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Abstract—Relaxation is ubiquitous in the practical resolution 

of combinatorial problems. If a valid relaxation of an instance 

has no solution then the original instance has no solution. A 

tractable relaxation can be built and solved in polynomial time. 

The most obvious application is the efficient detection of 

certain unsolvable instances. We review existing relaxation 

techniques in temporal planning and propose an alternative 

relaxation inspired by a tractable class of temporal planning 

problems. Our approach is orthogonal to relaxations based on 

the ignore-all-deletes approach used in non-temporal planning. 

We show that our relaxation can even be applied to non-

temporal problems, and can also be used to extend a tractable 

class of temporal planning problems. 

Temporal planning, relaxation, monotonicity. 

I. INTRODUCTION 

Propositional non-temporal planning consists in finding a 
sequence of actions which transforms an initial state into a 
goal state. Each action can be executed only if a set of 
conditions is satisfied and the effect of its execution is to 
instantaneously change the truth values of a subset of the 
propositional variables describing the state of the world. It is 
well known that propositional planning is PSPACE-
Complete [2]. In temporal planning, actions have a duration, 
and the moments at which conditions must hold or at which 
changes to the values of state variables occur are not 
necessarily simultaneous. Indeed, in the PDDL 2.1 temporal 
framework [17] [10], conditions can be imposed at the 
beginning, at the end or over the whole duration of an action, 
while effects can occur at the beginning or end of the action. 
In this framework, the PSPACE-complete complexity of 
classical planning can be preserved only when different 
instances of the same action cannot overlap; if they can 
overlap, testing the existence of a valid plan becomes an 
EXPSPACE-complete problem [18]. 

II. TEMPORAL PLANNING

We*study temporal propositional planning in a language 
based on the temporal aspects of PDDL2.1. A fluent is a 
positive or negative atomic proposition. As in PDDL2.1, we 
consider that changes to the values of fluents are 
instantaneous but that conditions on the value of fluents may 
be imposed over an interval. An action a is a quadruple 

*
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<Cond(a), Add(a), Del(a), Constr(a)>, where the set of 
conditions Cond(a) is the set of fluents which are required to 
be true for a to be executed, the set of additions Add(a) is the 
set of fluents which are established by a, the set of deletions 
Del(a) is the set of fluents which are destroyed by a, and the 
set of constraints Constr(a) is a set of constraints between the 
relative times of events which occur during the execution of 
a. An event corresponds to one of four possibilities: the
establishment or destruction of a fluent by an action a, or the 
beginning or end of an interval over which a fluent is 
required by an action a. In PDDL2.1, events can only occur 
at the beginning or end of actions, but we extend this 
language so that events can occur at any time provided the 
constraints Constr(a) are satisfied. Note that Add(a) ∩ 
Del(a) may be non-empty. Indeed, it is not unusual for a 
durative action to establish a fluent at beginning of the action 
and destroy it at its end. We can also observe that the 
duration of an action, the time between the first and last 
events of the action, does not need to be explicitly stored. 

We use the notation a → f to denote the event that action 

a establishes fluent f, a → ¬f to denote the event that a 
destroys f, and f |→ a  and  f →| a, respectively, to denote the 
beginning and end of the interval over which a requires the 
condition f. If f is already true (respectively, false) when the 
event a → f (a → ¬f) occurs, we still consider that a 
establishes (destroys) f. We use the notation τ(E) to represent 
the time in a plan at which an event E occurs. For a given 
action a, let Events(a) represent the different events which 
constitute its definition, namely (a → f) for all f in Add(a), 
(a → ¬f) for all f in Del(a), (f |→ a) and (f →| a) for all f in 
Cond(a). The definition of an action a includes constraints 
Constr(a) on the relative times of events in Events(a). As in 
PDDL2.1, we consider that the length of time between 
events in Events(a) is not necessarily fixed and that 
Constr(a) is a set of interval constraints on pairs of events, 
such as τ(f →| a) − τ(f |→ a) ∈ [�, �] for some constants �,�. 
We use [�a(E1,E2), �a(E1,E2)] to denote the interval of 
possible values for the relative distance between events E1,E2 
in action a. A fixed length of time between events E1,E2 can 
be modeled by setting �a(E1,E2) = �a(E1,E2) and open-ended 
intervals by setting �a(E1,E2) = −∞ or �a(E1,E2) = ∞. We now 
introduce two basic constraints that all temporal plans must 
satisfy. In general a plan may contain multiple instances of 
the same action which we can represent by a multi-set A. 

inherent constraints: ∀a∈A, a satisfies Constr(a), i.e. 

∀E1,E2 ∈ Events(a), τ(E1) − τ(E2) ∈ [�a(E1,E2), �a(E1,E2)]. 



contradictory-effects constraints: ∀ai,aj∈A, for all positive 
fluents f ∈ Del(ai) ∩ Add(aj),  τ(ai → ¬f) ≠ τ(aj → f). 

Definition 1. A temporal planning problem <I,A,G> consists 
of a set of actions A, an initial state I and a goal G, where I 
and G are sets of fluents.   

