An overview of the recent approaches to terroir functional modelling, footprinting and zoning
Emmanuelle Vaudour, E. Costantini, G.V. Jones, S. Mocali

To cite this version:

HAL Id: hal-01148579
https://hal.archives-ouvertes.fr/hal-01148579
Submitted on 4 May 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An overview of the recent approaches to terroir functional modelling, footprinting and zoning

E. Vaudour1,2, E. Costantini3, G. V. Jones4, and S. Mocali3

1AgroParisTech, UMR1402 INRA/AgroParisTech ECOSYS, Pôle Sol, avenue Lucien Brétignières, 78850 Thiverval-Grignon, France
2INRA, UMR1402 INRA/AgroParisTech ECOSYS, Pôle Sol, avenue Lucien Brétignières, 78850 Thiverval-Grignon, France
3Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CRA), Agrobiology and Pedology Research Centre (CRA-ABP) D’Azeglio 30, Firenze 50121, Italy
4Department of Environmental Studies 101A Taylor Hall, Ashland, OR 97520, USA

Correspondence to: E. Vaudour (emmanuelle.vaudour@agroparistech.fr)

Received: 29 October 2014 – Published in SOIL Discuss.: 20 November 2014
Revised: – Accepted: 27 February 2015 – Published: 18 March 2015

Abstract. Notions of terroir and their conceptualization through agro-environmental sciences have become popular in many parts of world. Originally developed for wine, terroir now encompasses many other crops including fruits, vegetables, cheese, olive oil, coffee, cacao and other crops, linking the uniqueness and quality of both beverages and foods to the environment where they are produced, giving the consumer a sense of place. Climate, geology, geomorphology and soil are the main environmental factors which make up the terroir effect on different scales. Often considered immutable culturally, the natural components of terroir are actually a set of processes, which together create a delicate equilibrium and regulation of its effect on products in both space and time. Due to both a greater need to better understand regional-to-site variations in crop production and the growth in spatial analytic technologies, the study of terroir has shifted from a largely descriptive regional science to a more applied, technical research field. Furthermore, the explosion of spatial data availability and sensing technologies has made the within-field scale of study more valuable to the individual grower. The result has been greater adoption of these technologies but also issues associated with both the spatial and temporal scales required for practical applications, as well as the relevant approaches for data synthesis. Moreover, as soil microbial communities are known to be of vital importance for terrestrial processes by driving the major soil geochemical cycles and supporting healthy plant growth, an intensive investigation of the microbial organization and their function is also required. Our objective is to present an overview of existing data and modelling approaches for terroir functional modelling, footprinting and zoning on local and regional scales. This review will focus on two main areas of recent terroir research: (1) using new tools to unravel the biogeochemical cycles of both macro- and micronutrients, the biological and chemical signatures of terroirs (i.e. the metagenomic approach and regional fingerprinting); (2) terroir zoning on different scales: mapping terroirs and using remote-and proxy-sensing technologies to monitor soil quality and manage the crop system for better food quality. Both implementations of terroir chemical and biological footprinting and geospatial technologies are promising for the management of terroir units, particularly the remote and proxy data in conjunction with spatial statistics. Indeed, the managed zones will be updatable and the effects of viticultural and/or soil management practices might be easier to control. The prospect of facilitated terroir spatial monitoring makes it possible to address another great challenge in the years to come: the issue of terroir sustainability and the construction of efficient soil/viticultural management strategies that can be assessed and applied across numerous scales.
1 Introduction

A search using the keyword “terroir” in the Scopus database finds 385 papers published from 1980 to 2014 (September) including a steady rise from 2005 to 2014. This trend provides evidence of the ever-growing interest of the scientific community in understanding the characteristics and relationships between the many factors of terroir. “Terroir” is a French word, meaning delimited areas with homogeneous environmental features that are likely to confer typical wine qualities identified through collective memory and conveyed from generation to generation within a territory marked by social context and cultural technical choices (Vaudour, 2002, 2003). The tradition of terroir wines has strong cultural connections, referring to tradition of drinking well, of farming and of producing typical wines that are rooted in a region or made from specific places with organoleptic features easily distinguishable from other wines from other regions. In France these are sometimes named “crus”, “clos” and, in the case of Burgundy, “climats”. In making a typical wine originating from a given terroir unit, fields or subfields are assigned to this unit and grapes of one or several specific varieties are combined in containers within a winery: as such winegrowing terroirs need to be managed across the geographical space. Both Greek and Latin agronomists developed and used recommendations for the spatial management of terroirs, as exemplified by the Amos farming leases dating back the High Hellenistic period. These leases discriminated between vineyards planted on the “plains” and vineyards planted in “rocky terrains”, with differing prescriptions for vineyard planting densities (Vaudour and Boulay, 2013). Inherited from medieval times and monasteries, high-resolution grapevine selection from small-sized fields of some hundreds of square metres has long been practiced for the making of famous crus in small volumes (barrels of 200 hL) (Dion, 1990; Unwin, 1991). In that sense, the shaping of terroirs results from a long heuristic process (likely hundreds of years) through history, marked by discontinuities due to wars, the spread of plagues and wine market opportunities. For centuries, such heuristic processes have mostly been carried out on less fertile soils (fertile soils being reserved for annual crop cultivation) and without resorting to irrigation, thus accentuating multi-year variability due to vintage weather (“millésime” effect). As an entity distributed over space and time, terroir has cultural aspects that have heritage, landscape and reputation value-added components (Tomasi et al., 2013) that come from historical, empirically derived technical adjustments, the transmission of taste typicity over generations and strong gastronomical traditions. On the other hand, the agro-environmental aspects of terroir are likely to be conceptualized, in order to characterize, delineate and monitor zones with homogeneous or outstanding grape and/or wine, soil, geomorphological, geological, landscape and climate characteristics at a given spatial level and over a given duration. This process may be in the nascent stages of understanding vineyard spatial management in young winegrowing regions or refined in those winegrowing regions with long-lived wine traditions.

On the international scale, a definition focused on the agro-environmental facets of terroir was adopted in 2010 by the International Vine and Wine Organization (resolution OIV/VITI 333/2010). Originally developed for wine, approaches for defining terroirs are now being carried to other specialty crops such as coffee (e.g. De Assis Silva et al., 2014), tea (e.g. Besky, 2014), tequila (Bowen and Zapata, 2009), honey, maple syrup, cacao, olive oil, fruits, vegetables and cheese (Trubek, 2008; Jacobsen, 2010), ultimately linking the uniqueness and quality of both beverages and foods to the environment where they are produced. The trend for providing the consumer a sense of a place has historically developed alongside the legal protection of these products, through either “protected designations of origin” (PDOs) or “protected geographical indications” (PGIs). However, although they both rely on the assumption of a deterministic relationship between food quality and agro-environmental features, legal definitions of PDOs and PGIs are not always spatially representative of the terroirs they come from. In the European Union for instance, PDOs refer to the names of regions, given areas or even countries assigned to agricultural crops or value-added products which are produced, processed or prepared in a region according to traditional methods. In France, Italy and Spain, official PDOs that provide terroir wines with legal protection from falsified wines from other areas date back to 1935 (Vaudour, 2003). However, there have been many historical precursors of PDOs, such as, Chianti in the 17th century (Tomasi et al., 2013) or Jerez (Cabrál Chamorro, 1987) and Champagne (Marre, 2004) in the 19th century. Under a PDO, winegrowers, winemakers and experts jointly define those zones that are permitted to produce wines named after their most renowned places, under common producing rules considered as traditional. These zones are generally based on pre-existing boundaries of administrative districts or easily demarcating patterns derived from hydrological networks, roads or railways. In contrast, PGIs refer to the names of areas, with some link to product quality and with at least one of the stages of production, processing or preparation occurring in the area in question. Despite differing definitions, terroir is sometimes confused with PDO or may even be confused with PGI (Barham, 2003), when one or, more likely, several terroir units may constitute the delimited areas within the PDO, be included in them, or even intersect them.

In whatever winegrowing region in the world, when valuing inherited management zones or attempting to construct them, the so-called “natural” components of terroir actually result from a set of processes, which together with viticultural...
tural practices create a delicate equilibrium and regulate its effect on products in both space and time (Van Leeuwen et al., 2004; Deloire et al., 2005; Van Leeuwen and Seguin, 2006; Costantini and Bucelli, 2014). In its most basic sense, the so-called “concept of terroir” relates the sensory attributes of wine to the environmental conditions in which the grapes are grown (Van Leeuwen and Seguin, 2006; White et al., 2007; Tempesta et al., 2010).

Given the economic importance of the wine industry worldwide, there is clearly a need to better understand the spatial and temporal variability of grape composition and which spatial and cultural scales and resolutions are best suited to manage the production of terroir wines that reveal the typical qualities of terroir units across a given territory, together with minimizing the environmental impacts of this production. Underlying notions of such questioning stem from two main research areas: first, the concepts and knowledge of agro-ecosystems, raised and revisited for present-day agriculture, which faces an increasing number of challenges, including ensuring various ecosystem services by means of implementing agro-ecological practices (Doré et al., 2011; Wezel et al., 2014); second, concepts of and approaches to digital soil assessment based on pedometrics and/or proxy remote-sensing techniques (Carré et al., 2007; Minasny et al., 2013; Werban et al., 2013; Hartemink and Minasny, 2014). These challenges go hand in hand with the need for an interdisciplinary approach of soil (Brevik et al., 2015). There is a greater need to understand regional-to-site and site-to-regional variations in crop production, and the growth in spatial analytic technologies is likely to facilitate downscaling and upscaling approaches to address these needs. Together with the emergence of precision viticulture, the explosion of spatial data availability and geospatial technologies in the past 15 years has made the within-field and farm scale of research more valuable to the individual grower, resulting in greater adoption and application (Tomasi et al., 2013). Furthermore, the study of terroir has shifted from a largely descriptive regional science back in the 1990s to a more applied, technical research field at the beginning of the 21st century. Confusion between PDOs and terroir, and the strict observance of no irrigation, according to historical heuristic processes of terroir, results in misleading questions such as the possible compatibility of terroir and precision viticulture (Bramley and Hamilton, 2007). However, the long process of terroir identification over time questions those practices that enhance or diminish terroir sustainability, particularly in recent times with the advent of modern viticulture. For example, viticultural soils appear to be exposed to degradation processes, perhaps more than ever, because of unsuitable practices in land management (Blavet et al., 2009; Follain et al., 2012; Costantini and Lorenzetti, 2013). In addition, soil contamination by copper resulting from the cumulated use of Bordeaux mixture and other copper fungicides is increasingly an issue (Pieztrak and McPhail, 2004; Fernández-Calviño et al., 2013; Chopin et al., 2008; Mirlean et al., 2007, 2009; El Hadri et al., 2012; El Azzi et al., 2013) and appears to result in modifying the spatial distribution and composition of soil microbial communities (Jacobson et al., 2007; Mackie et al., 2013). Because of water scarcity, irrigation may be practiced with saline water or saline effluent, with possible deleterious effects on plant growth (Walker et al., 2002; Paranychianakis and Angelakis, 2008; Stevens et al., 2010, 2011) and on soil salinity, structure and quality (Crescimanno et al., 2007; Urdanoz and Aragüés, 2009). Thus, an intensive investigation of the microbial and fungal organization and their function is required, as soil microbial and fungal communities are known to be of vital importance for terrestrial processes by driving the major soil geochemical cycles and supporting healthy plant growth (Nannipieri et al., 2003; Bokulich et al., 2014).

