
HAL Id: hal-01147277
https://hal.science/hal-01147277

Submitted on 30 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using a SMT solver for risk analysis: detecting logical
mistakes in texts

Florence Dupin de Saint-Cyr, Marie-Christine Lagasquie-Schiex, William
Raynaut, Patrick Saint Dizier

To cite this version:
Florence Dupin de Saint-Cyr, Marie-Christine Lagasquie-Schiex, William Raynaut, Patrick Saint
Dizier. Using a SMT solver for risk analysis: detecting logical mistakes in texts. International Con-
ference on Tools with Artificial Intelligence - ICTAI 2014, Nov 2014, Limassol, Cyprus. pp. 867-874,
�10.1109/ICTAI.2014.133�. �hal-01147277�

https://hal.science/hal-01147277
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13266

To link to this article : DOI :10.1109/ICTAI.2014.133
URL : http://dx.doi.org/10.1109/ICTAI.2014.133

To cite this version : Dupin De Saint Cyr - Bannay, Florence and
Lagasquie-Schiex, Marie-Christine and Raynaut, William and Saint-
Dizier, Patrick Using a SMT solver for risk analysis: detecting logical
mistakes in texts. (2014) In: International Conference on Tools with
Artificial Intelligence - ICTAI 2014, 10 November 2014 - 12
November 2014 (Limassol, Cyprus).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13266/
http://oatao.univ-toulouse.fr/13266/
http://dx.doi.org/10.1109/ICTAI.2014.133
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Using a SMT solver for risk analysis: detecting

logical mistakes in texts

F. BANNAY, MC. LAGASQUIE-SCHIEX, W. RAYNAUT, P. SAINT-DIZIER

IRIT-UPS

Toulouse, France

Email: {bannay, lagasq, dizier}@irit.fr

Abstract—The purpose of this paper is to describe some
results of the LELIE project, that are a contribution of Artificial
Intelligence to a special domain: the analysis of the risks due to
poorly written technical documents. This is a multidisciplinary
contribution since it combines natural language processing with
logical satisfiability checking.

This paper explains how satisfiability checking can be used
for detecting inconsistencies, redundancy and incompleteness in
procedural texts and describes the part of the implemented tool
that produces the logical translation of technical texts and realizes
the checkings.

Index Terms—Knowledge Representation, Reasoning, AI in
Natural Language Processing and Understanding

I. INTRODUCTION

Companies maintain a large number of procedural texts

in various sectors which may lead to risky situations. Poor

requirement compliance in procedures often leads to accidents,

with major health and ecological consequences. Social and

psycho-social problems (e.g. due to poor management require-

ments) are also often encountered and, obviously, negative

financial situations may be critical. The negative consequences

of bad or poor requirements and procedures have been inves-

tigated in depth. Industry data show that approximately 50%

of product defects originate from incorrect or unreadable pro-

cedures. Perhaps 80% of the rework effort on a development

project can be traced to requirements defects. Because these

defects are the cause of over 40% of accidents in safety-critical

systems (see [1]), poor requirements and procedures have even

been the ultimate cause of both death and destruction.

The LELIE1 project was realized from 2011 to 20132. It was

funded by a special track of the ANR3, the ANR Emergence,

combining ergonomy, language processing and artificial intel-

ligence with an applicative orientation. The main goal of this

project is to detect potential risks in industrial processes based

on language processing and logic-based artificial intelligence

techniques. This has been realized via the analysis of risks

indicators of different kinds (health, ecology, economy, etc.)

on the basis of written technical documents.

In this paper, we present an original approach proposed

in LELIE where natural language processing combined with

AI is used for an analysis of inconsistencies, redundancies

1LELIE: An intelligent assistant for the analysis and the prevention of risks
in industrial processes.

2by IRIT in collaboration with CRTD-CNAM, Paris.
3ANR: Agence Nationale pour la Recherche; a French government agency.

and incompleteness typical of technical documents. We con-

centrate on procedural documents and requirements (e.g. for

installation, production, maintenance) which are, by large, the

main types of technical documents.