Definition 2. P = <A′,τ>, where A′ is a multi-set of actions 
{a1,...,an} and τ is a real-valued function on Events(A′) (the 
union of the multisets Events(a) for a ∈ A′), is a (temporal) 
plan for the problem <I,A,G> if  
(1) each element of A′ is an instance of an action in A,  
(2) P satisfies the inherent and contradictory-effect 
constraints on A′; and  
when P is executed (i.e. fluents are established or destroyed 
at the times given by τ) starting from the initial state I: 

(3) ∀ai ∈ A′, each f ∈ Cond(ai) is true when it is required,   
(4) all goals g ∈ G are true at the end of the execution of P. 
(5) P is robust under infinitesimal shifts in the starting times 
of actions. 

A plan P is minimal if no subset of P is a valid plan. 

Condition (5) means that we disallow plans which 
require perfect synchronization between different actions. 
This condition can be imposed within PDDL2.1 [11]. We 
require that in all plans fluents are established strictly before 
the beginning of the interval over which they are required. 
The only exception to this rule is when a fluent f is 
established and required by the same action a. We allow the 
possibility of perfect synchronization within an action, which 
means that we can have τ(a → f) = τ(f |→ a). Similarly, 
fluents can only be destroyed strictly after the end of the 
interval over which they are required. The only exception to 
this rule is when a fluent f is required and destroyed by an 
action a, in which case we can have τ(f →| a) = τ(a → ¬f). 

A temporal planning problem <I,A,G> is positive if there 
are no negative fluents in the conditions of actions nor in the 
goal G. It is well known that any planning problem can be 
transformed into an equivalent positive problem in linear 
time [13]. Thus, in this paper, we only consider positive 
temporal planning problems <I,A,G>. By this assumption, G 
and Cond(a) (for any action a) are composed of positive 
fluents. By convention, Add(a) and Del(a) are also 
composed exclusively of positive fluents. The initial state I, 
however, may contain negative fluents. 

III. EU MONOTONE PLANNING

In this section, we introduce the notions of establisher-
uniqueness and monotonicity of fluents. Together, these two 
conditions are sufficient for the existence of a polynomial-
time algorithm for temporal planning [6]. Establisher-
uniqueness is similar to post-uniqueness in SAS+ planning 
[14] restricted to Boolean variables. 

Definition 3. A set of actions A={a1,...,an} is establisher-
unique  (EU) relative to a set of positive fluents S if for all 

i ≠ j, Add(ai) ∩ Add(aj) ∩ S = ∅, i.e. no fluent of S can be 
established by two distinct actions of A. 

If a set of actions is EU relative to the set of sub-goals 
(recursively defined as the minimum set of fluents which 
belong to G or to the conditions of some action which 
establishes a sub-goal) of a problem, then we can determine 
in polynomial time a set of actions which are necessarily 
present in a temporal plan. In general, other actions may be 
required to re-establish fluents which were present in I but 
have been destroyed by another action. There also remains 
the problem of determining how many times each action 
must occur and then scheduling these action-instances in 
order to produce a valid temporal plan. These problems can 
be solved in polynomial time if we also impose monotonicity 
of fluents [6]. 

Definition 4. A fluent f is –monotone if, after being 
destroyed f is never re-established in any temporal plan. A 
fluent f is +monotone if, after having been established f is 
never destroyed in any temporal plan. A fluent is monotone 
if it is either + or −monotone. 

Example 1: In fairly obvious contexts, the fluents alive or 
brand-new are –monotone, whereas the fluents dissolved, 
cooked, graduated, born and extinct are all +monotone.  

If A is a set of actions, we use the notation Del(A) to 
represent the union of the sets Del(a) (∀ a ∈ A). Add(A), 
Cond(A), Constr(A) are defined similarly. The following 
lemma follows trivially from Definition 4. 

Lemma 1. If f ∉ Add(A) ∩ Del(A), then f is both −monotone 
and +monotone.  

We now introduce three other types of constraints. The 
−authorisation (resp, +authorisation) constraint is applied 
only to –monotone (resp, +monotone) positive fluents f, 
whereas the causality constraint is applied to all monotone 
fluents. 

−authorisation constraints on the positive fluent f: for all 
ai≠aj ∈ A, if f ∈ Del(aj) ∩ Cond(ai), then τ(f →| ai)  <  τ(aj → 
¬f); for all ai ∈ A, if f ∈ Del(ai) ∩ Cond(ai), then  τ(f →| ai) 

≤  τ(ai → ¬f). 

+authorisation constraints on the fluent f: ∀ai,aj∈ A, if f∈ 

Del(aj)∩Add(ai), then τ(aj → ¬f) < τ(ai → f). 

causality constraints on the positive fluent f: for all 
ai≠aj ∈ A, if f ∈ (Cond(aj) ∩ Add(ai))\I, then  τ(ai → f) < 
τ(f |→ aj); for all ai ∈ A, if f ∈ (Cond(ai) ∩ Add(ai))\I then 

τ(ai → f) ≤ τ(f |→ ai). 

If A is EU relative to the set of sub-goals, all sub-goals 
are monotone and all sub-goals in I are –monotone, then the 
temporal planning problem <I,A,G> is equivalent to solving 
the STP� (Simple Temporal Problem with disequality 
constraints) composed of the inherent, contradictory-effect, 
authorisation and causality constraints [6], and can hence be 



solved in polynomial time [15]. It is clearly polynomial-time 
to detect whether all actions are EU. On the other hand, the 
very general definition of monotonicity of fluents implies 
that this is not the case for determining whether fluents are 
monotone. Indeed, determining whether a fluent is monotone 
is PSPACE-hard if overlapping instances of the same action 
are not allowed in plans and EXPSPACE-complete 
otherwise [6]. We will return to the detection of 
monotonicity later in this paper. However, this is not an issue 
for the definition of a relaxation, since it is relatively easy to 
construct a relaxed instance in which all fluents are 
monotone. For example, Lemma 1 tells us that eliminating f 
from Del(a) for all a renders f monotone. In the next section 
we describe a stronger form of relaxation which allows us to 
retain the destruction of fluents. 