Our objective is therefore to present an overview of existing data and analytical and modelling approaches for the footprinting and zoning of terroirs on local and regional scales. This review will focus on two main areas of recent terroir research: (1) new tools for assessing terroir footprints, comprising metabolomics, the metagenomic approach and microbial and chemical fingerprinting; (2) terroir zoning on different scales, using remote- and proxy-sensing technologies to spatially manage the crop system for higher quality and to spatially monitor the soil quality.

2 Emerging tools for assessing terroir footprints

2.1 Chemical fingerprint and metabolomics

Wines from distinct countries or regions can be discriminated through their chemical composition and/or sensorial profiles. A recent study quantifying a large number of elements (33) in wine and soil samples analysed by quadrupole inductively coupled plasma mass spectrometry (Q-ICPMS) in addition to 87Sr/86Sr isotopic analysis allowed for differentiation among the wine-producing regions of Argentina (Di Paola-Naranjo et al., 2011). In this case the 87Sr/86Sr ratio was amongst the best discriminators, and its value ranges were similar between soils and wines. This corroborates the results obtained by Marchionni et al. (2013) across six distinct wine appellations in Italy, but in their study they focused on parent material; the ratio matched those observed for homogeneous soil parental material such as volcanic rocks. Studying the whole parent-material–soil–plant–wine chain at a single rainfed vineyard located in the volcanic area of Campi Flegrei (southern Italy) and considering both a set of putative rare-earth elements geotracers and the Sr isotope ratio, Mercurio et al. (2014) found that only this isotopic ratio was “consistently and inherently transferred and maintained from geologic parent material to wine, through soil horizons, branches, leaves, and grapes”. However, considering several vintages, Marchionni et al. (2013) observed that wines showing Sr isotopic ratios matching those of the underlying substrates mostly originated from vineyards grown on
volcanic rocks, unlike wines from vineyards on sedimentary or granitic rocks. As isotopic ratios of geological substrates belonging to different geological districts may partially overlap, Mercurio et al. (2014) recommend assessing the isotopic ratios together with a pertinent soil classification for a reliable assurance of wine provenance. Geographical fingerprinting of wines may also be possible with areas as close to one another as 4 km. Research by Tarr et al. (2013) found that more than a thousand components were identified through the high-performance liquid chromatography of juices from two varieties (Syrah and Grenache) originating from two distinct terroirs roughly 4 km from each other. Hierarchical clustering of data peaks suggested that terroir played a large part in the final composition of the grape berry metabolome (Tarr et al., 2013).

Metabolomics seek to identify the chemical fingerprint of a particular cell, organ, organism or tissue type that results from and is thus indicative of the chemical processes that occur within the specimen of analysis (Tarr et al., 2013). Using metabolite and gene transcript profiling, Castellarin et al. (2007) highlighted that the biosynthesis pathway of flavonols related to water deficit and nitrogen nutrition. The first reaction involves the deamination of phenylalanine by the enzyme phenylalanine ammonia lyase (PAL) into cinnamic acid, thus diverting phenylalanine from the pathway that relates carbohydrates to the synthesis of proteins. Metabolomic studies have also been conducted through Proton nuclear magnetic resonance (1H NMR) spectroscopy (Pereira et al., 2006; Son et al., 2009), which revealed that grapes grown in regions with high sun exposure and low rainfall showed higher levels of sugar, proline, Na and Ca together with lower levels of malate, citrate, alanine, threonine and trigonelline than those grown in regions with relatively low sun exposure and high rainfall (Son et al., 2009). The sensitivity of this method has allowed it to be successfully applied to classify wines according to their phenolic profile and allowed distinguishing between wines from different wineries of the same wine-producing zone and between different vintages for wines of the same variety in Greece (Anastasiadi et al., 2009) and Spain (López-Rituerto et al., 2012).

2.2 Biological fingerprinting through molecular and "omics" approaches

Despite the fact that the interaction between microbial communities and the vine may be one of the key factors that influence the plant traits, the role of microbes for terroir and vine traits has been largely ignored (Gilbert et al., 2014). However, the recent development of the so-called “omics” techniques (mainly metagenomics, metabolomics, transcriptomics, proteomics, phenomics) has made it possible to explore the soil functionality, microbial diversity (microbiome) and vine-associated microorganisms in greater detail. In fact, the application of omics techniques to soil may enable the determination of rare microbial species and discover new compounds or functions (antibiotic, enzymes, etc.) from the expression of genes of unknown microbial species (Myrold and Nannipieri, 2014). Thus, the application of omics techniques in soil microbiology, together with standard techniques for soil science, is promising for understanding the functioning of soil and its effect on terroir. To date few studies have been carried out on this issue.

The interface between roots and soil (rhizosphere) is often considered the key point of interaction between a plant and its environment. Microbes colonizing at the root may migrate through the plant to colonize aerial tissues, either internally (endophytes) or externally (epiphytes) (Companet al., 2011; Bulgarelli et al., 2013). In addition to soil, the exploitation of the commensal microbial flora that coexists with the vine may be one of the key factors that influence the plant traits. Most studies dealing with biological fingerprinting are related to the microbial communities present on the surface of the grape berry, which are known to be very large and which change according to the stage of grape development (Barata et al., 2012; Pinto et al., 2014). In fact, the microbiological life of wine starts before the reception and fermentation of the grapes at the winery. In particular the yeast population and bacterial and fungal consortia inhabiting grape surfaces could reflect a wine region, as reported in some recent studies (Renouf et al., 2005; Setati et al., 2012; Bokulich et al., 2013). However, determinants of regional wine characteristics have not been identified. Renouf et al. (2007) identified 52 yeast species and 40 bacteria. The majority of the bacterial groups were present in the study, in particular the proteobacteria, which are not commonly described in oenology, while the most common oenological yeast (Saccharomyces cerevisiae, Brettanomyces bruxellensis) and bacteria (Oenococcus oeni, Pediococcus parvulus, Gluconobacter oxydans) were detected on grape skins from the first stages of development.

Bokulich et al. (2013) surveyed 273 grape musts from two vintages of Chardonnay, Zinfandel and Cabernet Sauvignon, demonstrating that the grape surface microbial communities present were significantly different between regions (Fig. 1). The authors also showed that the degree of significant differentiation between regions is increased dramatically when they look at the biogeography within a grape variety of a given vintage, and they alluded to “the existence of non-random ‘microbial terroir’ as a determining factor in regional variation among wine grapes”. This finding suggests that other factors also play a significant role, including host genotype, phenotype (grape variety), local and interannual climate variation (vintage), and soil quality. However, the specific role of soil microbes was not determined.

In a recent work Martins et al. (2013) observed the interaction between telluric bacterial communities and the epiphytic bacteria present on the different grapevine parts. Yet, the ecological interactions and the role of such organisms are still not clear. Vega-Avila et al. (2015) reported how soil management (organic vs. conventional) could affect the structure and
the diversity of bacterial communities in the rhizosphere of vines of the variety Syrah, in Argentina. Indeed, most of the available literature reports studies concerning the bacterial structure and plant-associated microbiomes (i.e. Dell’Amico et al., 2008; Gilbert et al., 2014), but the functional diversity of such microbiomes is still largely ignored. The combination of different high-throughput culture-independent methods, such as microarrays, metagenomics and microbiome, might elucidate such aspects. For example, considering soils from two sites close to each other in central Tuscany cultivated with the same variety (Sangiovese) but with contrasting wine quality and water stress, Mocali et al. (2013) used functional GeoChip microarrays and high-throughput DNA sequencing of rRNA genes to explore both microbial composition and functions. Preliminary results revealed different amounts of Actinobacteria and Proteobacteria among the two sites and an overrepresentation of sulfur-oxidation genes in samples where both the increased level of sulfates and two sites and an overrepresentation of sulfur-oxidation genes occurred. A further step might be to sequence the entire genomic DNA present in a vineyard soil sample and referred to as the “metagenome”, which could provide a cultivation-independent assessment of the largely unexplored genetic reservoir of soil microbial communities and their functions (Daniel, 2005; Mocali and Benedetti, 2010).

The importance of this approach has led to the establishment of “Terragenome”, an international consortium for the exploitation of the soil metagenome (Vogel et al., 2009). While these studies represent an initial examination of these relationships, they represent an essential step which may potentially help to revolutionize how sites for agriculture are chosen or, indeed, how they could be manipulated by probiotics designed to select suitable bacterial species, which could improve soil quality and, hence, crop productivity. Further research is needed to study the degree to which the use of probiotics could enhance some wine characteristics of given terroirs in sites a priori not suitable for generating such characteristics.

3 Terroir zoning on different scales using geospatial technologies

3.1 General perspectives

The differentiation and mapping of regions of grape and wine quality require comprehensive spatial modelling of climatic, soil and agronomical properties, including their changes through time (Vaudour, 2002; Costantini and Buccelli, 2014). The construction of such spatial models for demarcating terroir units and predicting their viticultural and wine response is undergoing a methodological revolution as new technologies and analytical methods enable the capturing of detailed spatial and temporal variability of grapevines according to functional properties in the soil. Recent developments in the combined use of several geospatial technologies including geographic information systems (GIS), global positioning systems (GPS), remote sensing (RS) and direct measurements in the field (proxy sensing) are likely to open many new areas in the spatial modelling of winegrowing terroirs. A considerable amount of research dealing with terroir zoning (> 120 journal papers, book chapters and books) has been published since 2002 (Fig. 2). Most of the published research has been carried out on the within-field scale in the context of the so-called “site-specific” or “precision viticulture” (Bramley and Hamilton, 2004; Bramley, 2005; Bramley et al., 2011a, b, c, d, e; Tisseyre and McBratney, 2008; Roudier et al., 2008, 2011; Arnó et al., 2009, 2012; Pedroso et al., 2010), and its median study area covered only 0.12 ha, while between-field studies covering more than 0.11 km2 only represented a quarter of the total (Fig. 3). There is therefore a gap to fill regarding farm (≤ 0.1 to 1 km2) and district (≤ some tens of square kilometres) to regional scales (≥ tens to thousands of square kilometres). The number of map units tends to increase with the log of study area; however, its variation is higher for larger study extents than for within-field studies, and regional studies focus on a larger range of target properties. Twenty or so viticultural, environmental or oenological target properties have been considered over the last decade (Table 1), mainly focusing on grape and canopy characteristics and yield or biomass and secondarily on soil properties on the within-field scale. Table 2 puts together the main recent combination of methods and their pros and cons and references examples to study grape characteristics, canopy, yield, biomass, trunk circumference and/or oenological parameters, vineyard identification, vine rows and vineyard characteristics, vineyard soil properties (or management zones or terroir units), soil surface condition, erosion, and evapotranspiration.

