
HAL Id: hal-01147301
https://hal.science/hal-01147301

Submitted on 30 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relaxation of Temporal Planning Problems
Martin Cooper, Frédéric Maris, Pierre Régnier

To cite this version:
Martin Cooper, Frédéric Maris, Pierre Régnier. Relaxation of Temporal Planning Problems. Inter-
national Symposium on Temporal Representation and Reasoning - TIME 2013, Sep 2013, Pensacola,
United States. pp. 37-44. �hal-01147301�

https://hal.science/hal-01147301
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12548

To link to this article : DOI :10.1109/TIME.2013.28
URL : http://dx.doi.org/10.1109/TIME.2013.28

To cite this version : Cooper, Martin C. and Maris, Frédéric and
Régnier, Pierre Relaxation of Temporal Planning Problems. (2013) In:
International Symposium on Temporal Representation and Reasoning -
TIME 2013, 26 October 2013 - 28 October 2013 (Pensacola, United
States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12548/
http://dx.doi.org/10.1109/TIME.2013.28
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Relaxation of Temporal Planning Problems *

Martin C. Cooper Frédéric Maris Pierre Régnier

IRIT
University of Toulouse

Toulouse, France
{cooper, maris, regnier}@irit.fr

Abstract—Relaxation is ubiquitous in the practical resolution

of combinatorial problems. If a valid relaxation of an instance

has no solution then the original instance has no solution. A

tractable relaxation can be built and solved in polynomial time.

The most obvious application is the efficient detection of

certain unsolvable instances. We review existing relaxation

techniques in temporal planning and propose an alternative

relaxation inspired by a tractable class of temporal planning

problems. Our approach is orthogonal to relaxations based on

the ignore-all-deletes approach used in non-temporal planning.

We show that our relaxation can even be applied to non-

temporal problems, and can also be used to extend a tractable

class of temporal planning problems.

Temporal planning, relaxation, monotonicity.

I. INTRODUCTION

Propositional non-temporal planning consists in finding a
sequence of actions which transforms an initial state into a
goal state. Each action can be executed only if a set of
conditions is satisfied and the effect of its execution is to
instantaneously change the truth values of a subset of the
propositional variables describing the state of the world. It is
well known that propositional planning is PSPACE-
Complete [2]. In temporal planning, actions have a duration,
and the moments at which conditions must hold or at which
changes to the values of state variables occur are not
necessarily simultaneous. Indeed, in the PDDL 2.1 temporal
framework [17] [10], conditions can be imposed at the
beginning, at the end or over the whole duration of an action,
while effects can occur at the beginning or end of the action.
In this framework, the PSPACE-complete complexity of
classical planning can be preserved only when different
instances of the same action cannot overlap; if they can
overlap, testing the existence of a valid plan becomes an
EXPSPACE-complete problem [18].

II. TEMPORAL PLANNING

We*study temporal propositional planning in a language
based on the temporal aspects of PDDL2.1. A fluent is a
positive or negative atomic proposition. As in PDDL2.1, we
consider that changes to the values of fluents are
instantaneous but that conditions on the value of fluents may
be imposed over an interval. An action a is a quadruple

*
 This work is supported by ANR Project ANR-10-BLAN-0210.

<Cond(a), Add(a), Del(a), Constr(a)>, where the set of
conditions Cond(a) is the set of fluents which are required to
be true for a to be executed, the set of additions Add(a) is the
set of fluents which are established by a, the set of deletions
Del(a) is the set of fluents which are destroyed by a, and the
set of constraints Constr(a) is a set of constraints between the
relative times of events which occur during the execution of
a. An event corresponds to one of four possibilities: the
establishment or destruction of a fluent by an action a, or the
beginning or end of an interval over which a fluent is
required by an action a. In PDDL2.1, events can only occur
at the beginning or end of actions, but we extend this
language so that events can occur at any time provided the
constraints Constr(a) are satisfied. Note that Add(a) ∩
Del(a) may be non-empty. Indeed, it is not unusual for a
durative action to establish a fluent at beginning of the action
and destroy it at its end. We can also observe that the
duration of an action, the time between the first and last
events of the action, does not need to be explicitly stored.

We use the notation a → f to denote the event that action

a establishes fluent f, a → ¬f to denote the event that a
destroys f, and f |→ a and f →| a, respectively, to denote the
beginning and end of the interval over which a requires the
condition f. If f is already true (respectively, false) when the
event a → f (a → ¬f) occurs, we still consider that a
establishes (destroys) f. We use the notation τ(E) to represent
the time in a plan at which an event E occurs. For a given
action a, let Events(a) represent the different events which
constitute its definition, namely (a → f) for all f in Add(a),
(a → ¬f) for all f in Del(a), (f |→ a) and (f →| a) for all f in
Cond(a). The definition of an action a includes constraints
Constr(a) on the relative times of events in Events(a). As in
PDDL2.1, we consider that the length of time between
events in Events(a) is not necessarily fixed and that
Constr(a) is a set of interval constraints on pairs of events,
such as τ(f →| a) − τ(f |→ a) ∈ [�, �] for some constants �,�.
We use [�a(E1,E2), �a(E1,E2)] to denote the interval of
possible values for the relative distance between events E1,E2
in action a. A fixed length of time between events E1,E2 can
be modeled by setting �a(E1,E2) = �a(E1,E2) and open-ended
intervals by setting �a(E1,E2) = −∞ or �a(E1,E2) = ∞. We now
introduce two basic constraints that all temporal plans must
satisfy. In general a plan may contain multiple instances of
the same action which we can represent by a multi-set A.

inherent constraints: ∀a∈A, a satisfies Constr(a), i.e.