IV. TEMPORAL RELAXATION

We first show that the standard form of relaxation used in 
propositional planning, consisting of simply ignoring all 
destructions of fluents and then trying to attain the goals by 
successively applying all relaxed actions whose conditions 
are satisfied [1], does not directly generalize to temporal 
planning. An important aspect of temporal planning, which 
is absent from non-temporal planning, is that certain 
temporal planning problems, known as temporally-
expressive problems, require concurrency of actions in order 
to be solved [7]. A typical example of a temporally-
expressive problem is cooking: several ingredients must be 
cooked simultaneously in order to be ready at the same 
moment. A subclass of temporally expressive problems, 
known as temporally-cyclic, require cyclically-dependent 
sets of actions in order to be solved [5].  

A simple example of a temporally-cyclic problem is the 
building of two pieces of software by two different 
subcontractors, each needing to know the specification of the 
other program in order to complete their own program by 
building the interface with the other program. We can model 
this by two durative actions, action A1 (A2) having spec1 
(spec2) as an effect at its beginning and spec2 (spec1) as a 
condition at its end. It is easy to see that neither action can 
occur in a plan without the other and that they must overlap. 
The standard form of relaxation, as described above, would 
not be able to accept either of the two actions since it tries 
one action at a time. Thus, certain proposed relaxations, 
although very useful in guiding heuristic search [9] [8], do 
not produce a valid relaxation for temporally cyclic 
problems. Different solutions exist to get round the problem 
of temporal cycles. For example, there is a polynomial-time 
algorithm to transform a temporally-cyclic problem into an 
equivalent acyclic one [5]. Other transformations have been 
proposed in the literature [16] [3] which also eliminate the 
possibility of temporal cycles, although this was not an 
explicitly-stated aim in the descriptions of these 
transformations: temporal cycles are avoided by 
decomposing durative actions into instantaneous actions 
denoting the start and end of the action. Intermediate 
conditions can also be managed by splitting actions into 
component actions enclosed within an “envelope” action 

[19]. In each case, ignoring deletes in the transformed 
problem is a valid relaxation. 

In this section, we present an alternative form of 
relaxation, inspired by EU monotone planning, consisting of 
an STP� instance which has a solution if the original 
temporal planning instance has a solution. 

By applying the following simple rule until 
convergence we can transform (in polynomial time) any 

temporal planning problem P into a relaxed version P′ 
which is EU relative to the set of sub-goals S: if a sub-goal 
fluent f is established by two distinct actions, then delete f 
from the goal G and from Cond(a) for all actions a. As a 

consequence, f is no longer a sub-goal. Clearly, P′ is a valid 
relaxation of P. From now on we assume the temporal 
planning instance is EU relative to S.  

We denote by Aind the set of actions which have been 
detected as indispensable in all plans [4]. Establisher-
uniqueness implies that we can easily identify many such 
actions, in particular actions which establish sub-goals not 
present in the initial state I [6]. 

We cannot assume in the STP�, which we call TR (for 
Temporal Relaxation), that a single instance of each action 
will be sufficient. For each indispensable action a

 and for 
each event E ∈ Events(a), we introduce two variables 

τfirst(E), τlast(E) representing the times of the first and last 
occurrences of event E in the plan. The constraints of TR 
include versions of the internal, contradictory-effects, 
authorization and causality constraints (which we give 
below) together with the obvious  

intrinsic constraint: ∀a∈A
ind, for all events E ∈ Events(a), 

τfirst(E) ≤ τlast(E).  

We make the assumption that no two instances of the 
same action can overlap, to conserve the PSPACE 
complexity of classical planning [18]. Under this 
assumption, we know that for E1,E2 ∈ Events(a), the first 
occurrences of E1,E2 in a plan correspond to the same 
instance of action a. A similar remark holds for the last 
occurrences of E1,E2. This means that we can apply in TR 
each inherent constraint in Constr(a) independently to the 
values of τfirst(E) and τlast(E) (E ∈ Events(a)). 

inherent constraint: ∀a∈A
ind, ∀ E1,E2 ∈ Events(a),

τfirst(E1) − τfirst(E2) ∈ [�a(E1,E2), �a(E1,E2)] and  

τlast(E1) − τlast(E2) ∈ [�a(E1,E2), �a(E1,E2)].   

The contradictory-effects constraints in TR are as 
follows:  
contradictory-effects constraints: ∀ai,aj∈A

ind, for all positive

fluents f ∈ Del(ai) ∩ Add(aj),  τL1(ai → ¬f) ≠ τL2(aj → f), 
∀L1,L2 ∈ {first,last}. 

For each positive fluent f which is known to be 
−monotone (resp, +monotone), we apply in TR the 



following modified version of the −authorisation constraints 
(resp, +authorisation constraints):  

−authorisation constraints on f: ∀ ai≠aj ∈ Aind, if f ∈ Del(aj)
∩ Cond(ai), then τlast(f →| ai) < τfirst(aj → ¬f); for all 

ai ∈ Aind, if f ∈ Del(ai) ∩ Cond(ai), then  τlast(f →| ai) ≤

τfirst(ai → ¬f). 