While most former terroir studies dating back the 1970s–1990s mainly relied on conventional soil mapping and sparse but very time-consuming soil, vine and grape observations at
Table 1. Target variables of the zoning studies carried out over the 2002–2013 period (see Fig. 2).

<table>
<thead>
<tr>
<th>Viticultural</th>
<th>N</th>
<th>Environmental</th>
<th>N</th>
<th>Oenological</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy characteristics</td>
<td>20</td>
<td>soil properties</td>
<td>14</td>
<td>grape composition</td>
<td>24</td>
</tr>
<tr>
<td>Yield</td>
<td>17</td>
<td>oil units</td>
<td>6</td>
<td>wine composition</td>
<td>3</td>
</tr>
<tr>
<td>Biomass</td>
<td>15</td>
<td>soil surface condition</td>
<td>3</td>
<td>wine sensory attributes</td>
<td>3</td>
</tr>
<tr>
<td>Vine water status</td>
<td>12</td>
<td>temperatures</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vineyard identification</td>
<td>11</td>
<td>erosion</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management zones</td>
<td>8</td>
<td>climatic zones</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terroir units</td>
<td>6</td>
<td>land use changes</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest and weed management</td>
<td>6</td>
<td>artificial drainage network</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>4</td>
<td>landslide</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vine rows</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vineyard characteristics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: N, number of papers

Figure 3. Plot of the number of map units vs. the log of the study area in studies published from 2002 to 2014 (see Fig. 2).

Field sites, new techniques are promising both for capturing the detailed spatial variability of vineyard areas and for collecting a large amount of soil, vine and grape data. A number of terroir-related studies of the last decade have relied upon a large amount of yield data collected by means of on-the-go yield sensors mounted on mechanical harvesters, which were made commercially available beginning with the 1999 harvest. Pioneering research by Bramley and Hamilton (2004) and Bramley (2005) not only highlighted the magnitude and extent of the spatial variability of yield in some Australian vineyards (of between 4.5 and 7.3 ha) but also emphasized the significant influence of soils in driving yield differences. The need to assess spatial variations in soil properties has driven the development and application of direct (so-called “proximal”) geophysical sensing, particularly for measuring soil apparent electrical conductivity by means of either electrical resistivity surveys and/or electro-magnetic induction scans (EMI) (Lamb et al., 2005; Morari et al., 2009; Taylor et al., 2009; Trought and Bramley, 2011; Fulton et al., 2011; André et al., 2012; Martini et al., 2013; Andrenelli et al., 2013; Priori et al., 2013a, b; Rossi et al., 2013; Brillante et al., 2014).

Moreover, the need to assess spatial variation in grapevine biomass and canopy properties, or to map terroir units or to identify vines, has driven the development, acquisition and processing of remote-sensing data. Figure 4 shows that the development of very high spatial resolution airborne acquisitions for the purpose of characterizing grapevine physiological status has represented about one-third of the terroir-related studies over the last decade (Hall et al., 2002, 2003, 2008; Dobrowski et al., 2003; Lamb et al., 2004; Zarco-Tejada et al., 2005; Martín et al., 2007; Gil-Pérez et al., 2007; Meggio et al., 2010; Hall and Wilson, 2013). Most approaches combine several data sources, methods (geostatistical, statistical, image processing, computer vision, mechanistical models) and remote or proxy sensors (Table 2). All approaches use geopositioning devices (not detailed in Table 2) the error positioning requirements of which need to be compatible with the study objectives (i.e. accurate positioning of individual sampled vines) and the spatial resolution of the acquired imagery.
Table 2. Typology of zoning studies carried out over the 2002–2014 period.

<table>
<thead>
<tr>
<th>Targets</th>
<th>Scale</th>
<th>Data</th>
<th>Methods</th>
<th>Pros</th>
<th>Cons</th>
<th>References (e.g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grape composition</td>
<td>plot FM</td>
<td>VK then FA followed by fuzzy KM</td>
<td>Fine-scale</td>
<td>Time-consuming, high sampling density (3 m)</td>
<td>Specific calibration for each plot</td>
<td>Bahija et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>plot FM, airborne NDVI</td>
<td>LR</td>
<td>Fine-scale spatially exhaustive data</td>
<td>Specific calibration for each plot</td>
<td>Need for specific calibration for each plot</td>
<td>Lamb et al. (2004), Hall and Wilson (2013)</td>
</tr>
<tr>
<td></td>
<td>plot FM, fluo and/or airborne NDVI, ChlorM</td>
<td>Spectral index, CF</td>
<td>Replaces expensive measurements</td>
<td>Specific calibration for each plot</td>
<td>Specific calibration for each plot</td>
<td>Ben Gharbia et al. (2010), Bahija et al. (2012b), Agati et al. (2013)</td>
</tr>
<tr>
<td>district VIS-NIR HypS airborne UAV imagery</td>
<td>FM</td>
<td>Spectral indices, LR</td>
<td>Fine-scale spatially exhaustive data</td>
<td>Specific calibration for each plot</td>
<td>Spatial resolution of imagery appropriate for homogeneous practices</td>
<td>Martin et al. (2007), Meggio et al. (2010)</td>
</tr>
<tr>
<td>region F. VIS-NIR-SWIR HR satellite imagery, TopoP and/or soil map and/or SPE</td>
<td>FM, YM</td>
<td>Multitemporal SC, SA</td>
<td>Large-scale spatially exhaustive data, landscape-scale relevant for unions of winemakers</td>
<td>Spatial resolution of imagery appropriate for homogeneous practices</td>
<td>Vaudour (2003), Vaudour et al. (2010, 2014a)</td>
<td></td>
</tr>
<tr>
<td>Canopy characteristics, yield and grape composition</td>
<td>plot FM, YM</td>
<td>OK then KM and/or LOGR and/or NPT</td>
<td>Fine-scale</td>
<td>Time-consuming, high sampling density (2 m)</td>
<td>Specific calibration for each plot</td>
<td>Brantley and Hamilton (2004), Brantley (2005), Tissot et al. (2008), Brantley et al. (2011a), Arno et al. (2012)</td>
</tr>
<tr>
<td>plot FM (including CC), soil ECA, TopoP</td>
<td>NDVI, Fuzzy KM, correlations</td>
<td>Fine-scale</td>
<td>Early grape composition, definition of harvest zones</td>
<td>Spatial resolution of imagery not quite appropriate?</td>
<td>Specific calibration for each plot</td>
<td>Martínez-Casanovas et al. (2012), Urrutxuycauya et al. (2013)</td>
</tr>
<tr>
<td>plot FM, airborne NDVI (0.3 m)</td>
<td>Correlations</td>
<td>Easy-to-use, spatially exhaustive data</td>
<td>Specific calibration for each plot</td>
<td>Spatial resolution of imagery not quite appropriate?</td>
<td>Hall et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>farm FM (including 813C), airborne NDVI, soil ECA, TopoP</td>
<td>WHC, ANOVA, IDW, NDVI</td>
<td>Relevant scale for winery, good compromise data collection and results</td>
<td>Need to test feasibility on the winery scale</td>
<td>Spatial resolution of imagery not quite appropriate?</td>
<td>Santeester et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>farmland FM (LAI), hyperspectral satellite</td>
<td>LR</td>
<td>Easy-to-use, spatially exhaustive data</td>
<td>Specific calibration for each image, spatial resolution of imagery not quite appropriate?</td>
<td>Fine-scale</td>
<td>Johnson et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>district VIS-NIR HypS airborne imagery, FM (including leaf LabR spectra)</td>
<td>LR, spectral indices, inversion of PROSPECT-rowRCRM model for predicting leaf reflectance</td>
<td>Fine-scale spatially exhaustive data</td>
<td>Time-consuming, high sampling density (2 m)</td>
<td>Specific calibration for each image, spatial resolution of imagery not quite appropriate?</td>
<td>Complex parametrization</td>
<td>Zarco-Tejada et al. (2005, 2013)</td>
</tr>
<tr>
<td>region FM, soil map, TopoP, daily climatic data</td>
<td>OK and/or PCA then KM</td>
<td>Fine-scale, whole soil-vineyard-vine composition considered</td>
<td>Needs detailed data at specific sites for parametrization</td>
<td>Time-consuming, high sampling density (2 m)</td>
<td>Time-consuming, high sampling density (2 m)</td>
<td>Brantley et al. (2011c, d), Fiorilli et al. (2013b)</td>
</tr>
<tr>
<td>Yield, oenological parameters</td>
<td>plot FM, YM, soil ER, airborne NDVI and/or topographic parameters</td>
<td>NDVI thresholding, then KM</td>
<td>Fine-scale</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Fiorilli et al. (2012)</td>
</tr>
<tr>
<td>Biomass, oenological parameters</td>
<td>plot FM, airborne NDVI</td>
<td>NDVI thresholding, then KM</td>
<td>Fine-scale</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Fuzzy KM, ANOVA</td>
<td>Fine-scale</td>
</tr>
<tr>
<td>Yield, vine trunk circumference management zones</td>
<td>plot FM, soil ER, TopoP</td>
<td>Spatially constrained KM</td>
<td>Fuzzy KM, ANOVA</td>
<td>Need for effective testing of the aggregation component of the algorithm</td>
<td>Fine-scale</td>
<td>Fuzzy KM, ANOVA</td>
</tr>
<tr>
<td>Vine trunk circumference, management zones</td>
<td>plot FM, airborne NDVI</td>
<td>Spatially constrained KM</td>
<td>Fuzzy KM, ANOVA</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Rossi et al. (2013)</td>
</tr>
<tr>
<td>Vine water status</td>
<td>plot FM (including PLWP), airborne NDVI</td>
<td>NDVI thresholding, LCCAOJT, LR, NPT, LCCAOJT, IDW thresholding</td>
<td>Temporal stability of the zoning over 3 years</td>
<td>One soil type considered, specific calibration for each block required</td>
<td>Specific calibration for each plot required</td>
<td>Acevedo-Ospazo et al. (2010a)</td>
</tr>
<tr>
<td></td>
<td>plot FM (PLWP or SWP), VIS-NIR MS and thermal UAV imagery</td>
<td>Spectral indices, LR</td>
<td>High validation performance</td>
<td>Specific calibration for each block required</td>
<td>Specific calibration for each plot required</td>
<td>Herrero-Langreo et al. (2013)</td>
</tr>
<tr>
<td>farm FM (including PLWP), airborne NDVI, soil ER</td>
<td>NDVI thresholding, PCA, NPT, LCCAOJT, LR</td>
<td>Seasonal stability of the zoning over 3 years</td>
<td>Auxiliary information on soil types needed</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Acevedo-Ospazo et al. (2008)</td>
</tr>
<tr>
<td>district FM (PLWP)</td>
<td>NDVI thresholding, PCA, NPT, LCCAOJT, LR</td>
<td>Easy to apply for winemakers</td>
<td>Need for further validation</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Time-consuming, high sampling density (5 m)</td>
<td>Acevedo-Ospazo et al. (2008)</td>
</tr>
<tr>
<td>Vine rows</td>
<td>plot Airborne NDVI</td>
<td>VineCrawler algorithm</td>
<td>Suitable for vineyards with large rows and inter-rows</td>
<td>Not suited for dense low-vigour vineyards with missing vines</td>
<td>Not suited for dense low-vigour vineyards with missing vines</td>
<td>Baraloni et al. (2012)</td>
</tr>
<tr>
<td>Vineyard identification, vine rows, and vineyard characteristics</td>
<td>plot FM (LAI), VIS multianular UAV imagery</td>
<td>SDM, multiple regression</td>
<td>3-D reconstruction</td>
<td>Big data, further improvements needed to improve LAI prediction</td>
<td>Further validation needed for detecting missing plants, further use of all spectral information</td>
<td>Hall et al. (2003)</td>
</tr>
<tr>
<td>district VIS-NIR MS ULM or airborne imagery</td>
<td>TA, FT and/or “object classifier”</td>
<td>Easy implementation, high processing speed, limited amount of parameters, export into GIS shapefile format</td>
<td>Further validation needed for detecting missing plants, further use of all spectral information</td>
<td>Further validation needed for detecting missing plants, further use of all spectral information</td>
<td>Further validation needed for detecting missing plants, further use of all spectral information</td>
<td>Rabatel et al. (2008), Deelen et al. (2008, 2010), Paletti et al. (2014)</td>
</tr>
<tr>
<td>district FM, airborne lidar</td>
<td>Georeferencing, LR and/or KM, TA</td>
<td>Powerful, 3-D reconstruction</td>
<td>Need for further tests on complex viticultural landscapes with several training modes? Cost-prohibitive repeated acquisitions</td>
<td>Further validation needed for detecting missing plants, further use of all spectral information</td>
<td>Further validation needed for detecting missing plants, further use of all spectral information</td>
<td>Llorens et al. (2011), Matthews and Jensen (2012)</td>
</tr>
<tr>
<td>region VIS MS helicopter imagery</td>
<td>FT, TA</td>
<td>Robust recognition of vineyards</td>
<td>Ambiguities in identifying training modes</td>
<td>Not accurate enough on the farm or plot scales</td>
<td>Not accurate enough on the farm or plot scales</td>
<td>Wassenaar et al. (2002)</td>
</tr>
<tr>
<td>region VIS MS satellite imagery</td>
<td>TA, autocorrelation pattern</td>
<td>Robust recognition of vineyards</td>
<td>Better adapted to equally spaced vineyards with large rows</td>
<td>Not accurate enough on the farm or plot scales</td>
<td>Not accurate enough on the farm or plot scales</td>
<td>Wmer and Strimanns (2005)</td>
</tr>
<tr>
<td>region MR satellite imagery</td>
<td>Multitemporal SC</td>
<td>Fine resolution landscape-scale map</td>
<td>Fine-scale</td>
<td>Spatial resolution of imagery appropriate for homogeneous practices</td>
<td>Fine-scale</td>
<td>Lameri et al. (2004), Rodriguez-Pérez et al. (2008)</td>
</tr>
</tbody>
</table>
Table 2. Continued.

