasing

step size to ensure convergence. Nesterov [7] noticed that SGD integrated new gradi-

ents with smaller weights than old ones, thus explaining its poor convergence rate in

O(ln(t)√
t
). To circumvent this drawback, he proposed the Dual Averaging method (DA)

where all past gradients are averaged and taken into account with the same weight

when performing the update step. Although this leads to an improved convergence rate

in O(1√
t
), this scheme still exhibits sub-linear convergence. In 2012, Le Roux et al

[8] introduced the Stochastic Averaged Gradient method (SAG), achieving a nice ex-

ponential convergence rate in O(ρt), ρ < 1 (a rate comparable to the deterministic full

gradient scheme) for strongly-convex objectives with a constant step size. They built on

the intuition that, in case of finite datasets, only the most recent gradient with respect

to each training vector should be taken into account in the averaged gradient (instead

∗This work is funded by the Culture 3D Cloud project.

of all past ones in DA). Exponential convergence is then neither achieved when aver-

aging one nor all previous gradients, but rather when taking into account some recent

gradients and discarding older ones. Unfortunately, SAG’s convergence proof [9] does

not easily extends to the case where the number of averaged gradients is different from

the number of training vectors. Whether exponential or quasi-exponential convergence

still holds when averaging an arbitrary number of gradients remains an interesting open

question. In this paper, we tackle it from an empirical perspective.

The main contribution of this paper is two-fold : We first introduce a Short-Term

Averaged Gradient scheme to optimize a convex objective function, where the num-

ber of averaged gradients explicitly appears as a parameter. Secondly, we extend this

scheme to distributed environments, and in particular decentralized networking con-

texts, using an asynchronous gossip averaging protocol. After formally stating our

problem, we introduce our Short-Term Average gradient scheme and Gossip averaging.

We then present our proposed Asynchronous Gossip Short-Term Averaged Gradient

algorithm and report experimental results in centralized and distributed setups, before

concluding.

2 Problem statement

Given a strongly-connected network G of N nodes, each node i holding a sample Xi =

[x
(i)
1 . . .x

(i)
ni
], x

(i)
j ∈ R

D, our goal is to compute the unique minimizer y⋆ ∈ R
Q of the

following strongly-convex objective function f :

∀y ∈ R
Q, f(y) =

N
∑

i=1

ni
∑

j=1

f
(i)
j (y), (1)

where each function f
(i)
j is a convex function associated with x

(i)
j . For this, each node

i starts with a random local estimate y(i) and updates it using node-local computations

on its own sample X(i) and communication with neighboring nodes. We aim at making

all y(i) converge to y⋆. In addition, three constraints must be respected:

C1. No sample exchange - Only estimates and/or gradients can be exchanged.

C2. Asynchrony - Nodes must never wait for each other.

C3. Decentralization - All nodes and links must play the same role (i.e., all nodes run

the same algorithm and links are randomly selected).

3 Short-Term Stochastic Averaged Gradient

First, consider the centralized case (N = 1, thus (1) is a traditional convex optimization

problem). This problem can be solved using a Stochastic Averaged Gradient Descent

scheme, that is, with the following general update rule:

∀i, g(t) = ∇fj(y(t)), j randomly drawn in {1 . . . n} (2)

y(t+ 1) = y(t)− ηt

t
∑

τ=1

αt−τ+1g(τ), (3)

where (ηt) is a non-increasing sequence of step sizes and (αt−τ+1)
t
τ=1 a sequence of

t weights associated with the t gradients seen so far (the most recent gradient takes

weight α1 and the oldest one takes αt). (2-3) encompasses several existing algorithms:

Clearly, SGD [2] corresponds to setting α1 = 1 and ∀k > 1, αk = 0 since only

the most recent gradient is kept. Variants integrating a momentum term [11] with fixed

weight β also fit to (2-3), with αk = βk.

In its initial statement, SAG [8] does not fit to (2-3), as it keeps the most recent

gradient for each training example. If training vectors are uniformly drawn with re-

placement, these are not necessarily the same as the last n gradients. However, as

highlighted in [10], the most efficient strategy to draw training examples is generally to

select them without replacement. This can be implemented by performing deterministic

passes over the full data and shuffling the dataset at the begin of each epoch. With this

selection strategy, SAG is equivalent to (2-3) with αk = 1
n

if k ≤ n and 0 otherwise.

Dual Averaging [7] is a proximal method, i.e., y(t + 1) is not computed from

y(t) but rather by directly projecting the averaged gradient using a proximal map-

ping. However, for simple (e.g., quadratic) proximal functions, one can derive from

it an averaged gradient descent (2-3) where all gradients are given an equal weight

αk = 1, ∀k ∈ {1 . . . t}.
SAG enjoys the fastest convergence rate of the above-cited algorithms. On the other

hand, SAG memorizes as many gradients as training examples, resulting in a storage

cost in O(nD), which can hardly be afforded in large scale setups. A natural idea is

then to design an intermediary scheme, where only the M most recent gradients are kept

in memory and averaged, where M is a user-defined parameter. We call this scheme

Short-Term Averaged Gradient (STAG). Intuitively, for M close to 1, we get a behavior

similar to SGD, and for M close to n, we get a SAG-like convergence.