∀E1,E2 ∈ Events(a), τ(E1) − τ(E2) ∈ [�a(E1,E2), �a(E1,E2)].

contradictory-effects constraints: ∀ai,aj∈A, for all positive
fluents f ∈ Del(ai) ∩ Add(aj), τ(ai → ¬f) ≠ τ(aj → f).

Definition 1. A temporal planning problem <I,A,G> consists
of a set of actions A, an initial state I and a goal G, where I
and G are sets of fluents.

Definition 2. P = <A′,τ>, where A′ is a multi-set of actions
{a1,...,an} and τ is a real-valued function on Events(A′) (the
union of the multisets Events(a) for a ∈ A′), is a (temporal)
plan for the problem <I,A,G> if
(1) each element of A′ is an instance of an action in A,
(2) P satisfies the inherent and contradictory-effect
constraints on A′; and
when P is executed (i.e. fluents are established or destroyed
at the times given by τ) starting from the initial state I:

(3) ∀ai ∈ A′, each f ∈ Cond(ai) is true when it is required,
(4) all goals g ∈ G are true at the end of the execution of P.
(5) P is robust under infinitesimal shifts in the starting times
of actions.

A plan P is minimal if no subset of P is a valid plan.

Condition (5) means that we disallow plans which
require perfect synchronization between different actions.
This condition can be imposed within PDDL2.1 [11]. We
require that in all plans fluents are established strictly before
the beginning of the interval over which they are required.
The only exception to this rule is when a fluent f is
established and required by the same action a. We allow the
possibility of perfect synchronization within an action, which
means that we can have τ(a → f) = τ(f |→ a). Similarly,
fluents can only be destroyed strictly after the end of the
interval over which they are required. The only exception to
this rule is when a fluent f is required and destroyed by an
action a, in which case we can have τ(f →| a) = τ(a → ¬f).

A temporal planning problem <I,A,G> is positive if there
are no negative fluents in the conditions of actions nor in the
goal G. It is well known that any planning problem can be
transformed into an equivalent positive problem in linear
time [13]. Thus, in this paper, we only consider positive
temporal planning problems <I,A,G>. By this assumption, G
and Cond(a) (for any action a) are composed of positive
fluents. By convention, Add(a) and Del(a) are also
composed exclusively of positive fluents. The initial state I,
however, may contain negative fluents.

III. EU MONOTONE PLANNING

In this section, we introduce the notions of establisher-
uniqueness and monotonicity of fluents. Together, these two
conditions are sufficient for the existence of a polynomial-
time algorithm for temporal planning [6]. Establisher-
uniqueness is similar to post-uniqueness in SAS+ planning
[14] restricted to Boolean variables.

Definition 3. A set of actions A={a1,...,an} is establisher-
unique (EU) relative to a set of positive fluents S if for all

i ≠ j, Add(ai) ∩ Add(aj) ∩ S = ∅, i.e. no fluent of S can be
established by two distinct actions of A.

If a set of actions is EU relative to the set of sub-goals
(recursively defined as the minimum set of fluents which
belong to G or to the conditions of some action which
establishes a sub-goal) of a problem, then we can determine
in polynomial time a set of actions which are necessarily
present in a temporal plan. In general, other actions may be
required to re-establish fluents which were present in I but
have been destroyed by another action. There also remains
the problem of determining how many times each action
must occur and then scheduling these action-instances in
order to produce a valid temporal plan. These problems can
be solved in polynomial time if we also impose monotonicity
of fluents [6].

Definition 4. A fluent f is –monotone if, after being
destroyed f is never re-established in any temporal plan. A
fluent f is +monotone if, after having been established f is
never destroyed in any temporal plan. A fluent is monotone
if it is either + or −monotone.

Example 1: In fairly obvious contexts, the fluents alive or
brand-new are –monotone, whereas the fluents dissolved,
cooked, graduated, born and extinct are all +monotone.

If A is a set of actions, we use the notation Del(A) to
represent the union of the sets Del(a) (∀ a ∈ A). Add(A),
Cond(A), Constr(A) are defined similarly. The following
lemma follows trivially from Definition 4.

Lemma 1. If f ∉ Add(A) ∩ Del(A), then f is both −monotone
and +monotone.

We now introduce three other types of constraints. The
−authorisation (resp, +authorisation) constraint is applied
only to –monotone (resp, +monotone) positive fluents f,
whereas the causality constraint is applied to all monotone
fluents.

−authorisation constraints on the positive fluent f: for all
ai≠aj ∈ A, if f ∈ Del(aj) ∩ Cond(ai), then τ(f →| ai) < τ(aj →
¬f); for all ai ∈ A, if f ∈ Del(ai) ∩ Cond(ai), then τ(f →| ai)

≤ τ(ai → ¬f).

+authorisation constraints on the fluent f: ∀ai,aj∈ A, if f∈

Del(aj)∩Add(ai), then τ(aj → ¬f) < τ(ai → f).

causality constraints on the positive fluent f: for all
ai≠aj ∈ A, if f ∈ (Cond(aj) ∩ Add(ai))\I, then τ(ai → f) <
τ(f |→ aj); for all ai ∈ A, if f ∈ (Cond(ai) ∩ Add(ai))\I then

τ(ai → f) ≤ τ(f |→ ai).