<table>
<thead>
<tr>
<th>Targets</th>
<th>Scale</th>
<th>Data</th>
<th>Methods</th>
<th>Pros</th>
<th>Costs</th>
<th>References (e.g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil properties, potential management zones</td>
<td>plot</td>
<td>Soil ECs and/or ER, FM (soil analysis) and/or airborne and satellite NDVI</td>
<td>FKA, KM</td>
<td>Additional description of residual variation within classes provided</td>
<td>Ground-truth soil samples mandatory to understand and interpret EMI mapping</td>
<td>Morari et al. (2009), Andrei et al. (2002), Andreu et al. (2013), Martin et al. (2013), Priori et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>farm</td>
<td>Soil ECs, soil map</td>
<td>Geostatistical descriptors, FA, CR, CoK, BcoK</td>
<td>Spatially validated</td>
<td>Reference soil map needed in addition to ECs</td>
<td>Taylor et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>region</td>
<td>FM (clay content), airborne VIS-NIR-SWIR HypS imagery</td>
<td>GIS combination of raster layers and/or PCA and/or KM</td>
<td>Landscape-scale relevant for unions of winemakers</td>
<td>Further test on other soil types or cultural practices</td>
<td>Lagacherie et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>region</td>
<td>FM (soil types, analyses), TopoP, geological map, soil map and/or climatic data</td>
<td>Different geostatistical models, SC, PCA, fuzzy KM</td>
<td>Landscape-scale relevant for unions of winemakers; spatially validated</td>
<td>Allows avoiding time-consuming field description</td>
<td>Carey et al. (2008), Herrera-Navarro et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil surface condition</td>
<td>plot</td>
<td>FM (soil infiltration rate, clod sizes), VIS UAV imagery</td>
<td>KM, multiscale "object-classifier"</td>
<td>Landscape-scale relevant for unions of winemakers; spatially validated</td>
<td>Further developments on a higher scale; time-consuming observations</td>
<td>Hugues et al. (2012), Malone et al. (2014), Priori et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>region</td>
<td>FM (BRDF), VIS helicopter imagery</td>
<td>TA, BRDF model</td>
<td>Extraction of bare soil inter-rows</td>
<td>Possible improvements considering NIR and SWIR ranges</td>
<td>Corbane et al. (2008a, 2012)</td>
</tr>
<tr>
<td>Erosion</td>
<td>plot</td>
<td>FM (SUM), TopoP, historical land use maps and/or soil ER, and/or VIS UAV imagery</td>
<td>KM, multitemporal SA</td>
<td>Fine-space spatially exhaustive data</td>
<td>Further validation</td>
<td>Wassenaar et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>region</td>
<td>FM (SUM), TopoP, historical land use information</td>
<td>multitemporal SA</td>
<td>Variability of multi-decennial erosion across local and regional scales with acceptable investigation costs</td>
<td>Time-consuming observations</td>
<td>Bremet et al. (2008), Paroissien et al. (2010), Chevigny et al. (2014), Quiriquez et al. (2014)</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>region</td>
<td>FM (EdCov, soil water), VIS-NIR-SWIR-thermal satellite imagery</td>
<td>HYDRUS-1D model, S-SEBI and WBI models</td>
<td>accuracies between 0.8 mm d$^{-1}$ and 1.1 mm d$^{-1}$ compatible with applications</td>
<td>Further need to address model sensitivities, inclusion of row orientation, landscape characterization</td>
<td>Galleguillos et al. (2011a, b)</td>
</tr>
</tbody>
</table>

Figure 4. Use of remote-sensing devices for the purpose of terroir zoning from 2002 to March 2014. Source: Web of Science (v.5.14). UAV – unmanned aerial vehicle; ULM – ultra-light motorized; MS – multispectral; VHSR – very high spatial resolution; HSR – high spatial resolution; MR – medium resolution; HypS – hyperspectral. “Proxy” here means reflectance measurements and/or crop circle NDVI and not geophysical measurements.
3.2.1 Use of vegetation indices for assessing vine vigour and physiology: the NDVI

Typically, the information retrieved from remote sensing has solely relied on the calculation of the most commonly used normalized difference vegetation index (NDVI) defined by Eq. (1) (Tucker, 1979) from images acquired at or near vegetation.

\[
\text{NDVI} = \frac{(R_{\text{NIR}} - R_{\text{R}})}{(R_{\text{NIR}} + R_{\text{R}})},
\]

where \(R_{\text{NIR}}\) is reflectance in the near infrared spectral band and \(R_{\text{R}}\) is reflectance in the red spectral band.

Providing a number between \(-1\) and \(+1\), quantifying the relative difference between the near infrared reflectance “peak” of vegetation tissues and the red reflectance “trough” due to chlorophyll and carotenoids pigment absorption, the NDVI is the most widely used indicator of plant canopy vigour and relates to the leaf area index (LAI: the ratio of leaf surface area to ground area), fractional cover, biomass, shaded area (Hall et al., 2002, 2003; Johnson, 2003; Johnson et al., 2003; Dobrowski et al., 2008) and grape quality (Fiorillo et al., 2012). In very high spatial resolution (VHSR) vineyard imagery, canopy-only pixels tend to have very high NDVI values, commonly ranging between 0.75 and 0.85 (Hall et al., 2002, 2003, 2008). Interpretation of NDVI threshold values requires adaptation to each case study region. This is because typical multispectral images with coarser resolution, such as 4 m IKONOS, may have values that integrate mixed signals from both vine row and interrow and from either bare soil or soil vegetated with an interrow crop. However, many studies do not give sufficient detail on the retrieval of NDVI, which basically requires that the digital numbers of the raw images be atmospherically corrected to surface reflectance values prior to NDVI computation in order to minimize differences in light conditions (Vaudour et al., 2014b). In an attempt to address the issue of variable environmental conditions when acquiring multitemporal imagery, the digital numbers are either normalized (e.g. Vaudour et al., 2010) or alternatively sliced into high, medium and low values for each image (e.g. Dobrowski et al., 2003). However, more often than not the relationships between NDVI and grapevine vegetation and terroir parameters are assessed on an individual image basis, using raw digital numbers (e.g. Johnson et al., 2003; Lamb et al., 2004) or even ignoring atmospheric effects. Using airborne hyperspectral sensors, such as the Compact Airborne Spectrographic Imager (CASI), the Reflective Optics Imaging Spectrometer (ROSIS) and the Digital Airborne Imaging Spectrometer (DAIS-7915), and atmospherically corrected images, Zarco-Tejada et al. (2005) demonstrated that narrow-band hyperspectral indices in the 700–750 nm spectral region performed better than NDVI for the purpose of estimating the chlorophyll content of leaves and then detecting iron deficiency chlorosis. Using the airborne hyperspectral scanner (AHS) at a 1000 m altitude flight providing a spatial resolution of 2.5 m, Meggio et al. (2010) devised other physiological indices for predicting carotenoid and anthocyanin leaf contents, which were related to grape quality in a previous study (Martín et al., 2007).