+authorisation constraints on f: ∀ai,aj∈ Aind, if f ∈ Del(aj) ∩
Add(ai) , then τlast(aj → ¬f) < τfirst(ai → f). 

We check that every condition and every goal can be 
established, i.e. Cond(Aind) ⊆ I ∪ Add(A) and G ⊆ I\Del(Aind) 
∪ Add(A). If not, we consider that the relaxation TR has no 
solution. We also apply in TR the following causality 
constraints for each positive fluent f. 

causality constraints: ∀ ai≠aj ∈ Aind, if f ∈ (Cond(aj) ∩

Add(ai))\I then τfirst(ai → f) < τfirst(f |→ aj); for all ai ∈ Aind, if

f ∈ (Cond(ai) ∩ Add(ai))\I then  τ first(ai → f) ≤ τ first(f |→ ai). 

We also apply the following goal constraints for each g ∈ G. 

goal constraints: ∀ai,aj∈Aind, if g ∈ Del(aj) ∩ Add(ai), then
τlast(aj → ¬g) < τlast(ai → g).  

Of course, the causality and goal constraints are necessary 
conditions for the existence of a plan only if the temporal 
planning instance is EU relative to (Cond(Aind)\I)  ∪ 
(G∩Del(A)). But this follows from the fact that we assume 
that the instance is EU relative to the set of all sub-goals. 

If for an action a ∈ Aind, all fluents in Add(a) are known 
to be monotone, then only one instance of a occurs in 
minimal plans [6]; hence, for each event E ∈ Events(a), we 
replace the two variables τfirst(E), τlast(E) in the above 
constraints by a unique variable τ(E).  

Clearly, TR is a valid relaxation since the constraints of 
TR must be satisfied by any valid plan. We state this 
formally in the form of a proposition. 

Proposition 1.  Let <I,A,G> be a temporal planning problem 
which is EU relative to its set of sub-goals S. Let Aind ⊆ A be 
a set of indispensable actions, i.e. actions which necessarily 
occur in all plans. If the temporal relaxation TR has no 
solution, then the temporal planning problem <I,A,G> has no 
solution. 

Under assumptions of establisher-uniqueness and 
monotonicity, TR is in fact a solution procedure for the 
tractable class described by Cooper et al. [6]. 

Example 2: We now show that, even in non-temporal 
propositional planning, the temporal relaxation TR can detect 
unsolvable problems. In this example, all actions are 
instantaneous and hence we present it in the form of a non 

temporal planning problem P with initial state I={j,m,d}, 
goal G={g} and the following three actions: 

Buy:    j, m → h, ¬d, ¬m 
Sell:    h → m, ¬h 

Mort2:   d, h → m, ¬d, g 

We can interpret the fluents as follows: j = I have a job, 
m = I have money, d = I am debt-free, h = I own a house, g = 
I have taken out a second mortgage. For example, the action 
Buy is possible only if I have a job and money to put down a 
deposit on a house; the result is that I own a house but I am 
in debt and no longer have money. The goal is to take out a 
second mortgage via the action Mort2. 

This problem has no solution, but this fact is not detected 
by the standard relaxation of non-temporal planning 
problems consisting of ignoring all destructions of fluents. 
To set up TR, we first determine the indispensable actions 
Aind = {Buy, Mort2} easily identified as indispensable by the 
rules given by Cooper et al. [4] since they establish the sub-
goals h and g, respectively, not present in the initial state. 
Observe that Aind is EU relative to the set of sub-goals. The 
STP� TR contains the constraints: τfirst(d →| Mort2) <
τlast(d →| Mort2) and τfirst(d →| Mort2) = τfirst(h |→ Mort2) 
by intrinsic and internal constraints in Mort2; τfirst(Buy → h) 

= τfirst(Buy → ¬d) by an internal constraint in Buy; 
τfirst(Buy → h) < τfirst(h |→ Mort2) by the causality constraint 
on h; τlast(d →| Mort2) < τfirst(Buy → ¬d) by the 
–authorisation constraint, since d is –monotone (by Lemma
1). This set of five constraints has no solution, from which 
we can deduce that P has no solution. This example shows 
that temporal relaxation can be useful even in non-temporal 
planning problems. 

Example 3: We now give a generic example involving the 
choice between two alternatives in which the temporal 
relaxation TR can detect unsolvable problems that cannot be 
detected by ignoring deletes. This simple example consists of 
a non-temporal planning problem with initial state I={f}, 
goal G={g,h} and the following two actions: 

B:   f →  ¬f, g 

C:   f →   ¬f, h 

The fluents have many possible interpretations, 
including: f = I have a packet, g = I have sent the packet to 
Destination1, h = I have sent the packet to Destination2. 
Clearly this problem has no solution, but this is not 
discovered by the ignoring-deletes relaxation (which cannot 
take into account the fact that I no longer have the packet 
once I have sent it somewhere). 