If A is EU relative to the set of sub-goals, all sub-goals
are monotone and all sub-goals in I are –monotone, then the
temporal planning problem <I,A,G> is equivalent to solving
the STP� (Simple Temporal Problem with disequality
constraints) composed of the inherent, contradictory-effect,
authorisation and causality constraints [6], and can hence be

solved in polynomial time [15]. It is clearly polynomial-time
to detect whether all actions are EU. On the other hand, the
very general definition of monotonicity of fluents implies
that this is not the case for determining whether fluents are
monotone. Indeed, determining whether a fluent is monotone
is PSPACE-hard if overlapping instances of the same action
are not allowed in plans and EXPSPACE-complete
otherwise [6]. We will return to the detection of
monotonicity later in this paper. However, this is not an issue
for the definition of a relaxation, since it is relatively easy to
construct a relaxed instance in which all fluents are
monotone. For example, Lemma 1 tells us that eliminating f
from Del(a) for all a renders f monotone. In the next section
we describe a stronger form of relaxation which allows us to
retain the destruction of fluents.

IV. TEMPORAL RELAXATION

We first show that the standard form of relaxation used in
propositional planning, consisting of simply ignoring all
destructions of fluents and then trying to attain the goals by
successively applying all relaxed actions whose conditions
are satisfied [1], does not directly generalize to temporal
planning. An important aspect of temporal planning, which
is absent from non-temporal planning, is that certain
temporal planning problems, known as temporally-
expressive problems, require concurrency of actions in order
to be solved [7]. A typical example of a temporally-
expressive problem is cooking: several ingredients must be
cooked simultaneously in order to be ready at the same
moment. A subclass of temporally expressive problems,
known as temporally-cyclic, require cyclically-dependent
sets of actions in order to be solved [5].

A simple example of a temporally-cyclic problem is the
building of two pieces of software by two different
subcontractors, each needing to know the specification of the
other program in order to complete their own program by
building the interface with the other program. We can model
this by two durative actions, action A1 (A2) having spec1
(spec2) as an effect at its beginning and spec2 (spec1) as a
condition at its end. It is easy to see that neither action can
occur in a plan without the other and that they must overlap.
The standard form of relaxation, as described above, would
not be able to accept either of the two actions since it tries
one action at a time. Thus, certain proposed relaxations,
although very useful in guiding heuristic search [9] [8], do
not produce a valid relaxation for temporally cyclic
problems. Different solutions exist to get round the problem
of temporal cycles. For example, there is a polynomial-time
algorithm to transform a temporally-cyclic problem into an
equivalent acyclic one [5]. Other transformations have been
proposed in the literature [16] [3] which also eliminate the
possibility of temporal cycles, although this was not an
explicitly-stated aim in the descriptions of these
transformations: temporal cycles are avoided by
decomposing durative actions into instantaneous actions
denoting the start and end of the action. Intermediate
conditions can also be managed by splitting actions into
component actions enclosed within an “envelope” action

[19]. In each case, ignoring deletes in the transformed
problem is a valid relaxation.

In this section, we present an alternative form of
relaxation, inspired by EU monotone planning, consisting of
an STP� instance which has a solution if the original
temporal planning instance has a solution.

By applying the following simple rule until
convergence we can transform (in polynomial time) any

temporal planning problem P into a relaxed version P′
which is EU relative to the set of sub-goals S: if a sub-goal
fluent f is established by two distinct actions, then delete f
from the goal G and from Cond(a) for all actions a. As a

consequence, f is no longer a sub-goal. Clearly, P′ is a valid
relaxation of P. From now on we assume the temporal
planning instance is EU relative to S.

We denote by Aind the set of actions which have been
detected as indispensable in all plans [4]. Establisher-
uniqueness implies that we can easily identify many such
actions, in particular actions which establish sub-goals not
present in the initial state I [6].

We cannot assume in the STP�, which we call TR (for
Temporal Relaxation), that a single instance of each action
will be sufficient. For each indispensable action a

 and for
each event E ∈ Events(a), we introduce two variables

τfirst(E), τlast(E) representing the times of the first and last
occurrences of event E in the plan. The constraints of TR
include versions of the internal, contradictory-effects,
authorization and causality constraints (which we give
below) together with the obvious

intrinsic constraint: ∀a∈A
ind, for all events E ∈ Events(a),

τfirst(E) ≤ τlast(E).

We make the assumption that no two instances of the
same action can overlap, to conserve the PSPACE
complexity of classical planning [18]. Under this
assumption, we know that for E1,E2 ∈ Events(a), the first
occurrences of E1,E2 in a plan correspond to the same
instance of action a. A similar remark holds for the last
occurrences of E1,E2. This means that we can apply in TR
each inherent constraint in Constr(a) independently to the
values of τfirst(E) and τlast(E) (E ∈ Events(a)).

inherent constraint: ∀a∈A
ind, ∀ E1,E2 ∈ Events(a),

τfirst(E1) − τfirst(E2) ∈ [�a(E1,E2), �a(E1,E2)] and

τlast(E1) − τlast(E2) ∈ [�a(E1,E2), �a(E1,E2)].

The contradictory-effects constraints in TR are as
follows:
contradictory-effects constraints: ∀ai,aj∈A

ind, for all positive

fluents f ∈ Del(ai) ∩ Add(aj), τL1(ai → ¬f) ≠ τL2(aj → f),
∀L1,L2 ∈ {first,last}.

For each positive fluent f which is known to be
−monotone (resp, +monotone), we apply in TR the

following modified version of the −authorisation constraints
(resp, +authorisation constraints):

−authorisation constraints on f: ∀ ai≠aj ∈ Aind, if f ∈ Del(aj)
∩ Cond(ai), then τlast(f →| ai) < τfirst(aj → ¬f); for all

ai ∈ Aind, if f ∈ Del(ai) ∩ Cond(ai), then τlast(f →| ai) ≤

τfirst(ai → ¬f).

+authorisation constraints on f: ∀ai,aj∈ Aind, if f ∈ Del(aj) ∩
Add(ai) , then τlast(aj → ¬f) < τfirst(ai → f).