4 Asynchronous gossip averaging

Now, consider a distributed case, that is, N > 1. To extend STAG to this setup, we

would ideally provide all nodes with the average of the M most recent gradients seen

over the network for each iteration. Obviously, C2 and C3 prevent us from comput-

ing this average by gathering local estimates in a master node. Instead, we rely on an

asynchronous gossip averaging protocol, which is a special kind of Consensus proto-

cols [1]. Consensus protocols solve distributed averaging over a network by iteratively

averaging estimates between neighboring nodes. Assuming each node i holds an arbi-

trary initial estimate si(0) and a weight wi(0), and setting s(t) = (s1(t), . . . , sN (t))
and w(t) = (w1(t), . . . , wN (t)), consensus protocols compute the network average

µ =
∑

N

i
si(0)∑

N

i
wi(0)

using the following update:

s(t+ 1)⊤ = s(t)⊤K(t+ 1), w(t+ 1)⊤ = w(t)⊤K(t+ 1), (4)

where K(t) is a constant primitive doubly stochastic matrix respecting G (i.e.,

(K(t))ij 6= 0 only if i and j are connected in G). For constant K(t) = K, we have

s(t)⊤ = s(0)TKt and w(t)⊤ = w(0)TKt. By Perron-Frobenius theorem and stochas-

ticity of K (i.e., K1 = 1), the rows of Kt tend to equality at rate O(λt
2) where λ2 is

the sub-dominant eigenvalue of K. Consequently,

lim
t→∞

si(t)

wi(t)
= lim

t→∞

∑N

j sj(0)(K
t)ji

∑N

j wj(0)(Kt)ji
= lim

t→∞

(Kt)1,i
∑N

j sj(0)

(Kt)1,i
∑N

j wj(0)
= µ (5)

Consensus protocols have been successfully used in the distributed extension of Dual

Averaging (DDA [4]). However, constant and doubly-stochastic consensus matrix K

are not compatible with C2 and C3. Hopefully, as shown in [1], both assumptions

can be relaxed : any random row-stochastic K(t) still satisfy (5) as long as
∏

t K(t)
is primitive. Such randomized protocols, called asynchronous Gossip protocols, were

recently applied to distributed SGD (for SVM training [5]) and Dual Averaging (PS-

DDA [12]).

We define our asynchronous Gossip protocol by K(t) = 1
2ei(e

⊤
i −e⊤j) where (i, j)

is uniformly drawn among the edge set of G. This update rule appears very simple:

at any time t, a sender node i is uniformly drawn, and sends half of its estimates to a

uniformly chosen neighbor j which adds it to is own estimate:
{

si(t+ 1) = 1
2si(t)

wi(t+ 1) = 1
2wi(t)

,

{

sj(t+ 1) = sj(t) +
1
2si(t)

wj(t+ 1) = wj(t) +
1
2wi(t)

(6)

Remark that, contrarily to (4) that can require simultaneous messages between multiple

nodes, update (6) only involves a single random link at a time, thus allowing a fully

asynchronous (C2) and decentralized (C3) functioning.

5 The AGSTAG algorithm

In this section, we describe our proposed distributed optimization algorithm called

AGSTAG (Asynchronous Gossip Short-Term Averaged Gradient). It is built on the

STAG scheme described in section 3, associated with the asynchronous Gossip aver-

aging protocol defined by (6). In AGSTAG, every nodes run the same local procedure

(Algorithm 1). Each node i repeatedly perform the following steps without any syn-

chronization with other nodes. First, it selects a training example (without replacement)

to evaluate a new gradient. This gradient is added to a node-local gradients buffer in

replacement of the oldest stored one, following a FIFO rule. This buffer thus always

stores the M most recently evaluated local gradients. The difference between the oldest

gradient and the newest one, respectively leaving and entering the buffer, is added to a

local estimate z, while w counts the number of gradients currently stored in the buffer.

(z, w) is then iteratively exchanged with random neighboring nodes according to (6).

Remark that this algorithm is asynchronous because there is no message back from

the receiver to the sender (senders emit independently of received messages). Notice

that the updates of z(t) imply that the global sum of the dual variables
∑N

i z(i)(t) is

always equal to the global sum of the gradients stored in all queues. By (5), during

the course of AGSTAG, the local dual variables z(i)(t) behave as estimators of the

network-wide average of all currently stored gradients, thus mimicking a centralized

STAG, with the difference that there are now NM gradients globally averaged in the

network instead of M . Consequently, M can be set N -times smaller to get the same

behavior as the centralized scheme, resulting in a much lower memory cost.