On the other hand, TR detects unsolvability as follows. 
Firstly, note that the problem is establisher-unique, both 
actions are indispensable (since they both establish fluents in 
G\I) and all fluents are both + and −monotone by Lemma 1. 
Since all fluents in Add(B) and Add(C) are monotone, TR 
has a single variable τ(E) for each event E. Since f is 

−monotone, TR contains the two authorisation constraints: 
τ(f → C) < τ(B → ¬f) and τ(f → B) < τ(C → ¬f). TR also 
contains the inherent constraints τ(f → B) = τ(B → ¬f) and 



τ(f → C) = τ(C → ¬f), which  immediately leads to a 
contradiction. 

The above examples show that the EU monotone 
relaxation TR can be stronger than any relaxation based on 
ignoring deletes. To see that ignoring deletes can be stronger 
than EU monotone relaxation, consider a problem in which 
the unique goal g is produced by a unique action a such that 
Cond(a) = {f} where the fluent f is produced by two distinct 
actions b and c. In the EU monotone relaxation, the fluent f is 
deleted from Cond(a), since it is established by two distinct 
actions, and the relaxed version of the problem is 
immediately solvable by a plan containing the single action 
a. Ignoring deletes, on the other hand, can detect the
unsolvability of the original problem in certain cases, for 
example, if Cond(b) and Cond(c) both contain fluents that 
are not in I ∪ Add(A). 

An obvious application of temporal relaxation is the 

detection of indispensable actions [4]. Let P[-a] represent 

the planning problem P without a particular action a. If the 

temporal relaxation of P[-a] has no solution, then we can 

conclude that a is an indispensable action for P. 

In the following sections we investigate other 
applications of temporal relaxation concerning the detection 
of different forms of monotonicity. The basic idea is that if H 
is a hypothesis to be tested and H can be expressed as the 
conjunction of STP� constraints, then we can add H to the 
constraints of the temporal relaxation TR to obtain an STP� 
instance TR[H]: if TR[H] has no solution then H cannot be 
true in any solution to the planning problem. In each case, 
the complexity of solving TR[H] is O(n3) time and O(n2) 
space, where n is the total number of events in the actions in 
A. This follows almost directly from the fact that the set of 
authorisation, inherent, contradictory-effects and causality 
constraints are STP� [15]. An instance of STP� can be solved 
in O(n3+k) time and O(n2+k) space [12], where n is the 
number of variables and k the number of inequations (i.e. 
constraints of the form xj – xi � d). Here, the only inequations 
are the contradictory-effects constraints of which there are at 
most n2, so k=O(n2). 

V. DETECTING MONOTONICITY OF FLUENTS 

The detection of the monotonicity of fluents is essential 
for the recognition of instances of the polytime-solvable 
class of temporal planning problems described by Cooper at 
al. [6]. To detect the +monotonicity of a fluent f it suffices to 
give a proof that f cannot be destroyed in a plan after being 
established. Rules to provide such a proof, based on 
knowledge of the monotonicity of another fluent were given 
by Cooper et al. [6]. In this section, we give a more general 
proof rule which involves solving an STP� for each pair of 
actions a,b such that f ∈ Add(a) ∩ Del(b). To try to prove 
that b cannot destroy f after a establishes f, we set up a 
relaxation TR[Before(a,f,b)] consisting of the temporal 
relaxation TR of the planning problem together with a single 
hypothesis constraint: Before(a,f,b)  =  {τ first(a → f) < 

τ last(b → ¬f)}. 

To detect the −monotonicity of a fluent f we need to 
prove that f cannot be established in a plan after being 
destroyed. In the corresponding STP� TR[After(a,f,b)], the 
hypothesis is:  After(a,f,b)  =  {τfirst(b → ¬f) < τlast(a → f)}. 
Lemma 2. Suppose that the set of actions A is EU. If 
TR[Before(a,f,b)] has no solution for any pair of actions 
a,b ∈ A such that f ∈ Add(a) ∩ Del(b), then f is +monotone. 
If TR[After(a,f,b)] has no solution for any pair of actions a,b 
∈ A such that f ∈ Add(a) ∩ Del(b), then f is −monotone. 

We can extend the polytime-solvable class of temporal 
planning problems described by Cooper et al. [6], using 
temporal relaxation to detect monotonicity of fluents. This 
new bigger class Π is still polytime-solvable. Each temporal 
relaxation can be solved in O(n3) time and O(n2) space, 
where n is the total number of events in the actions in A. The 
number of temporal relaxations to solve, in order to prove 
that a temporal planning problem belongs to Π, is 
proportional to the number of triples (a,f,b) such that a,b ∈ A 

and f ∈ Add(a) ∩ Del(b). The number of pairs (f,b) such that 
b ∈ A and f ∈ Del(b) is bounded above by n. If A is 
establisher-unique, then there is at most one action that a ∈ A 

such that f ∈ Add(a). Therefore, the complexity of 
recognizing Π is O(n4) time and O(n2) space. This can be 
compared with the O(n2) time and O(n) space complexity to 
recognize the subclass of Π defined by simple rules for the 
recognition of monotonicity based on knowledge of the 
monotonicity of only one other fluent [6].  

VI. EXTENDING MONOTONICITY 

In this section we introduce notions which extend the 
notion of monotonicity by considering only minimal plans, 
thus allowing us to define a larger tractable class of temporal 
planning than the class Π described in the previous section.  

Definition 5. A fluent f is –monotone* if, after being 
destroyed f is never re-established in any minimal temporal 
plan. A fluent f is +monotone* if, after having been 
established f is never destroyed in any minimal temporal 
plan. A fluent is monotone* if it is either + or −monotone*. 