Given a set of procedures over a certain domain produced

by a company, and possibly given some domain knowledge

(ontology or terminology and lexical data), the goal is to detect

and model these errors and then to annotate them wherever

potential risks are identified. Procedure authors could then be

invited to revise these documents. Risk analysis is based on

several types of considerations:

1) Inappropriate ways of writing that may lead to potential

risks: texts including a large variety of complex expres-

sions, fuzzy terms, implicit elements, scoping difficulties

(connectors, conditionals), lack of cohesion, inappro-

priate granularity level, etc. These inappropriate ways

were established by cognitive ergonomic simulations and

analysis (see [2]).

2) Incoherence among procedures: detection of unusual

ways of realizing action (e.g. unusual instrument, tem-

perature, length of treatment, etc.) with regard to similar

actions in other procedures. This was based on a repos-

itory of actions from previously processed procedures

(Arias software) on a given domain.

3) Lack of compliance of procedures with regard to domain

security requirements and regulations, therefore leading

to risks. Inconsistencies or incompleteness situations

have often been observed between requirements and

procedures.

Only Point 3 is developed in this paper (the study of Points 1

and 2 is out of the scope of this paper since it is mainly based

on the way documents are written4). This point mainly deals

with content aspects and requires several types of inferences

and reasoning in relation with risk analysis.

The goal of this paper is threefold. First it demonstrates the

feasability of a tool that can automatically detect potential risks

in natural languages technical documents. It also shows the

benefits of logic-based tools like SMT-solver and theoretical

concepts such as ATMS for industrial-oriented applications.

Third it shows that it is possible to combine a natural language

analysis with a logical handling of inconsistency. Moreover,

we show that those tools allow us not only to detect the

4That also corresponds to a major problematics in the industry, see [3].

existence of a problem but also to point out the parts of the text

that are responsible for it. The identification of major errors

in procedures with regard to related requirements is a very

important result achieved by the LELIE tool.

Note that there are two main components in the LELIE

tool: a “linguistic component” and a “logical” component. This

paper is concerned with only the last one. Nevertheless, for

a best understanding of the tool, Section II briefly explains

the first step of the process: the automatic analysis of the

structure of requirements and of procedures done with the

system TEXTCOOP in order to produce a translation into a

logical form. TEXTCOOP and LELIE are developed in [3];

processing technical documents results in the annotation of

those structures which are typical of technical documents, e.g.:

titles, instructions, prerequisites, warnings, explanations. Then

the core of this paper, the logical handling part, is presented

in Section III based on the outputs of the language processing

step carried out with TEXTCOOP. The corresponding imple-

mented tool is described in Section IV. Section V gives some

related works, suggests directions for further research and

concludes the paper.

II. NATURAL LANGUAGE ANALYSIS

Procedural texts and requirements are written in specific

forms and are often very well structured, hence they are

less complex, in terms of structure and ambiguity, to analyze

and translate into a logical form. Indeed, procedures are

often presented under the form of a list of instructions, each

instruction being expressed in a simplified and standard way

following guidelines.

A. TEXTCOOP engine

LELIE is based on the TEXTCOOP system (see [4]), a

system dedicated to language analysis, in particular discourse

(including the taking into account of long-distance dependen-

cies). The kernel of the system is written in Prolog SWI, with

interfaces in Java. LELIE realizes an annotation of the different

discourse structures useful for our purpose. To avoid the

variability of document formats, the system input is an abstract

document with a minimal number of XML tags as required

by the error detection rules. Managing and transforming the

original text formats into this abstract format is not dealth with

here.

Briefly, TEXTCOOP identifies the following structures

which are of interest for the investigations presented here.

• titles, instructions, requirement statements, prerequisites,

definitions, warnings, advice and some form of explana-

tion which are proper to technical texts,

• thematic structures: theme, topic, strength (for require-

ments),

• within instructions and requirements: the main verb and

its complements, in particular instruments of means (with

equipment or product names) or adjuncts such as amounts

which are numerical values (Ph, Volts, weights, etc.) and

temporal complements.

Each of these types of values has a specific annotation in XML

possibly with attributes (see an analysis and a description of

the performances of TEXTCOOP in [3]).