3.2.2 Identification and/or characterization of vineyards

Some researchers have developed change detection classifications in order to extract regional land use changes including vineyards from multiday, multispectral images with a medium spatial resolution, such as 30 m Landsat data (Lanjeri et al., 2004; Rodríguez-Pérez et al., 2007; Manandhar et al., 2010). However, much of the work in this area over the last decade is especially influenced by the advent of VHSR images, which have favoured innovative approaches for retrieving specific patterns of vineyard arrangements from helicopter colour images with \(\sim 0.25\) m resolution (Wassenaar et al., 2002), airborne multispectral images with \(\sim 2\) m resolution (Gong et al., 2003) or 0.5 m resolution (Rabatel et al., 2006), satellite panchromatic 1 m IKONOS images (Warner and Steinmaus, 2005), satellite panchromatic 0.6 m Quickbird images (Rabatel et al., 2006), and ultra-light motorized (ULM) colour 0.5 m images (Rabatel et al., 2008; Delenne et al., 2010). Approaches for vineyard identification include grapevine field detection (Wassenaar et al., 2002; Rabatel et al., 2006), grapevine field delineation (Da Costa et al., 2007), grapevine row extraction (Hall et al., 2003; Delenne et al., 2010; Matthews and Jensen, 2013; Puletti et al., 2014) and the detection of missing plants (Chanussot et al., 2005; Delenne et al., 2010). These approaches have mostly used grey-level images (often the red band) and either relied on frequency analysis (Wassenaar et al., 2002; Rabatel et al., 2006; Delenne et al., 2010) or developed textural analysis, a branch of image processing focused on the spatial statistics of the grey levels of images, the variations of which are perceived as homogeneous areas by the human eye (Haralick et al., 1973). The textural analysis is based on co-occurrence matrices, i.e. “the histogram, in a given neighbourhood for each pixel (e.g. \(7 \times 7\), of the grey-level transitions when considering a given translation in a given direction, from which various parameters can be computed”, for instance energy, correlation, directivity, entropy and contrast (Rabatel et al., 2006). Provided that the boundaries of each field are available, one can apply a local Fourier transform to extract information on the type of vineyard planting as well as crop spacing and orientation (Wassenaar et al., 2002) or isolate each individual field by selecting the corresponding frequencies in the Fourier spectrum using a specific Gabor filter applied recursively (Rabatel et al., 2008; Delenne et al., 2010). Another approach is that of spatial autocorrelation, requiring that grapevines be equally spaced and that the spatial resolution be fine enough that individual grapevines are distinguished from one another (Warner and Steinmaus, 2005).
3.2.3 Characterization of soil types, soil properties, soil surface condition and erosion

As vineyard inter-rows are frequently left bare, particularly in Mediterranean regions, remote-sensing satellite images acquired in spring, before budburst, have been used for the purpose of mapping soil surface type and condition. For instance, high-resolution multispectral 20 m SPOT images during spring have been processed using a supervised Bayesian maximum likelihood classifier to map red Mediterranean soils originating from Plio-Pleistocene fluvial deposits in the Southern Rhône Valley, with an overall accuracy of 60–70 % (Vaudour, 2008). Being important factors in runoff and infiltration processes, soil surface characteristics (SSCs) have been mapped on the within-field scale using VHSR images with 0.1 m resolution acquired by means of unmanned aerial vehicles (UAVs) equipped with a colour camera: Pixy® (Corbane et al., 2008a, b) or DRELIO® (Quiquerez et al., 2014). Depending on SSC classes and surface conditions, overall accuracy ranged from 63 to 84 % (Corbane et al., 2008b). The clay content of viticultural soils of the La Peyne catchment in Languedoc (southern Mediterranean France) has been successfully estimated from the 2206 nm wavelength of an airborne hyperspectral HyMap® image with 5 m spatial resolution and then spatially predicted from a co-kriging model using this image as a co-variable (Lagacherie et al., 2012).

3.2.4 Incorporation of remote-sensing information into the spatial modelling of terroirs

Remote-sensing images have been used for the purpose of mapping terroir units on regional scales, facilitating the selection of plant material, the assemblage of harvest and the monitoring of vine phenology and the status of vineyards across a number of individual fields spread over a regional viticultural area. A terroir concept adapted to spatial modelling from remote sensing considers soil landscape units as base elements for defining terroir units, jointly with climate series and grape composition series (Vaudour, 2003). A soil landscape, also referred to as a soilscape (Hole, 1978) or “pédopaysage” (Girard, 1983), can be defined as a landscape unit including a limited number of soil classes that are geographically distributed according to an identifiable pattern (Lagacherie et al., 2001). Soil landscape units were also defined as “a set of pedological horizons and landscape features (vegetation, effects of human activities, geomorphology, hydrology and parent material) whose spatial organization allows for defining a soil mantle (or a subset of it)” (Girard, 1983; Carré and Girard, 2002). Their identifiable pattern can be retrieved from the visual interpretation of several geographical data layers including image classification results and stereoscopic photograph examination (Vaudour et al., 1998; Vaudour, 2003). The visual interpretation process follows a set of rules describing a conceptual model of soil landscape organization, which relies on the assumption that soil landscape units may be inferred from the geomorphological identification of surficial formations (e.g. mainly glacio-fluvial terraces in the Rhône Valley), the age and relative elevation of which correspond to distinct durations of pedogenesis (“terrains”) and thus distinct soil layer depths and properties, including soil surface stoniness and colour (Vaudour, 2008). In this pioneering approach, visual interpretation was digitally performed within a GIS along with the description and recording of several soil landscape attributes at each delineated polygon area. Potential terroir units were then obtained from the Ward’s clustering of these soil landscape attributes and were further validated against a considerable set of grape composition data spanning 17 years. In an attempt to reduce the time-consuming stage of visual interpretation, alternate approaches which solely relied on the automatic processing of remote-sensing and/or morphometric data were proposed, either based on combining per-pixel and textural classifiers (Vaudour, 2003) or on bootstrapped regression trees (Vaudour et al., 2010). In these studies, the resulting map units were termed “terroir” and “viticultural” because they were tested against a considerable set of grape composition data over a long-term period (Vaudour et al., 1998; Vaudour, 2003) or relied on ∼ 50 reference vineyards, the oenological properties of which were known from previous research (Vaudour et al., 2010). In another study, the spatial units of which were termed “terrons”, because they were not tested again viticultural data (Hughes et al., 2012; Malone et al., 2014). Landsat bands and several Landsat band ratios including NDVI were included as covariates of soil profile data in a number of geostatistical models in order to spatially predict several soil properties. These properties include soil pH, clay percentage, soil mineralogy (clay types and presence of iron oxides), continuous soil classes and the presence or absence of marl, the predicted soil properties were then combined with landscape attributes (derived from a digital elevation model) through fuzzy k-means in order to predict 10 non-marl “terron units” and 2 marl “terron units” depending on the presence of marl (i.e. active lime) at 0.5 m depth. Such an approach to defining “terrons” was initially proposed by Carré and McBratney (2005) and is meant as an initial stage prior to defining viticultural terroirs. A similar study using the term “natural terroir units” and derived from the geostatistical methods described by Castignano et al. (2009) was carried out in Tuscany but did not include remote-sensing layers (Priori et al., 2014). “Natural terroir units” (NTU) were first proposed by Laville (1990), as “a volume of the Earth’s biosphere that is characterized by a stable configuration and values of the environmental factors”, and built from morphometric data and lithological units.

Because of the data availability, topography, climate, substrate and soil are the most commonly used land features in digital terroir zoning (e.g. Carey et al., 2008; Herrera-Núñez et al., 2011). In fact, there is a conceptual similarity, if not a direct relationship, between the NTU as constructed by Priori
et al. (2014) (see Sect. 3.3.3), terroir units and soil landscape units.

On the within-field scale, “management zones” originating from a set of soil and/or vegetation proxy and remotely sensed attributes, typically NDVI, were also obtained using either fuzzy k-means (Bramley and Hamilton, 2004; Pedroso et al., 2010; Taylor et al., 2013; Tagarakis et al., 2013; Priori et al., 2013b; Urretavizcaya et al., 2013) or Ward’s clustering (Santesteban et al., 2013). Similar clustering approaches have been performed using a multivariate set of spatial layers, including apparent electrical conductivity but without remote-sensing images (e.g. Martini et al., 2013).

In order to be applicable in an operational manner, management zones need (Bramley and Hamilton, 2004) (i) to provide stable, constant patterns from year to year; (ii) be related to yield; (iii) be manageable; and (iv) be more economically beneficial than conventional uniform management. An objection to using remote-sensing images for delineating management zones is that they “provide only a within-season snapshot and may not relate to final crop yield” (Taylor et al., 2013b; Taylor et al., 2013; Tagarakis et al., 2013; Priori et al., 2013b; Urretavizcaya et al., 2013) or Ward’s clustering (Santesteban et al., 2013). Similar clustering approaches have been performed using a multivariate set of spatial layers, including apparent electrical conductivity but without remote-sensing images (e.g. Martini et al., 2013).

In order to be applicable in an operational manner, management zones need (Bramley and Hamilton, 2004) (i) to provide stable, constant patterns from year to year; (ii) be related to yield; (iii) be manageable; and (iv) be more economically beneficial than conventional uniform management. An objection to using remote-sensing images for delineating management zones is that they “provide only a within-season snapshot and may not relate to final crop yield” (Taylor et al., 2007). According to Tissye et al. (2008), later confirmed by Trought and Bramley (2011), “yield or vigour (pruning weight, size of the canopy) maps of the previous years are relevant in designing site-specific management strategies in the year “n+1” and subsequent years” and conversely in producing maps of quality parameters (sugar content, titratable acidity, pH) which present no temporal stability of within-field variability. This is in compliance with the observations made previously on the regional scale, in the terroir units mapped in the Southern Rhône Valley, for which a long-term frequency analysis of Grenache berry composition had highlighted a strong vintage interaction and no temporal stability of berry composition groups (Vaudour, 2003). When acquired over bare soils in spring, multispectral SPOT images showed a high temporal stability for deriving homogeneous terroir zones (Vaudour, 2008) which matched those obtained from the supervised support vector machine classifier of a single-year within-season SPOT4 Take 5 time series acquired from February to June and accounting for vegetation vigour and phenology (Vaudour et al., 2014a). In order to account for the between-terroir variation in grass vegetation across seasons in vineyards with grass intercrops, regional terroir units may be retrieved from multitemporal multi-seasonal images (Vaudour et al., 2010).