Example 4. To give an example of a monotone* fluent 
which is not monotone, consider the following planning 
problem in which all actions are instantaneous:  

Start_vehicle: e → f 
Drive: f → g, ¬f 
Unload: g → h 

with I = {e}, G = {h}. The fluents represent that I have the 
ignition key (e), the engine is on (f), the destination has been 
reached (g) and that the package has been delivered (h). 
There is only one minimal plan, namely Start_vehicle, Drive, 
Unload, but there is also the non-minimal plan Start_vehicle, 
Drive, Start_vehicle, Unload in which the fluent f is 
established, destroyed and then re-established. Hence f is 
−monotone* but not −monotone. 



We make the assumption in the remainder of this section 
that no two instances of the same action can overlap in a 
plan. We cannot hope to detect all monotone* fluents in 
polynomial time since the detection of monotonicity itself is 
PSPACE-complete [6]. However, we will show that many 
monotone* fluents can be detected in polynomial time. We 
begin with a simple lemma to detect certain +monotone* 
fluents. 

Lemma 3. If A is EU, then for all a ∈ A such that Add(a) ∩ 
Cond(A) = ∅, all  f ∈ Add(a) ∩ (G\I) are +monotone*. 

Proof: Any plan must contain an instance of action a since a 
establishes a goal f ∈ G\I and A is EU. Since Add(a) ∩ 

Cond(A) = ∅, all instances of a except the last can be 
deleted without affecting the validity of a plan. Thus a 
minimal plan contains exactly one instance of a. 
Furthermore, no fluent f ∈ Add(a) ∩ (G\I) can be destroyed 
in a plan after being established by this last instance of a. 
Hence f is +monotone*. 

We say that an action-instance a usefully produces a 
fluent h during the execution of a plan if h was false just 
before being established by a. We say that a usefully 
produces the required fluent h if a usefully produces h and 
either h ∈ G or the fluent h is the condition of some action c 

in the plan such that τ(a → h) < τ(h |→ c). We can now state 
the following general proposition. 

Proposition 2. Suppose that the set of actions A is EU 
relative to the set of sub-goals and let a ∈ A be the unique 
action that establishes sub-goal f. (a) If ∀b ∈ A such that f ∈ 
Del(b), there is no minimal plan in which the last instance of 
b destroys f after a establishes f, and such that these instances 
of a and b usefully produce required fluents, then f is 
+monotone*. (b) If ∀b ∈ A such that f ∈ Del(b), there is no 
minimal plan in which the last instance of a establishes f 
after b destroys f, and such that these instances of a and b 
usefully produce required fluents, then f is −monotone*. 

Proof: (a) Let P be a minimal plan in which the last instance 
of b destroys f after a establishes f. Then, by the hypothesis 
of the proposition, either the last instance of b in P or the 
first instance of a in P does not usefully produce a required 
fluent. Hence P cannot be minimal, since we could delete the 
last instance of b or the first instance of a from P to leave 
another valid plan. This contradiction shows that f is 
+monotone*. The proof of case (b) is similar.  

We now give a lemma which allows us to deduce one of 
the hypotheses of Proposition 2 and hence to deduce that a 
fluent f is +monotone* or that it is −monotone*. To simplify 
the expression of the lemma, we suppose that there is a goal-
achieving action aG that must be executed at the end of all 
plans and such that Cond(aG)=G. This simply means that 
goal fluents h do not need to be treated as special cases. 

Lemma 4. Suppose that A is EU relative to the set of sub-
goals S and let a ∈ A be the unique action that establishes 
fluent f ∈ S. Let b ∈ A be such that f ∈ Del(b).  

(a) Let h ∈ S ∩ Add(a) and h′ ∈ S ∩ Add(b). If any of the 
following conditions hold, then there is no minimal plan P in 
which the last instance of b usefully produces the required 
fluent h′ and destroys f after the first instance of a usefully 
produces the required fluent h and establishes f: 
(1) either one of h, h′ belongs to I and is −monotone*. 
(2) for all actions c,c′ such that h ∈ Cond(c), h′ ∈ Cond(c′), 
TR[Before(a,f,b) ∪ For(a,first,h,c) ∪ For(b,last,h′,c′)] has no 

solution, where For(x,L,h,c) = {τL(x→ h) < τlast(h |→ c)}. 
(3) h′ is monotone* and for all actions c,c′ such that h ∈ 

Cond(c) and h′ ∈ Cond(c′), TR[Before(a,f,b) ∪ Once(b) ∪ 
For(a,first,h,c) ∪ For(b,last,h′,c′)] has no solution, where 
Once(x) = {τfirst(E) = τlast(E) | E ∈ Events(x)}.  

(b) Let h ∈ S ∩ Add(a) and h′ ∈ S ∩ Add(b). If any of the 
following conditions hold, then there is no minimal plan P in 
which the last instance of a usefully produces the required 
fluent h and establishes f after the first instance of b usefully 
produces the required fluent h′ and destroys f:   
(1) either one of h, h′ belongs to I and is −monotone*. 

(2) for all actions c,c′ such that h ∈ Cond(c), h′ ∈ Cond(c′), 
TR[After(a,f,b) ∪ For(a,last,h,c) ∪ For(b,first,h′,c′)] has no 
solution. 
(3) h is monotone* and for all actions c,c′ such that h ∈ 

Cond(c) and h′ ∈ Cond(c′), TR[After(a,f,b) ∪ Once(a) ∪ 
For(a,last,h,c) ∪ For(b,first,h′,c′)] has no solution. 