We check that every condition and every goal can be
established, i.e. Cond(Aind) ⊆ I ∪ Add(A) and G ⊆ I\Del(Aind)
∪ Add(A). If not, we consider that the relaxation TR has no
solution. We also apply in TR the following causality
constraints for each positive fluent f.

causality constraints: ∀ ai≠aj ∈ Aind, if f ∈ (Cond(aj) ∩

Add(ai))\I then τfirst(ai → f) < τfirst(f |→ aj); for all ai ∈ Aind, if

f ∈ (Cond(ai) ∩ Add(ai))\I then τ first(ai → f) ≤ τ first(f |→ ai).

We also apply the following goal constraints for each g ∈ G.

goal constraints: ∀ai,aj∈Aind, if g ∈ Del(aj) ∩ Add(ai), then
τlast(aj → ¬g) < τlast(ai → g).

Of course, the causality and goal constraints are necessary
conditions for the existence of a plan only if the temporal
planning instance is EU relative to (Cond(Aind)\I) ∪
(G∩Del(A)). But this follows from the fact that we assume
that the instance is EU relative to the set of all sub-goals.

If for an action a ∈ Aind, all fluents in Add(a) are known
to be monotone, then only one instance of a occurs in
minimal plans [6]; hence, for each event E ∈ Events(a), we
replace the two variables τfirst(E), τlast(E) in the above
constraints by a unique variable τ(E).

Clearly, TR is a valid relaxation since the constraints of
TR must be satisfied by any valid plan. We state this
formally in the form of a proposition.

Proposition 1. Let <I,A,G> be a temporal planning problem
which is EU relative to its set of sub-goals S. Let Aind ⊆ A be
a set of indispensable actions, i.e. actions which necessarily
occur in all plans. If the temporal relaxation TR has no
solution, then the temporal planning problem <I,A,G> has no
solution.

Under assumptions of establisher-uniqueness and
monotonicity, TR is in fact a solution procedure for the
tractable class described by Cooper et al. [6].

Example 2: We now show that, even in non-temporal
propositional planning, the temporal relaxation TR can detect
unsolvable problems. In this example, all actions are
instantaneous and hence we present it in the form of a non

temporal planning problem P with initial state I={j,m,d},
goal G={g} and the following three actions:

Buy: j, m → h, ¬d, ¬m
Sell: h → m, ¬h

Mort2: d, h → m, ¬d, g

We can interpret the fluents as follows: j = I have a job,
m = I have money, d = I am debt-free, h = I own a house, g =
I have taken out a second mortgage. For example, the action
Buy is possible only if I have a job and money to put down a
deposit on a house; the result is that I own a house but I am
in debt and no longer have money. The goal is to take out a
second mortgage via the action Mort2.

This problem has no solution, but this fact is not detected
by the standard relaxation of non-temporal planning
problems consisting of ignoring all destructions of fluents.
To set up TR, we first determine the indispensable actions
Aind = {Buy, Mort2} easily identified as indispensable by the
rules given by Cooper et al. [4] since they establish the sub-
goals h and g, respectively, not present in the initial state.
Observe that Aind is EU relative to the set of sub-goals. The
STP� TR contains the constraints: τfirst(d →| Mort2) <
τlast(d →| Mort2) and τfirst(d →| Mort2) = τfirst(h |→ Mort2)
by intrinsic and internal constraints in Mort2; τfirst(Buy → h)

= τfirst(Buy → ¬d) by an internal constraint in Buy;
τfirst(Buy → h) < τfirst(h |→ Mort2) by the causality constraint
on h; τlast(d →| Mort2) < τfirst(Buy → ¬d) by the
–authorisation constraint, since d is –monotone (by Lemma
1). This set of five constraints has no solution, from which
we can deduce that P has no solution. This example shows
that temporal relaxation can be useful even in non-temporal
planning problems.

Example 3: We now give a generic example involving the
choice between two alternatives in which the temporal
relaxation TR can detect unsolvable problems that cannot be
detected by ignoring deletes. This simple example consists of
a non-temporal planning problem with initial state I={f},
goal G={g,h} and the following two actions:

B: f → ¬f, g

C: f → ¬f, h

The fluents have many possible interpretations,
including: f = I have a packet, g = I have sent the packet to
Destination1, h = I have sent the packet to Destination2.
Clearly this problem has no solution, but this is not
discovered by the ignoring-deletes relaxation (which cannot
take into account the fact that I no longer have the packet
once I have sent it somewhere).

On the other hand, TR detects unsolvability as follows.
Firstly, note that the problem is establisher-unique, both
actions are indispensable (since they both establish fluents in
G\I) and all fluents are both + and −monotone by Lemma 1.
Since all fluents in Add(B) and Add(C) are monotone, TR
has a single variable τ(E) for each event E. Since f is

−monotone, TR contains the two authorisation constraints:
τ(f → C) < τ(B → ¬f) and τ(f → B) < τ(C → ¬f). TR also
contains the inherent constraints τ(f → B) = τ(B → ¬f) and

τ(f → C) = τ(C → ¬f), which immediately leads to a
contradiction.

The above examples show that the EU monotone
relaxation TR can be stronger than any relaxation based on
ignoring deletes. To see that ignoring deletes can be stronger
than EU monotone relaxation, consider a problem in which
the unique goal g is produced by a unique action a such that
Cond(a) = {f} where the fluent f is produced by two distinct
actions b and c. In the EU monotone relaxation, the fluent f is
deleted from Cond(a), since it is established by two distinct
actions, and the relaxed version of the problem is
immediately solvable by a plan containing the single action
a. Ignoring deletes, on the other hand, can detect the
unsolvability of the original problem in certain cases, for
example, if Cond(b) and Cond(c) both contain fluents that
are not in I ∪ Add(A).