On the within-field scale, while unsupervised clustering algorithms are commonly used for defining viticultural management zones, other methods have been proposed for cereal-growing systems (e.g. Roudier et al., 2008) in order to address the problem of the manageability of the mapped zones. These authors emphasized the distinction between classification methods, which define classes, such as groups of individual pixels presenting similar properties, and segmentation methods, which define regions or the expression of those groups in space and time and form individual patches. They proposed using a segmentation method stemming from mathematical morphology and applying the watershed algorithm initially proposed by Beucher and Lantuéjoul (1979) and later formalized by Vincent and Soille (1991). They suggested an approach for reducing the over-segmentation of zones, the number of which was selected following Lark’s parsimony principle (2001). According to this principle, the most suitable number of clusters is that “after which the vegetation parameter (such as biomass) variance reduction remains more or less constant or declines more slowly” (Roudier et al., 2008). Generally, the number of within-field zones effectively chosen is empirically defined, comprises between 3 and 5 zones and, when illustrated through raster monovariate maps, is eventually described through up to 20 map units based on equal-distance or equal-density intervals (Fig. 3). Pedroso et al. (2010) proposed another within-field segmentation approach based on a contextual colour and shape criterion and performed on an NDVI airborne ADS40 image with 5 m resolution; they aimed at optimizing variance partitioning of vine circumference data and removing small unmanageable polygons covering less than 0.1 ha.

Zoning based on automatic procedures should also enable us to assess prediction error and/or error uncertainty along with predictions. In the approach devised by Pedroso et al. (2010), the effectiveness of the management unit delineations was determined from the adjusted R^2 from ANOVA using the management units as the independent variable and grapevine circumference data as the dependent variable. Most terroir units or management zones are validated following a similar variance testing procedure, i.e. demonstrating how well delineation explains a key growth, grape or berry composition parameter (e.g. Priori et al., 2013b; Santesteban et al., 2013). However, while the agronomical and soil property model is verified and/or validated, its spatial prediction error is not, or only seldom, assessed except for geostatistical approaches (Castigrignano et al., 2009; Lagacherie et al., 2012) and for the bootstrapped approach by Vaudour et al. (2010).

3.2.5 Prediction of evapotranspiration and management of irrigation on the basis of remote-sensing information

Recent developments of remote-sensing applications in terroir-related studies have dealt with the prediction of evapotranspiration using multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images through the thermal infrared bands with 90 m resolution (Galleguillos et al., 2011a, b). Using the approach developed by Galleguillos et al. (2011a, b) and a linear downscaling based on land use at smaller pixel sizes, Taylor et al. (2013) demonstrated that the ASTER-derived evapotranspiration-based covariates were of particular significance in the soil depth modelling while water table depth was better explained by models that used digital terrain attributes at smaller pixel sizes.
3.2.6 Contribution of lidar and UAV remote sensing

The use of UAVs in precision viticulture is very recent and promising, as the time of acquisition is tightly controlled and adapted to the user’s needs. In particular, promising approaches to mapping vine water stress were presented by Baluja et al. (2012a) and by Bellvert et al. (2014), based on 0.3 m thermal UAV images acquired around noon (solar time), the pixels of which were significantly linked to midday water potential (MWP) measurements. UAV equipped with lidar sensors also enabled the detection of rows, the 3-D reconstruction of a vine plantation (Llorens et al., 2011) and the quantifying of vineyard canopy (Llorens et al., 2011; Matthews and Jensen, 2012), while airborne lidar images enabled the mapping of landscape linear features (ditches) in a viticultural catchment (Bailly et al., 2008, 2011) and also the hydro-geomorphological analysis of terraced vineyards (Tarolli et al., 2015). UAVs equipped with a visible camera and taking multiangular images using the computer vision technique of structure from motion also enabled the 3-D reconstruction of a vine plantation and were promising in LAI estimation (Matthews and Jensen, 2013).

UAVs allow for the acquisition of spectral or thermal measurements that are very comparable to proxy measurements and are generally carried out along with field proxy measurements. Their use, however, requires a perfect mastering of a chain consisting of image series acquisition, acute georeferencing, spectral calibration, mosaicking and processing, which is the subject of ongoing technical developments, as shown by Verger et al. (2014) for predicting the green area index of annual crops.

3.3 Proxy measurements of terroir and their statistical processing

3.3.1 Geophysical proxy measurements

Observations should account for the entire depth of the root systems of vines, which may explore the soil parental material, often being a surficial formation (Vaudour, 2002, 2003; Costantini et al., 2012). Geophysical techniques applied to soil (Samouélian et al., 2005; Doolittle and Brevik, 2014) offer a unique opportunity to explore deep horizons, and it may be expected that key soil properties related to the soil–vine water balance be retrieved from EMI or ground-penetrating radar (GPR) measurements, in possible conjunction with remote-sensing images. However, as in the case of remote-sensing images, these techniques require local calibration as the measured signal is a bulk signal. Sensing results are often limited to qualitative information and geophysical sensing results are ambiguous, making reliable quantification of sensing information still a major challenge (Werban et al., 2013).

Indeed, geophysical surveys have mainly resulted in delineating within-field zones (Lamb et al., 2005; Taylor et al., 2009; Costantini et al., 2010; André et al., 2012; Martini et al., 2013; Priori et al., 2013a, b), rather than predicting soil properties, such as clay content (Rodríguez-Pérez et al., 2011; Andrenelli et al., 2013), extractable Na$^+$ and Mg$^{2+}$ contents (Rodríguez-Pérez et al., 2011), or soil moisture (Brillante et al., 2014). Apparent electrical conductivity (ECa) values are “affected by various soil properties in a complex manner and it is difficult to discriminate the weight that each soil parameter has on the final apparent measured ECa” (Martini et al., 2013) so that the Pearson’s correlation coefficient is often not significantly high between ECa and soil parameters such as clay content or gravimetric water content. However, Brillante et al. (2014) state that, when soil characteristics are available, it is possible to take them into account in a multiple adaptive regression spline model to build a pedotransfer function for predicting soil moisture from ECa with reduced error (± 2 % vol.).

3.3.2 Canopy and grape proxy measurements

In addition to field reflectance measurements on leaves to define spectral indices of water status (e.g. Rodríguez-Pérez et al., 2007), several field sensors have been developed in the last decade not only for characterizing canopy and vigour – for instance, with Crop Circle® passive reflectance sensors and active sensors (e.g. Stamatiadis et al., 2010) and Greenseeker® reflectance sensors computing NDVI values in real time (e.g. Mazetto et al., 2010) or ground-based lidar scanner for LAI estimation (Arnó et al., 2013) – but also for measuring grape quality parameters including using the Multiplex® portable sensor (Ben Ghozlen et al., 2010; Bramley et al., 2011b; Baluja et al., 2012; Agati et al., 2013). In particular, both fluorescence-based anthocyanin and flavonol indices originating from this sensor showed a high potential for monitoring technological maturity, according to the recent findings by Agati et al. (2013), in Sangiovese and Vermentino varieties respectively.

3.3.3 The issue of big-data handling and the statistical processing of the varied spatial data collected

In addition to remote and proxy data collected from distinct sensors, the use of mobile devices with multitag technologies (Cunha et al., 2010; Lvusii et al., 2011) facilitates the recording of a great wealth of data. These numerous spatial data have stimulated new developments in both software and hardware, jointly with statistical processing which stems from geostatistics, image pattern recognition and satellite image processing and which includes machine learning. However, the most common pattern adopted for within-field spatial data and observed for ~ 40 of the studies in terroir-related research carried out in the last decade (Table 3) relied on geostatistical analysis, as emphasized by Baveye and Laba (2015). Considering the target parameter as a random property following a random process with an assumption of stationarity (i.e. there is the same degree of variation from
place to place), Matheron (1962, 1965) formalized the approach to predict target properties from spatially correlated sample data through the computation of the semi-empirical variogram, to which are fitted a number of standard parametric models (Oliver and Webster, 2014). “Kriging is a generic term for a range of least-squares methods to provide the best linear unbiased predictions in the sense of minimum variance”, through solving a set of linear equations (the kriging system) from the fitted variogram function and the available data (Oliver and Webster, 2014). Ordinary kriging based on primary spatial information such as yield or ECa is the most popular method used in terroir-related studies (Table 3), though more sophisticated spatial models using ancillary spatial information have also been built, such as block co-kriging with a hyperspectral image (Lagacherie et al., 2012) or factorial kriging of several soil variables and ECa (Morari et al., 2009). To single out NTU-based viticultural terroir units on the province scale (1:125 000 scale), Priori et al. (2014) combined a multivariate and geostatistical approach showing the variability of the soilscape within the DOC and DOCG territories in Italy. A first principal component analysis (PCA) was performed to relate climate, pedoclimate and morphometric features to the viticultural data, and a second PCA linked the main soil features with viticultural data. The two PCAs revealed which environmental features were better related to the viticultural parameters of the experimental farms. Several geostatistical models (Castignano et al., 2009) were then used to spatialize the selected environmental features: (i) regression kriging to interpolate rooting depth; (ii) simple kriging with varying local means, to interpolate coarse fragments and redoximorphic mottle depth; and (iii) multicollocated simple co-kriging with a varying local mean to interpolate AWC, clay and sand content. Finally, a k-means cluster analysis was performed in the viticultural areas, using the selected variable maps (mean annual temperature, mean annual precipitation, mean annual soil temperature, elevation, clay, sand, coarse fragment content, available water capacity, rooting and redoximorphic mottle depths) to determine the NTU-based viticultural terroir units.

Table 3. Use of geostatistics in the zoning studies carried out over the 2002–2013 period (see Fig. 2).

<table>
<thead>
<tr>
<th>Use of geostatistics</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>No geostatistics</td>
<td>87</td>
</tr>
<tr>
<td>Ordinary kriging</td>
<td>15</td>
</tr>
<tr>
<td>Geostatistics but unexplained</td>
<td>8</td>
</tr>
<tr>
<td>Block kriging</td>
<td>6</td>
</tr>
<tr>
<td>Further use of variogram attributes</td>
<td>5</td>
</tr>
<tr>
<td>Factorial, co-kriging, block co-kriging</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend: N – number of papers

The map results obtained from digital terroir zoning performed at regional scales over some thousands of square kilometres lead to the need for a better understanding of the issue of the relevant scales for defining and managing terroirs. It is important to address the usefulness of both spatial and temporal resolutions that provide insights into terroir zoning according to the aim of the research or management practice. Studies need to examine the nature of within-field zones and the regional terroir units as the relationship between the number of map units and the surveyed area is log-linear (Fig. 5).