Proof: (a) We suppose that A is EU relative to S, f ∈ S ∩ 
Add(a) ∩ Del(b), h ∈ S ∩ Add(a) and h′ ∈ S ∩ Add(b). 
Suppose that in a minimal plan P the last instance of the 
action b destroys f after f is established by a, that the first 
instance of a usefully produces the required fluent h and the 
last instance of b usefully produces the required fluent h′. We 
will show, in each case, that there is a contradiction. 
(1) If h ∈ I and h is −monotone*, then by the definition of 

−monotone*, no action can usefully produce h in P. A 
similar argument holds for h′. 
(2) If TR[Before(a,f,b) ∪ For(a,first,h,c) ∪ For(b,last,h′,c′)] 

has no solution for all actions c,c′ such that h ∈ Cond(c), h′ 
∈ Cond(c′), then it cannot be the case that the first instance 
of a usefully produces the required fluent h in P and the last 
instance of b usefully produces the required fluent h′ in P. 

(3) If h′ is monotone*, then only the first instance of b can 
usefully produce h′ in P. Hence there can only be one 
instance of action b in P, since we assume that the last 
instance of b usefully produces h in P. The result follows 
from the same argument as in case (2) with the extra 
constraint Once(b) that there is only one instance of b in P. 
The proof of part (b) of the lemma is similar. 

Example 5. Consider the following EU temporal planning 
problem in which all actions are instantaneous:  

a:   p → f, e    
b:   p, e → g, ¬f 

c:   f → p 

with I={f} and G={g}. One interpretation of these actions 
and fluents is: Have_Engine_checked (a), Drive (b), 



Take_Petrol (c), Have_petrol (p), At_garage (f), Engine_OK 
(e), Arrived (g). The fluent f is not monotone since there is a 
plan c, a, b, a (in which the last action is clearly redundant) 
which establishes, destroys, and establishes f. However, f is 
−monotone* since in a minimal plan action a cannot usefully 

produce a fluent h ∈ Add(a) = {f, e} after action b has 
destroyed f. In the case h=f, this is by Lemma 4(b)(2): c is 
the only action such that f ∈ Cond(c), and TR[After(a,f,b) ∪ 
For(a,last,f,c)] has no solution. (Note that since g, p are 
monotone by Lemma 1, we impose in TR that the actions b 
and c, which establish g and p, occur only once). In the case 
h=e, this is by Lemma 4(b)(3) since e is monotone* (by 
Lemma 1) and TR[After(a,f,b) ∪ Once(a)] has no solution. 

The notions +monotone* and –monotone* allow us to 
define a tractable class of temporal planning problems 
which is considerably larger than the EU monotone class 
given by Cooper et al. [6]. We state without proof the 
following theorem, which follows immediately by the same 
argument as in the proof of the equivalent result for 
monotone (instead of monotone*) fluents [6], but this time 
considering only the minimal plans of a temporal planning 
problem. 

Theorem 1. Given a positive temporal planning problem 
<I,A,G>, define S′ recursively to be the minimum set of 
fluents not in I which belong to G or to the conditions of 
some action which establishes a fluent of S′. Let Aind ⊆ A be 
the set of actions which establish at least one fluent in S′. 
Suppose that all constraints in Constr(Aind) are interval 
constraints, the set of actions Aind is establisher-unique 
relative to S′, each fluent in Cond(Aind) ∪ G is monotone* 
and each fluent in I ∩ (Cond(Aind) ∪ G) is –monotone*. Let 
TR* be a version of TR in which the +authorisation 
(−authorisation) constraints are applied to +monotone* 
(−monotone*) fluents. Then <I,A,G> has a temporal plan P 
if and only if 
(1) G ⊆ (I\Del(Aind)) ∪ Add(Aind)  
(2) Cond(Aind) ⊆ I ∪ Add(Aind) 
(3) all g ∈ G ∩ Del(Aind) ∩ Add(Aind) are +monotone* 
(4) TR* has a solution. 

Theorem 2. Let Π* be the class of positive temporal 
planning problems <I,A,G> in which all constraints in 
Constr(A) are interval constraints, A is EU, all fluents in 
Cond(A) ∪ G are monotone* and all fluents in I ∩ (Cond(A) 
∪ G) are −monotone*, where monotonicity* of all fluents 
can be deduced from Lemmas 1, 2, 3 and 4. Then Π* is 
tractable. 
Proof: To prove tractability we have to give polynomial-
time algorithms for both resolution and detection of temporal 
planning problems from the class Π*.  

We consider first the resolution of a temporal planning 
problem <I,A,G> in Π*. Since A is establisher unique, in 
linear time we can find the set Aind of actions described in the 
statement of Theorem 1. By establisher-uniqueness, all 
actions in Aind are indispensable. We can check conditions 
(1)-(3) of Theorem 1 in linear time. We can then solve TR*, 
and hence <I,A,G>, in O(n3) time and O(n2) space [12], 
where n is the total number of events in the actions in A. 