An obvious application of temporal relaxation is the

detection of indispensable actions [4]. Let P[-a] represent

the planning problem P without a particular action a. If the

temporal relaxation of P[-a] has no solution, then we can

conclude that a is an indispensable action for P.

In the following sections we investigate other
applications of temporal relaxation concerning the detection
of different forms of monotonicity. The basic idea is that if H
is a hypothesis to be tested and H can be expressed as the
conjunction of STP� constraints, then we can add H to the
constraints of the temporal relaxation TR to obtain an STP�
instance TR[H]: if TR[H] has no solution then H cannot be
true in any solution to the planning problem. In each case,
the complexity of solving TR[H] is O(n3) time and O(n2)
space, where n is the total number of events in the actions in
A. This follows almost directly from the fact that the set of
authorisation, inherent, contradictory-effects and causality
constraints are STP� [15]. An instance of STP� can be solved
in O(n3+k) time and O(n2+k) space [12], where n is the
number of variables and k the number of inequations (i.e.
constraints of the form xj – xi � d). Here, the only inequations
are the contradictory-effects constraints of which there are at
most n2, so k=O(n2).

V. DETECTING MONOTONICITY OF FLUENTS

The detection of the monotonicity of fluents is essential
for the recognition of instances of the polytime-solvable
class of temporal planning problems described by Cooper at
al. [6]. To detect the +monotonicity of a fluent f it suffices to
give a proof that f cannot be destroyed in a plan after being
established. Rules to provide such a proof, based on
knowledge of the monotonicity of another fluent were given
by Cooper et al. [6]. In this section, we give a more general
proof rule which involves solving an STP� for each pair of
actions a,b such that f ∈ Add(a) ∩ Del(b). To try to prove
that b cannot destroy f after a establishes f, we set up a
relaxation TR[Before(a,f,b)] consisting of the temporal
relaxation TR of the planning problem together with a single
hypothesis constraint: Before(a,f,b) = {τ first(a → f) <

τ last(b → ¬f)}.

To detect the −monotonicity of a fluent f we need to
prove that f cannot be established in a plan after being
destroyed. In the corresponding STP� TR[After(a,f,b)], the
hypothesis is: After(a,f,b) = {τfirst(b → ¬f) < τlast(a → f)}.
Lemma 2. Suppose that the set of actions A is EU. If
TR[Before(a,f,b)] has no solution for any pair of actions
a,b ∈ A such that f ∈ Add(a) ∩ Del(b), then f is +monotone.
If TR[After(a,f,b)] has no solution for any pair of actions a,b
∈ A such that f ∈ Add(a) ∩ Del(b), then f is −monotone.

We can extend the polytime-solvable class of temporal
planning problems described by Cooper et al. [6], using
temporal relaxation to detect monotonicity of fluents. This
new bigger class Π is still polytime-solvable. Each temporal
relaxation can be solved in O(n3) time and O(n2) space,
where n is the total number of events in the actions in A. The
number of temporal relaxations to solve, in order to prove
that a temporal planning problem belongs to Π, is
proportional to the number of triples (a,f,b) such that a,b ∈ A

and f ∈ Add(a) ∩ Del(b). The number of pairs (f,b) such that
b ∈ A and f ∈ Del(b) is bounded above by n. If A is
establisher-unique, then there is at most one action that a ∈ A

such that f ∈ Add(a). Therefore, the complexity of
recognizing Π is O(n4) time and O(n2) space. This can be
compared with the O(n2) time and O(n) space complexity to
recognize the subclass of Π defined by simple rules for the
recognition of monotonicity based on knowledge of the
monotonicity of only one other fluent [6].

VI. EXTENDING MONOTONICITY

In this section we introduce notions which extend the
notion of monotonicity by considering only minimal plans,
thus allowing us to define a larger tractable class of temporal
planning than the class Π described in the previous section.

Definition 5. A fluent f is –monotone* if, after being
destroyed f is never re-established in any minimal temporal
plan. A fluent f is +monotone* if, after having been
established f is never destroyed in any minimal temporal
plan. A fluent is monotone* if it is either + or −monotone*.

Example 4. To give an example of a monotone* fluent
which is not monotone, consider the following planning
problem in which all actions are instantaneous:

Start_vehicle: e → f
Drive: f → g, ¬f
Unload: g → h

with I = {e}, G = {h}. The fluents represent that I have the
ignition key (e), the engine is on (f), the destination has been
reached (g) and that the package has been delivered (h).
There is only one minimal plan, namely Start_vehicle, Drive,
Unload, but there is also the non-minimal plan Start_vehicle,
Drive, Start_vehicle, Unload in which the fluent f is
established, destroyed and then re-established. Hence f is
−monotone* but not −monotone.

We make the assumption in the remainder of this section
that no two instances of the same action can overlap in a
plan. We cannot hope to detect all monotone* fluents in
polynomial time since the detection of monotonicity itself is
PSPACE-complete [6]. However, we will show that many
monotone* fluents can be detected in polynomial time. We
begin with a simple lemma to detect certain +monotone*
fluents.

Lemma 3. If A is EU, then for all a ∈ A such that Add(a) ∩
Cond(A) = ∅, all f ∈ Add(a) ∩ (G\I) are +monotone*.

Proof: Any plan must contain an instance of action a since a
establishes a goal f ∈ G\I and A is EU. Since Add(a) ∩

Cond(A) = ∅, all instances of a except the last can be
deleted without affecting the validity of a plan. Thus a
minimal plan contains exactly one instance of a.
Furthermore, no fluent f ∈ Add(a) ∩ (G\I) can be destroyed
in a plan after being established by this last instance of a.
Hence f is +monotone*.