Algorithm 1 AGSTAG (independently run at each networking node i)

Parameters : (ηt) : sequence of step sizes. M : capacity of the gradients buffer.

S : number of messages sent at each iteration

Init : y ∈ R
Q at random ; z ∈ R

Q ← 0 ; w ← 0 ; FIFO← empty with M slots

loop

g← ∇f
(i)
j (y), where j uniformly drawn without replacement in {1 . . . ni}

If FIFO.size = M then h← FIFO.pull() else h← 0 EndIf

FIFO.push(g)

z← z+ g − h

If the FIFO is not full then w ← w + 1 EndIf

loop S times

For each received (z′, w′) do z← z+ z′ ; w ← w + w′ EndFor

z← 1
2z ; w ← 1

2w
send (z, w) to a randomly drawn neighboring node

end loop

y← y − ηt

w
z

end loop

0 10000 20000 30000 40000 50000

M (number of averaged gradients)

0

20000

40000

60000

80000

100000

c
o
n
v
e
rg

e
n
c
e
 t

im
e

Epoch 1

= 10-2ε
= 10-3ε

 (
#

 g
ra

d
ie

n
ts

 e
v
a
lu

a
ti

o
n
s
)

Fig. 1: Convergence time of STAG

versus gradient buffer size M

0 5000 10000 15000 20000

evaluated gradients / node

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

O
b
je

v
ti

v
e
 f

u
n
c
ti

o
n
 f
 N = 5

N = 10

N = 100

N = 500

N = 1000

Fig. 2: Convergence of AGSTAG for var-

ious network sizes N . Here, M = ni/10.

6 Experiments

We now present experimental results for both the STAG scheme and its distributed

AGSTAG extension on the MNIST dataset [6] (D = 784, n = 60000). Both algorithms

are evaluated in a binary L2 linear SVM training task (similar setup as [3] with λ =
0.1). We only report results for the best-performing constant step-size and a complete

network connectivity. The number of messages per iteration S was fixed to 10.

Fig. 1 displays the convergence time of STAG in terms of the number of gradient

evaluations needed to reach an ε-accurate minimizer to the objective f defined in (1).

Observe that STAG still enjoys a low convergence time when M (the number of aver-

aged gradient) is only half the size of the dataset. It also behaves well for small values

of M and ε = 10−2 because instability is contained within this threshold, but to obtain

convergence under ε = 10−3 we must use very low step sizes, implying much higher

convergence times. This is not the case for large values of M , where STAG fastly

converges up to any arbitrarily-low ε.

Fig. 2 shows the convergence slope of AGSTAG for various network sizes N , where

training examples are uniformly spread over the nodes. At each node, we chose M =
ni/10, that is, local gradients buffers are 90% smaller than local datasets. We can see

that using a large network can drastically reduce the number of gradient evaluations per

node. Besides, we observed that larger networks allowed greater constant step-sizes.

7 Conclusion

We introduced an asynchronous algorithm for distributed convex optimization called

AGSTAG, that is made of two original parts: a Short-Term averaged gradient (STAG)

optimization scheme and an asynchronous and decentralized Gossip averaging protocol.

Unlike other methods, STAG turns the number of averaged gradients into a user-defined

parameter, improving flexibility. The proposed asynchronous Gossip averaging proto-

col offers a simple and efficient communication mechanism to extend STAG to large

scale distributed environments, as shown in our experimental evaluation.

References

[1] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli. Weighted gossip: Distributed averaging

using non-doubly stochastic matrices.

[2] L. Bottou. Large-scale machine learning with stochastic gradient descent. In International Conference

on Computational Statistics, 2010.

[3] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-

STAT’2010, pages 177–186. Springer, 2010.

[4] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimization: conver-

gence analysis and network scaling. Automatic Control, IEEE Transactions on, 57(3):592–606, 2012.

[5] C. Hensel and H. Dutta. Gadget svm: a gossip-based sub-gradient svm solver. In International Confer-

ence on Machine Learning (ICML), Numerical Mathematics in Machine Learning Workshop, 2009.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-

tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[7] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,

120(1):221–259, 2009.

[8] N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential convergence

rate for finite training sets. NIPS, pages 2663–2671, 2012.

[9] M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.

arXiv preprint arXiv:1309.2388, 2013.

[10] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss. J.

Mach. Learn. Res., 14(1):567–599, Feb. 2013.

[11] P. Tseng. An incremental gradient (-projection) method with momentum term and adaptive stepsize

rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

[12] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. Push-sum distributed dual averaging for convex optimiza-

tion. In CDC, pages 5453–5458, 2012.

[13] J. N. Tsitsiklis. Problems in decentralized decision making and computation. PhD thesis, Massachusetts

Institute of Technology, 1984.