The number of temporal relaxations to solve, in order to 
prove that a temporal planning problem belongs to Π*, is 
proportional to the number of septuplets (a,f,b,c,h,c′,h′) such 

that a,b,c,c′ ∈ A, f ∈ Add(a) ∩ Del(b), h ∈ Add(a) ∩ 
Cond(c) and h′ ∈ Add(b) ∩ Cond(c′). Assuming A is 
establisher-unique, the number of triples (a,f,b) satisfying 
a,b ∈ A and f ∈ Add(a) ∩ Del(b) is bounded above by n. The 

number of pairs (c,h) such that c ∈ A and h ∈ Cond(c) is 
again bounded above by n. Therefore, the number of 
relaxations to be solved is O(n3). Each temporal relaxation 
can be solved in O(n3) time and O(n2) space [12]. It follows 
that the complexity of recognizing Π* is O(n6) time and 
O(n2) space. 

VII. EXAMPLE OF EU MONOTONE* PLANNING

Several examples of temporal planning problems from 
the chemical or pharmaceutical industries fall into the class 
of EU monotone problems [6]. However, as Examples 4 and 
5 have shown, even in simple problems, fluents may be 
monotone* rather than monotone. We conclude this paper 
with the description of a planning domain in which we need 
to detect monotone* fluents in order to prove tractability.  

Fluid(c)

¬Fluid(c) 

MAKE-AND-TIME-CONCRETE(c)[30] 

CLEAN(m)[4] 

Fluid(c) 

LOAD(m,c)[5] 

DRIVE(m,s)[6] 

UNLOAD(m,c,s)[7] 

Empty(m) 

Empty(m) 

At-factory(m)

¬At-factory(m) At(m,s) 

Fluid(c) 

At(m,s) 

On(m,c) 

On(m,c) 

At-factory(m) 

¬Empty(m) 

USE(c)[4] 

Fluid(c) 

Used(c) 

Delivered(m,c,s) 

At-factory(m) 

Available(c) 

¬Available(c) 

¬On(m,c) Delivered(m,c,s) 



The Temporal Cement Factory planning domain allows 
us to plan concrete mixing, delivery and use. An action of 
duration 30 time units makes and times a batch of concrete 
which is fluid from time unit 3 to 30 (after which it sets). At 
the same time, a concrete-mixer must be cleaned, in order for 
the concrete to be loaded, then driven to a building site, 
where it is unloaded. The concrete must then be used while it 
is still fluid. This set of actions A (illustrated in the plan 
shown in the figure) are all indispensable and the set of 
fluents appearing in the figure is the set S of sub-goals. The 
initial state I and the goal G are given by: 

I = {At-factory(m), Available(c)}, 

G = {Delivered(m,c,s), Used(c)} 

For all ai ≠ aj ∈ A, we have Add(ai) ∩ Add(aj) ∩ S = ∅. 
Hence, by Definition 3, the set of actions A is EU relative to 
S. We can immediately remark that no actions delete the 
fluents Used(c), Delivered(m,c,s) and At(m,s), and no 
actions add the fluents Available(c) and At-factory(m). Thus, 
by Lemma 1, these fluents are both −monotone and 
+monotone. By Lemma 2, we can  deduce that On(m,c) is 
–monotone since the temporal relaxation 
TR[After(LOAD(m,c),On(m,c),UNLOAD(m,c,s))] has no 
solution. Similarly, Fluid(c) is also –monotone by Lemma 2. 
We can deduce that Empty(m) is –monotone* by Lemma 
4(b)(2), because the relaxation detects that a=CLEAN(m) 
cannot establish f=Empty(m), after b=LOAD(m, c) destroys 
Empty(m), and also usefully establish h=Empty(m) for c= 
LOAD(m, c). This is because in TR there is only one 
instance of LOAD(m, c) since Add(LOAD(m))={On(m,c)} 
and, as we have just seen, On(m,c) is monotone. We can now 
apply Theorem 1, since A is EU, all fluents are monotone* 
and all fluents in I are –monotone*. It follows that TR* is a 
solution procedure for this problem. The problem <I,A,G> 
has a solution-plan, found by TR*, shown in the figure. We 
represent non-instantaneous actions by a rectangle. The 
duration of an action is given in square  
brackets after the name of the action. Conditions are written 
above an action, and effects below. Causality constraints are 
represented by bold arrows, and –authorisation constraints by 
dotted arrows. This example can be extended to the case in 
which there are several sites, several batches of concrete and 
several mixers. It is monotone and remains EU provided that 
the goals (via the fluents Delivered(m,c,s)) specify which 
mixer m is to deliver which batch c to which building site s. 

As another example involving monotone* fluents, 
consider the example given in a previous paper [6] involving 
the synthesis of a chemical using catalysers, where it was 
assumed that all catalysers are destroyed during the chemical 
reaction. However, if any of the catalysers are not destroyed 
by the chemical reaction they catalyze, then they can 
theoretically be used many times. Nevertheless, in a minimal 
plan, a second utilisation of a catalyser is not necessary and 
the rules given in Section V allow us to detect that all fluents 
are monotone*. 

VIII. CONCLUSION

We have given a novel form of relaxation which can be 
used in temporal planning. It can detect unsolvable problems 
which cannot be detected by relaxations based on ignoring 
all destructions of fluents. It has applications in detecting 
indispensable actions and monotone fluents. This led to an 
extended notion of mononicity which allowed us to define a 
large tractable class of temporal planning problems whose 
recognition algorithm is based on our temporal relaxation. 
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