We say that an action-instance a usefully produces a
fluent h during the execution of a plan if h was false just
before being established by a. We say that a usefully
produces the required fluent h if a usefully produces h and
either h ∈ G or the fluent h is the condition of some action c

in the plan such that τ(a → h) < τ(h |→ c). We can now state
the following general proposition.

Proposition 2. Suppose that the set of actions A is EU
relative to the set of sub-goals and let a ∈ A be the unique
action that establishes sub-goal f. (a) If ∀b ∈ A such that f ∈
Del(b), there is no minimal plan in which the last instance of
b destroys f after a establishes f, and such that these instances
of a and b usefully produce required fluents, then f is
+monotone*. (b) If ∀b ∈ A such that f ∈ Del(b), there is no
minimal plan in which the last instance of a establishes f
after b destroys f, and such that these instances of a and b
usefully produce required fluents, then f is −monotone*.

Proof: (a) Let P be a minimal plan in which the last instance
of b destroys f after a establishes f. Then, by the hypothesis
of the proposition, either the last instance of b in P or the
first instance of a in P does not usefully produce a required
fluent. Hence P cannot be minimal, since we could delete the
last instance of b or the first instance of a from P to leave
another valid plan. This contradiction shows that f is
+monotone*. The proof of case (b) is similar.

We now give a lemma which allows us to deduce one of
the hypotheses of Proposition 2 and hence to deduce that a
fluent f is +monotone* or that it is −monotone*. To simplify
the expression of the lemma, we suppose that there is a goal-
achieving action aG that must be executed at the end of all
plans and such that Cond(aG)=G. This simply means that
goal fluents h do not need to be treated as special cases.

Lemma 4. Suppose that A is EU relative to the set of sub-
goals S and let a ∈ A be the unique action that establishes
fluent f ∈ S. Let b ∈ A be such that f ∈ Del(b).

(a) Let h ∈ S ∩ Add(a) and h′ ∈ S ∩ Add(b). If any of the
following conditions hold, then there is no minimal plan P in
which the last instance of b usefully produces the required
fluent h′ and destroys f after the first instance of a usefully
produces the required fluent h and establishes f:
(1) either one of h, h′ belongs to I and is −monotone*.
(2) for all actions c,c′ such that h ∈ Cond(c), h′ ∈ Cond(c′),
TR[Before(a,f,b) ∪ For(a,first,h,c) ∪ For(b,last,h′,c′)] has no

solution, where For(x,L,h,c) = {τL(x→ h) < τlast(h |→ c)}.
(3) h′ is monotone* and for all actions c,c′ such that h ∈

Cond(c) and h′ ∈ Cond(c′), TR[Before(a,f,b) ∪ Once(b) ∪
For(a,first,h,c) ∪ For(b,last,h′,c′)] has no solution, where
Once(x) = {τfirst(E) = τlast(E) | E ∈ Events(x)}.

(b) Let h ∈ S ∩ Add(a) and h′ ∈ S ∩ Add(b). If any of the
following conditions hold, then there is no minimal plan P in
which the last instance of a usefully produces the required
fluent h and establishes f after the first instance of b usefully
produces the required fluent h′ and destroys f:
(1) either one of h, h′ belongs to I and is −monotone*.

(2) for all actions c,c′ such that h ∈ Cond(c), h′ ∈ Cond(c′),
TR[After(a,f,b) ∪ For(a,last,h,c) ∪ For(b,first,h′,c′)] has no
solution.
(3) h is monotone* and for all actions c,c′ such that h ∈

Cond(c) and h′ ∈ Cond(c′), TR[After(a,f,b) ∪ Once(a) ∪
For(a,last,h,c) ∪ For(b,first,h′,c′)] has no solution.

Proof: (a) We suppose that A is EU relative to S, f ∈ S ∩
Add(a) ∩ Del(b), h ∈ S ∩ Add(a) and h′ ∈ S ∩ Add(b).
Suppose that in a minimal plan P the last instance of the
action b destroys f after f is established by a, that the first
instance of a usefully produces the required fluent h and the
last instance of b usefully produces the required fluent h′. We
will show, in each case, that there is a contradiction.
(1) If h ∈ I and h is −monotone*, then by the definition of

−monotone*, no action can usefully produce h in P. A
similar argument holds for h′.
(2) If TR[Before(a,f,b) ∪ For(a,first,h,c) ∪ For(b,last,h′,c′)]

has no solution for all actions c,c′ such that h ∈ Cond(c), h′
∈ Cond(c′), then it cannot be the case that the first instance
of a usefully produces the required fluent h in P and the last
instance of b usefully produces the required fluent h′ in P.

(3) If h′ is monotone*, then only the first instance of b can
usefully produce h′ in P. Hence there can only be one
instance of action b in P, since we assume that the last
instance of b usefully produces h in P. The result follows
from the same argument as in case (2) with the extra
constraint Once(b) that there is only one instance of b in P.
The proof of part (b) of the lemma is similar.

Example 5. Consider the following EU temporal planning
problem in which all actions are instantaneous:

a: p → f, e
b: p, e → g, ¬f

c: f → p

with I={f} and G={g}. One interpretation of these actions
and fluents is: Have_Engine_checked (a), Drive (b),

Take_Petrol (c), Have_petrol (p), At_garage (f), Engine_OK
(e), Arrived (g). The fluent f is not monotone since there is a
plan c, a, b, a (in which the last action is clearly redundant)
which establishes, destroys, and establishes f. However, f is
−monotone* since in a minimal plan action a cannot usefully

produce a fluent h ∈ Add(a) = {f, e} after action b has
destroyed f. In the case h=f, this is by Lemma 4(b)(2): c is
the only action such that f ∈ Cond(c), and TR[After(a,f,b) ∪
For(a,last,f,c)] has no solution. (Note that since g, p are
monotone by Lemma 1, we impose in TR that the actions b
and c, which establish g and p, occur only once). In the case
h=e, this is by Lemma 4(b)(3) since e is monotone* (by
Lemma 1) and TR[After(a,f,b) ∪ Once(a)] has no solution.