The underlying motivations for detailed assessments of the within-field spatial variation of yield, biomass and soil properties are related to the variable-rate application of inputs and selective harvesting at parcel level (Arnó et al., 2012; Unamunzaga et al., 2014). However, considering the within-field scale only may be questionable in the case of highly parcelled vineyards of less than 1 ha each, such as in European countries with secular viticulture. More than ever, the issue of information synthesis and spatial scale is at the very heart of the spatial modelling of terroir (Vaudour, 2002). Considering a whole 90 ha vineyard composed of 27 contiguous fields, Sastre et al. (2013) showed that a per-field, within-field study would have resulted in missing the spatial trend due to slope. Therefore, the usefulness of the multiple-field approach becomes one of a “whole-vineyard” or regional approach. Such issues similarly arise when attempting to predict the vine water status from a set of leaf and stem predawn water potential (PLWP/SWP) or midday (MWP) measurements, which are very time-consuming, require accurate methods to collect with a pressure chamber (Scholander et al., 1965) and should be made at several fields managed by the vineyard operation. Using PLWP (Acevedo-Opazo et al., 2008a, b, 2010b) or MWP (Acevedo-Opazo et al., 2010a, 2013) measurements, Acevedo-Opazo et al. (2008a, b, 2010a, b, 2013) devised a linear model applicable at the within-field level but requiring a time-consuming calibration set; in the case of PLWP, it corresponded to rainfed vineyards with high water stress, while in the case of MWP, it
was aimed at scheduling irrigation. A similar approach using δ¹³C measurements as ancillary variables enabled the extrapolation of stem water potentials for a rainfed vineyard with moderate water stress (Herrero-Langreo et al., 2013). These approaches may be transferable to a whole-vineyard scale (~29 km²), according to Baralon et al. (2012), who constructed an important measurement database (58 fields monitored in all) over the course of three consecutive vintages. This approach considered a stratified sampling based on soil types, which is most effective when water restriction is high (Taylor et al., 2010). However, several limitations hinder its practical application, namely those due to spatial sampling optimization and the improvement of the temporal resolution of the model, using real-time monitoring sensors (such as sap flow sensors) (Herrero-Langreo et al., 2013). According to farmers, a model should be capable of predicting water stress at least 2 weeks before severe irreversible water stress damage occurs (J. C. Viaud, personal communication, 2014).

Arnó et al. (2012) stated that overall within-field variability of grape yield and quality raises important questions concerning whether site-specific crop management could be used in vineyards. Problems arise, in particular, when looking for causes of this variability, especially those related to the presence of soil carbonates, which may lead to Mn deficiencies, with deleterious effects on grape colour. Another problem pointed out by Baveye and Laba (2015) and related to N or P manuring is the frequent possibility that P or N deficiency in a management zone may be due to a higher leaching rate in the area, leading to an increased rather than decreased risk of groundwater contamination if more fertilizer is applied in this management zone.

3.4 Modelling and depicting climate on the region-to-vineyard scale

Another growth area in terroir zoning studies is the development of spatial climate-data products. Historically, a region’s climate and suitability for viticulture were assessed via climate station analyses, which seldom depict the spatial variation of climate at actual or prospective vineyard sites within wine-producing regions (Jones et al., 2010). As a result, reference vineyard networks were developed within regions to better capture the spatial climate characteristics (e.g. Jones and Davis, 2000). However, the low network density even in reference vineyard networks does not account for the range in mesoclimates found within regions. To overcome these issues, spatial climate-data products providing robust, validated and more spatially appropriate climate data have been developed through the interpolation of existing long-term, quality-controlled data sources. Numerous techniques, such as kriging and smoothing splines, have been used to produce interpolated surfaces from hundreds to thousands of stations containing valuable meteorological inputs. The results are spatial climate products on daily or monthly timescales and on a range of spatial and temporal scales such as Daymet (Thornton et al., 1997), PRISM (Parameter-elevation Relationships on Independent Slopes Model) (Daly et al., 2008) and WorldClim (Hijmans et al., 2005). Most of these approaches use elevation data (digital elevation data) and station climate data to calculate a climate-elevation regression for each grid cell, and stations entering the regression are assigned weights based primarily on the physiographic similarity of the station to the grid cell (Daly et al., 2008). These models attempt to account for location, elevation, coastal proximity, aspect, vertical differences in atmospheric layers and orographic effects, although they can vary in the number and complexity of the factors involved. Validation procedures have shown that these products are generally robust on the scales for which they have been developed (Daly et al., 2008) and even at sub-grid resolutions, showing accuracy in regions characterized by sparse station data coverage, large elevation gradients, rain shadows, inversions, cold air drainage and coastal effects.

Using these new gridded climate-data sets, previous studies have examined viticulture region climate characteristics at various resolutions, including in 18 wine regions in Europe (1 km; Jones et al., 2009), 50 PDOs and sub-PDOs in Portugal (1 km; Jones and Alves, 2012), 35 PGI’s and PDOs in Greece (1 km; Anderson et al., 2014), 135 American Viticultural Areas in the western United States (400 m; Jones et al., 2010), 63 Geographical Indications in Australia (500 m; Hall and Jones, 2010) and 21 wine regions in New Zealand (500 m; Anderson et al., 2012) and providing more holistic measures to help understand the range of climates within viticulture regions. Various climate parameters such as heat accumulation indices, frost timing, evapotranspiration and dryness indices are often used along with mapping and spatial summaries over delimited winegrowing regions, ultimately helping to define the climate component of terroir over time and space.

Much work has been done examining the likely impacts of climate change on water and/or nitrogen dynamics through models, such as Lebon’s (adapted from the models in Riou et al. 1989, 1994; Lebon et al., 2003) Lin and Host’s (Costantini et al., 2009), Soil and Water Assessment Tool (SWAT) (Martínez-Casasnovas et al., 2013; Ramos and Martínez-Casasnovas, 2014) and soil–water–atmosphere–plant model (SWAP) (Bonfante et al., 2011) hydropedological models that aim to simulate the dynamics in seasonal soil water balance. Kersebaum’s model was proposed to simulate nitrogen dynamics (Nendel and Kersebaum, 2004), while the Simulateur multiDisciplinaire pour les Cultures Standard (STICS) model simulates crop growth, soil water and nitrogen balances driven by daily climatic data (Brisson et al., 2009); the Water baLance for Intercropped Systems (WaLIS) model simulates water partitioning in intercropped vineyards (Celette et al., 2010). WaLIS was also used to quantify the effects of water deficit and nitrogen stress on yield components (Guilpart et al., 2014). To model the seasonal pattern of evaporation from a grassed Mediterranean vineyard, Montes
et al. (2014) recently devised a soil–vegetation–atmosphere–transfer (SVAT) model coupling an evaporation formulation together with a reservoir-type soil water balance model. Attempts have also been made to use micromorphology to characterize and monitor soil internal drainage of vineyards and olive tree groves (Costantini et al., 2006). Bonfante et al. (2011) have integrated the outputs of the SWAP model with a set of regional spatial data in order to map crop water stress indices together with soil map units, bioclimatic indices and potential radiation onto terroirs with simulated crop water status. However, scale issues need to be further addressed for both terroir zoning and other applications, such as the mapping of water stress. In vineyards, micro-variations in weather and climate often produce the greatest risk (e.g. frost or freeze zones, heat stress areas), and to truly address climate change we will need finer scales to assess the potential impacts (Quénol and Bonnardot, 2014).

4 Outlook: terroir sustainability assessment and the design of new preservation practices

The above-mentioned modelling approaches of terroir or terroir components with the aim of both spatially and temporally updating information lead to certain considerations in an emerging and complex study area: the sustainability assessment of terroirs. Some recent zoning studies using geospatial technologies have addressed this issue in terms of erosion (Table 2). Terroir sustainability started to be accounted for in the late 1990s, through some growers unions’ initiatives in both California and Champagne and also through the growing awareness of soil contamination by copper due to the cumulated use of Bordeaux mixture (Vaudour, 2003). Mediterranean viticultural areas are amongst those most exposed and aware of the sustainability issue because of the soil losses due to intense erosional processes (e.g. Le Bissonnais et al., 2007; Martínez-Casanovas et al., 2009, 2013; Novara et al., 2011), which may lead to the destruction of a vineyard field (Fig. 6). Another issue is that of abandonment and land use change due to either urban pressure, aging of farmers or declines in profitability (Fig. 7).

Depletion of soil fertility in general, along with the concomitant problems of weeds, pests and diseases, is the fundamental root cause of low agricultural production on a global level (Tan et al., 2005). Even if grapevines are not demanding with regard to nutrients, they nevertheless require an adequate supply, which may no longer exist in terroirs where the soils are undergoing degradation processes, especially soil losses (Le Bissonnais et al., 2007; Martínez-Casanovas et al., 2009, 2013; Paroissien et al., 2010; Novara et al., 2011; Quiguerez et al., 2014; Chevigny et al., 2014; Lieskovsky and Kenderessy, 2014), nutrient depletion (Ramos and Martínez-Casanovas, 2006), compaction (Lagacherie et al., 2006), salinization and sodization (Clark et al., 2002; Crescimanno and Garofalo, 2006; Crescimanno et al., 2007; Costantini and Lorenzetti, 2013), pesticide runoff and deposition (Landry et al., 2005; Louchart and Voltz, 2007; Lasca et al., 2012; Daouk et al., 2013; Lefrançq et al., 2013) and copper contamination (Pieztrak and McPhail, 2004; Chopin et al., 2008; Komárek et al., 2008; Wightwick et al., 2008; Mirlean et al., 2007, 2009; Rusjan et al., 2007; El Hadri et al., 2012; Fernández-Calviño et al., 2013; El Azzi et al., 2013; Lai et al., 2013). In Burgundy, using vine-stock unearthing–burying measurements (Brenot et al., 2008), Chevigny et al. (2014) estimated that the erosion rate had increased significantly over the last decade and also that the spatial distribution of erosion had changed and was now basically controlled by slope steepness and present-day vineyard chemical weeding and no-tillage management instead of past surface tillage. Using the same method in Languedoc, Paroissien et al. (2010) estimated that the average soil loss reached 10.5 t ha$^{-1}$ year$^{-1}$ and was much higher than the average erosion rates established around 3 t ha$^{-1}$ year$^{-1}$ for the other cultivated soils. The high vulnerability of vineyard soil to erosion may be partly explained by the steep slopes where vineyards are established, but also by the generally low content in organic matter (< 2 %) and the low microbial activity of soils, which leads to a reduced aggregate stability that increases soil crusting and soil erosion (Le Bissonnais et al., 2007). Very poor eroded soils can show low or very low nitrogen content, as a consequence of little soil organic matter. In the Pénèdes viticultural region, Ramos and Martínez-Casanovas (2006) estimated that runoff processes exported significant amounts of nutrients, which represented as much as 8 kg ha$^{-1}$ year$^{-1}$ of N and 6.5 kg ha$^{-1}$ year$^{-1}$ of P. Moreover, the nitrogen deficiency can be enhanced in moderate to severe water stress conditions (Costantini et al., 2013). According to Blavet et al. (2009), chemically weeded vineyards result in the highest runoff rates and soil losses, but the losses can be reduced when the prunings are left on the soil, when straw mulching is used, when rock fragments are left, and when grass intercrops are used. The corollary issue of runoff...
is that, in addition to soil erosion and soil nutrient loss, it also leads to fertilizer and pesticide residue loss to surface waters, depending on the timing of the applied pesticide (Louchart and Voltz, 2007).