The notions +monotone* and –monotone* allow us to
define a tractable class of temporal planning problems
which is considerably larger than the EU monotone class
given by Cooper et al. [6]. We state without proof the
following theorem, which follows immediately by the same
argument as in the proof of the equivalent result for
monotone (instead of monotone*) fluents [6], but this time
considering only the minimal plans of a temporal planning
problem.

Theorem 1. Given a positive temporal planning problem
<I,A,G>, define S′ recursively to be the minimum set of
fluents not in I which belong to G or to the conditions of
some action which establishes a fluent of S′. Let Aind ⊆ A be
the set of actions which establish at least one fluent in S′.
Suppose that all constraints in Constr(Aind) are interval
constraints, the set of actions Aind is establisher-unique
relative to S′, each fluent in Cond(Aind) ∪ G is monotone*
and each fluent in I ∩ (Cond(Aind) ∪ G) is –monotone*. Let
TR* be a version of TR in which the +authorisation
(−authorisation) constraints are applied to +monotone*
(−monotone*) fluents. Then <I,A,G> has a temporal plan P
if and only if
(1) G ⊆ (I\Del(Aind)) ∪ Add(Aind)
(2) Cond(Aind) ⊆ I ∪ Add(Aind)
(3) all g ∈ G ∩ Del(Aind) ∩ Add(Aind) are +monotone*
(4) TR* has a solution.

Theorem 2. Let Π* be the class of positive temporal
planning problems <I,A,G> in which all constraints in
Constr(A) are interval constraints, A is EU, all fluents in
Cond(A) ∪ G are monotone* and all fluents in I ∩ (Cond(A)
∪ G) are −monotone*, where monotonicity* of all fluents
can be deduced from Lemmas 1, 2, 3 and 4. Then Π* is
tractable.
Proof: To prove tractability we have to give polynomial-
time algorithms for both resolution and detection of temporal
planning problems from the class Π*.

We consider first the resolution of a temporal planning
problem <I,A,G> in Π*. Since A is establisher unique, in
linear time we can find the set Aind of actions described in the
statement of Theorem 1. By establisher-uniqueness, all
actions in Aind are indispensable. We can check conditions
(1)-(3) of Theorem 1 in linear time. We can then solve TR*,
and hence <I,A,G>, in O(n3) time and O(n2) space [12],
where n is the total number of events in the actions in A.

The number of temporal relaxations to solve, in order to
prove that a temporal planning problem belongs to Π*, is
proportional to the number of septuplets (a,f,b,c,h,c′,h′) such

that a,b,c,c′ ∈ A, f ∈ Add(a) ∩ Del(b), h ∈ Add(a) ∩
Cond(c) and h′ ∈ Add(b) ∩ Cond(c′). Assuming A is
establisher-unique, the number of triples (a,f,b) satisfying
a,b ∈ A and f ∈ Add(a) ∩ Del(b) is bounded above by n. The

number of pairs (c,h) such that c ∈ A and h ∈ Cond(c) is
again bounded above by n. Therefore, the number of
relaxations to be solved is O(n3). Each temporal relaxation
can be solved in O(n3) time and O(n2) space [12]. It follows
that the complexity of recognizing Π* is O(n6) time and
O(n2) space.

VII. EXAMPLE OF EU MONOTONE* PLANNING

Several examples of temporal planning problems from
the chemical or pharmaceutical industries fall into the class
of EU monotone problems [6]. However, as Examples 4 and
5 have shown, even in simple problems, fluents may be
monotone* rather than monotone. We conclude this paper
with the description of a planning domain in which we need
to detect monotone* fluents in order to prove tractability.

Fluid(c)

¬Fluid(c)

MAKE-AND-TIME-CONCRETE(c)[30]

CLEAN(m)[4]

Fluid(c)

LOAD(m,c)[5]

DRIVE(m,s)[6]

UNLOAD(m,c,s)[7]

Empty(m)

Empty(m)

At-factory(m)

¬At-factory(m) At(m,s)

Fluid(c)

At(m,s)

On(m,c)

On(m,c)

At-factory(m)

¬Empty(m)

USE(c)[4]

Fluid(c)

Used(c)

Delivered(m,c,s)

At-factory(m)

Available(c)

¬Available(c)

¬On(m,c) Delivered(m,c,s)

The Temporal Cement Factory planning domain allows
us to plan concrete mixing, delivery and use. An action of
duration 30 time units makes and times a batch of concrete
which is fluid from time unit 3 to 30 (after which it sets). At
the same time, a concrete-mixer must be cleaned, in order for
the concrete to be loaded, then driven to a building site,
where it is unloaded. The concrete must then be used while it
is still fluid. This set of actions A (illustrated in the plan
shown in the figure) are all indispensable and the set of
fluents appearing in the figure is the set S of sub-goals. The
initial state I and the goal G are given by:

I = {At-factory(m), Available(c)},

G = {Delivered(m,c,s), Used(c)}

For all ai ≠ aj ∈ A, we have Add(ai) ∩ Add(aj) ∩ S = ∅.
Hence, by Definition 3, the set of actions A is EU relative to
S. We can immediately remark that no actions delete the
fluents Used(c), Delivered(m,c,s) and At(m,s), and no
actions add the fluents Available(c) and At-factory(m). Thus,
by Lemma 1, these fluents are both −monotone and
+monotone. By Lemma 2, we can deduce that On(m,c) is
–monotone since the temporal relaxation
TR[After(LOAD(m,c),On(m,c),UNLOAD(m,c,s))] has no
solution. Similarly, Fluid(c) is also –monotone by Lemma 2.
We can deduce that Empty(m) is –monotone* by Lemma
4(b)(2), because the relaxation detects that a=CLEAN(m)
cannot establish f=Empty(m), after b=LOAD(m, c) destroys
Empty(m), and also usefully establish h=Empty(m) for c=
LOAD(m, c). This is because in TR there is only one
instance of LOAD(m, c) since Add(LOAD(m))={On(m,c)}
and, as we have just seen, On(m,c) is monotone. We can now
apply Theorem 1, since A is EU, all fluents are monotone*
and all fluents in I are –monotone*. It follows that TR* is a
solution procedure for this problem. The problem <I,A,G>
has a solution-plan, found by TR*, shown in the figure. We
represent non-instantaneous actions by a rectangle. The
duration of an action is given in square
brackets after the name of the action. Conditions are written
above an action, and effects below. Causality constraints are
represented by bold arrows, and –authorisation constraints by
dotted arrows. This example can be extended to the case in
which there are several sites, several batches of concrete and
several mixers. It is monotone and remains EU provided that
the goals (via the fluents Delivered(m,c,s)) specify which
mixer m is to deliver which batch c to which building site s.

As another example involving monotone* fluents,
consider the example given in a previous paper [6] involving
the synthesis of a chemical using catalysers, where it was
assumed that all catalysers are destroyed during the chemical
reaction. However, if any of the catalysers are not destroyed
by the chemical reaction they catalyze, then they can
theoretically be used many times. Nevertheless, in a minimal
plan, a second utilisation of a catalyser is not necessary and
the rules given in Section V allow us to detect that all fluents
are monotone*.

VIII. CONCLUSION

We have given a novel form of relaxation which can be
used in temporal planning. It can detect unsolvable problems
which cannot be detected by relaxations based on ignoring
all destructions of fluents. It has applications in detecting
indispensable actions and monotone fluents. This led to an
extended notion of mononicity which allowed us to define a
large tractable class of temporal planning problems whose
recognition algorithm is based on our temporal relaxation.

REFERENCES

[1] Bonet B., Loerincs G. and Geffner H. “A Robust and Fast Action
Selection Mechanism for Planning”, AAAI-97/IAAI-97, 714-719,
1997.

[2] Bylander T. “The Computational Complexity of Propositional
STRIPS Planning”. Artificial Intelligence, 69(1-2), 165-204, 1994.

[3] Coles A., Fox M., Long D. and Smith A. “Planning with Problems
Requiring Temporal Coordination”, Proc. of AAAI 2008, 892-897,
2008.

[4] Cooper M.C., de Roquemaurel M. and Régnier, P. “A weighted CSP
approach to cost-optimal planning”, Artificial Intelligence
Communications, 24(1) 1-29, 2011.

[5] Cooper M.C., Maris F. and Régnier P. “Managing Temporal Cycles
in Planning Problems Requiring Concurrency”, Computational
Intelligence, 29(1), 111-128, 2013.

[6] Cooper M.C., Maris F. and Régnier, P. “Tractable monotone temporal
planning”, Proc. ICAPS 2012.

[7] Cushing W., Kambhampati S., Mausam and Weld D.S. “When is
Temporal Planning Really Temporal?”, IJCAI’2007, 1852-1859,
2007.

[8] Do M.B. and Kambhampati S. “Sapa: A Multi-objective Metric
Temporal Planner”, Journal of Artificial Intelligence Research 20,
155-194, 2003.

[9] Eyerich P., Mattmüller R. and Röger G. “Using the Context-enhanced
Additive Heuristic for Temporal and Numeric Planning”, Proc.
ICAPS 2009.

[10] Fox M. and Long D. “PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains”, Journal of Artificial
Intelligence Research 20, 61-124, 2003.

[11] Fox M., Long D. and Halsey K. “An Investigation into the Expressive
Power of PDDL2.1”, Proc. of 16th European Conference on Artificial
Intelligence, pp. 328-342, 2004.

[12] Gerevini A. and Cristani M. “On Finding a Solution in Temporal
Constraint Satisfaction Problems”, Proc. 15th International Joint
Conference on Artificial Intelligence, IJCAI’1997, 1460-1465, 1997.

[13] Ghallab M., Nau D.S. and Traverso P. Automated Planning: Theory
and Practice, Morgan Kaufmann, 2004.

[14] Jonsson P. and Bäckström C. “State-variable planning under
structural restrictions: Algorithms and complexity”, Artificial
Intelligence, 100(1-2), 125-176, 1998.

[15] Koubarakis M. “Dense Time and Temporal Constraints with �”,
KR’1992, 24-35, 1992.

[16] Long D. and Fox M. “Exploiting a graphplan framework in temporal
planning”, Proc. 13th International Conference on Automatic
Planning and Scheduling, 52-61, 2003.

[17] McDermott D. “PDDL, The Planning Domain Definition Language”.
Technical Report, http://cs-www.cs.yale.edu/ homes/dvm/, 1998.

[18] Rintanen J. “Complexity of concurrent temporal planning”, Proc.
17th ICAPS, 280-287, 2007.

[19] Smith D.E. “The Case for Durative Actions: A Commentary on
PDDL2.1”, Journal of Artificial Intelligence Research 20, 149-154,
2003.