In order to mitigate environmental damages and foster soil conservation and restoration, studies over the past decade have focused on the specific effect of one or several soil surface management techniques, such as cover cropping vs chemical weeding or tillage and/or mulching, on soil structural stability (Goulet et al., 2004; Ruiz-Colmenero et al., 2011, 2013), soil loss (Ruiz-Colmenero et al., 2011, 2013; Novara et al., 2011; Lieskovsky and Kenderessy, 2014), pesticide leaching (Landry et al., 2005), soil nutrient and water management, vine growth and yield (Steinwirth and Belina, 2008, 2010; Ripoche et al., 2010, 2011; Novara et al., 2013), soil C dynamics (Steinwirth et al., 2010; Agnelli et al., 2014), and grape quality (Lee and Steinwirth, 2013). As recently described by Ruiz-Colmenero et al. (2013) and Agnelli et al. (2014), a greater organic-matter accumulation is fostered by the presence of the grass cover and the absence of tillage. In the Vosne-Romanée area in Burgundy, Landry et al. (2005) showed that glyphosate and its metabolite (AMPA) leached in greater amounts through a chemically treated bare Calciosol than through a vegetated Calciosol. In an upslope vineyard in the Beaujolais area, Lasac et al. (2012) demonstrated the usefulness of a grass buffer strip on a coarsely textured soil to limit the dispersal of diuron losses by runoff towards surface and subsurface water. Jacobson et al. (2005) studied the leaching of the herbicide diuron jointly with that of copper, through vineyard soils contaminated with copper, and found no direct interaction between the metal and herbicide but interpreted their findings as meaning that Cu was possibly affecting microbial activity, resulting in slight increases in diuron persistence.

Despite the varied environmental problems that viticultural terroirs are facing currently, putting their functioning at risk, the design of new preservation and mitigation practices has just begun to be addressed in the literature of the past decade. Although some methods to globally assess the sustainability of agricultural systems have emerged (Bockstaller et al., 2009), they have seldom addressed the sustainability of the viticultural system (Abbona et al., 2007), not only from the environmental point of view but also with regard to the attractiveness of the landscape, which, in many viticultural areas, adds considerable value to the wine produced and the region in question (Tempesta et al., 2010; Costantini and Barbetti, 2008).

The global water crisis, particularly water scarcity (Hanjra and Qureshi, 2010), that threatens those viticultural areas under semi-arid or arid climates, particularly in the Mediterranean area (Iglesias et al., 2007; Plan Bleu, 2013), questions the relevancy of irrigating, in addition to the degradative effects that this practise may have on soil properties over a long-term period and its high remediation costs (Hajkowicz and Young, 2005). To address the issue of terroir sustainability in the years to come, one of the greatest challenges is the design of efficient soil restoration practices along with crop and/or intercrop management plans, taking into account the possible effects of climate change. This implies a complex multicriteria decision analysis, as attempted by Ripoche et al. (2010), in order to evaluate a range of intercrop management plans. The monitoring of soil quality as potentially obtainable from remote or proxy techniques is likely to identify when soil degradation is occurring and to allow management intervention. Amongst the key biological indicators are soil organic carbon, potentially mineralisable nitrogen and microbial biomass (Riches et al., 2013; Salome et al., 2014; Zornoza et al., 2015), although further research is still needed to identify a suite of biological indicators for viticultural soils. The application of organic amendments is likely to improve soil quality, but its effects are seldom studied, particularly during long-term experiments (Tatti et al., 2012). In rainfed Marchesi Antinori vineyards observed over two consecutive growing seasons, Baronti et al. (2014) suggested that biochar amendment could be used to improve soil water content, but other possible negative effects of changes in surface albedo or the accumulation of polycyclic aromatic hydrocarbons still need to be studied. In contrast, considering a 3-year period in a Valais vineyard (Switzerland), Schmidt et al. (2014) observed only small and mostly non-significant effects of either biochar or biochar-compost amendments. However, over the same duration in a vineyard in Jumilla (Spain), other organic inputs, such as winery and distillery waste composts, induced “an increase in the activity of the soil microorganisms and in the soil macro and micronutrient contents, as well as a slow release of inorganic N” (Bustamante et al., 2011) in a soil characterized by a highly calcareous sandy loam (Torriorthent). When soils are biologically very poor, even organic farming may be not enough to restore soil functionality, at least over a short time period (Costantini et al., 2014). Coll et al. (2011) evaluated the long-term effect of organic viticulture on soil quality in commer-
cial vineyards of Languedoc, where plots which had been organically managed for 7, 11 and 17 years where compared to conventionally managed plots. The results emphasized that a transition period of 7–11 years, depending on the considered indicator, was needed to clearly separate conventional and organic farming. The overall benefits of organic farming were an increase in soil organic matter, potassium content, soil microbial biomass, plant feeding, fungal feeding and nematode densities, while its drawbacks were increased soil compaction and decreased endogeic earthworm density (due to reduced soil porosity), both consequences of the increase in the traffic for tillage and phytosanitary treatments in organic management. The grapevines studied by these authors were not intercropped with grass, and knowledge is actually scarce about the joint long-term environmental effects of the various possible sets of practices, such as cover or intercrop, mulching, mouldboard ploughing and/or tillage depth and frequency, type and quantity of applied organic amendments, and the use of chemical fertilizer.

Further studies should also address the possible reintroduction of agroforestry systems jointly with vineyards, as traditionally practised in Mediterranean regions, such as in Ancient Greece (Vaudour and Boulay, 2013) or in Italy and Provence till the 19th century. Such systems are known to limit water consumption, fertilizers and pest diseases, particularly Botrytis cinerea bunch rot in Portugal (Altieri and Nicholls, 2002), and have positive impacts on phytoseid mite species, known for their ability to control mite pests, as shown in the last decade for vines co-planted with Sorbus domestica L. or Pinus pinea L. in Languedoc (Liguori et al., 2011).

5 Conclusions

Recent studies based either on metabolomics or on the Sr isotopic ratio lead to a strengthening of the assumption that geographical origin does leave a footprint in wines and that both soil and substrate, in interaction with climate and cultural choices, influence the shaping of grapevine phenology and grape and wine quality. Furthermore, the use of the current “omics” technologies seems to confirm the existence of a “microbial terroir” as a key factor in regional variation among wine grapes. Despite the role of soil microbial communities on terroir still being unclear, in the near future the combination of the omics techniques and traditional approaches could give further insights into activity and composition of vine-associated microbes, especially those living on the grape or leaf surface (phyllosphere) and root surfaces (rhizosphere) but also those within the plant tissues (endophytes), and their interactions with the plant and soil.

The differentiation and mapping of viticultural terroirs, in the sense of homogeneous regions of grape and wine quality, need comprehensive spatial modelling of soil, agronomical and climatic properties, including their changes through time. Because of this, a myriad of either remote- or proxy-sensing techniques develop, along with the corollary challenge of processing large quantities of data acquired at a very fine spatial resolution and/or at several spatial resolutions, scales and organizational levels. These techniques in data collection and processing are needed to produce easy-to-update decision maps with associated uncertainties that allow users to make appropriate and timely management decisions. This is a revolution in the spatial management of terroir units, as the managed zones will be updatable and the effects of viticultural and/or soil management practices might be easier to control. The prospect of facilitated terroir spatial monitoring makes it possible to address another great challenge in the years to come: the issue of terroir sustainability and the construction of efficient strategies for assessing and applying adequate viticultural and/or soil practices across numerous scales. These include the design of efficient soil restoration practices along with crop and/or intercrop management plans and/or agroforestry viticultural systems that take into account the possible effects of climate change. Therefore, terroirs are more and more likely to be considered as part of the concept of ecosystem services, as viticultural agro-ecosystems, the services of which need to be constantly evaluated and rationalized.

Acknowledgements. The authors wish to thank the anonymous referees for their constructive comments.

Edited by: A. Cerdà

References

Bustamante, M. A., Said-Pullicino, D., Agulló, E., Andreu, E., Pare-Brisson, N., Launay, M., Mary, B., and Beaudoin, N.: Conceptual
Brillante, L., Bois, B., Mathieu, O., Bichet, V., Michot, D., and Brenot, J., Quiquerez, A., Petit, C., and Garcia, J. P.: Erosion
Bramley, R. G. V., Trought, M. C. T., and Praat, J. P.: Vineyard
Bramley, R. G. V., Ouzman, J., and Thornton, C.: Selective harvest-
Bramley, R. G. V., Ouzman, J., and Boss, P. K.: Variation in vine
Bramley, R. G. V., Ouzman, J., and Thornton, C.: Selective harvesting is a feasible and profitable strategy even when grape and wine production is geared towards large fermentation volumes, Aust. J. Grape Wine R., 17, 298–305, 2011d.
Brenot, J., Quiquerez, A., Petit, C., and Garcia, J. P.: Erosion rates and sediment budgets in vineyards at 1-m resolution based on stock unearting (Burgundy, France), Geomorphology, 100, 345–355, 2008.

www.soil-journal.net/1/287/2015/

De Assis Silva, S., Marçal de Queiroz, D., De Assis De Carvalho Pinto, F., and Terra Santos, N.: Characterization and delimitation of the terroir coffee in plantations in the municipal district of Araponga, Minas Gerais, Brazil, Revista Ciência Agronômica, 45, 18–26, 2014.