B. Procedural texts tagged by TEXTCOOP

Going into more details about the content analysis, there

are three kinds of input data, given in text files:

• requirements: information describing the context and the

precautions with which a certain action (included into a

procedure) must be carried out,

• a procedure: which is an ordered sequence of instructions,

• a list of synonyms in order to restrict the vocabulary to

manage the term matching aspects between requirements

(prescriptive style) and the related procedures (injunctive

style).

Examples are provided below. Note that real examples

correspond to confidential data given by industrial partners of

the project. These data are technical texts containing hundreds

of lines and thousands of symbols. So it is not possible to

present them in this paper. Thus, for the sake of readability,

the examples presented here are kept minimal and very simple

but are sufficient for illustrating the tagged results given by

TEXTCOOP and for introducing the formal version of these

texts.

Example 1: Here is a short extract of a tagged instruction:
< procedure>

< predicate> use </predicate>

< object> a rope </object>

to tie the harness.

</procedure>

If we consider the instruction of this procedure, the verb “use”

is a predicate that takes as arguments a subject (here the person

who executes the procedure, called the operator, op for short)

and a complement/adjunct (here “the rope”). So, this sentence

can be formally written as: use(op,rope). The remainder of

the instruction is ignored.

Another point must be taken into account: the theme of the

procedure to properly relate requirements and procedures. For

instance:
< procedure> in order to

< theme> sweep a chimney</theme>

< predicate> climb </predicate>

< location> on the roof </location>

</procedure>

There are two parts in this instruction; the first one can

be translated as previously whereas the second one needs

a special translation since it gives the theme of the pro-

cedure, i.e. the execution context of the procedure; in

this case, it can be formally expressed by the formula

is(theme,sweep_a_chimney).

Note that this theme can be extracted from the texts by

TEXTCOOP, using for instance the title of the documents.

Example 2: This example corresponds to a set of require-

ments:
< requirement> in case of

< theme> work at a height </theme>

< predicate> do not use </predicate>

< object> ropes </object>

</requirement>

Here, there are also two aspects: the verb (with its subject and

complements/adjunct) and the theme. Each of these elements

can be easily formalized by predicates:

is(theme,work_at_a_height),

¬use(op,rope))

but these elements are linked:

if is(theme,work_at_a_height)

then ¬use(op,rope);

this link can be expressed by a logical implication:

is(theme,work_at_a_height) → ¬use(op,rope);

Example 3: This example gives illustrates a synonym file:
SYN = work at a height

sweep a chimney

work on roof

These data are only used for simplifying the texts (require-

ments or procedures). They must be elaborated from business

data. For instance, using this synonym file, the themes of

Example 1 and of Example 2 become identical. This will make

it easier for us to detect logical incorrectness in them.

Nevertheless, the term “synonym” is too narrow and this

method of simplification is a rough one. In a future work, it

will be necessary to use domain ontologies. Indeed, linguis-

tically speaking, the expressions “work at a height”, “sweep

a chimney” and “work on roof” are not synonyms; they are

rather in an entailment relationship with each other and this

relationship could be extracted from an ontology.

III. LOGICAL MISTAKES DETECTION IN LELIE

The solution proposed for answering to Point 3 given

in Section I is a tool using a logical representation of the

texts and applying basic AI reasoning principles in order to

validate these texts. In our proposal, this validation is done

on the three following points: inconsistency, incompleteness

and redundancy detection. This is a two-step process. First,

we have chosen to translate the written technical documents

into a formal language. Then, using an open-source solver

embedded into a Java code, we are able to reason on this

translated documents.

A. The Logical language

We choose a representation language L which is a variant

of a first-order logic language (see [5]) classically defined with

7 vocabularies:

• Vc (resp. Vv , Vf , VP) is the set of constants (resp.

variables, functions, predicates),

• {¬,∧,∨,→,↔} is the set of classical connectors rep-

resenting respectively negation, and, or, implication and

logical equivalence,

• {(,)} is the set of delimitors and {∀, ∃} is the set of

quantifiers.

In our case, L is defined without symbols of function (so

Vf = ∅). The terms are classically defined using constants and

variables; ground terms are special terms using only constants.

For any predicate symbol P ∈ VP of arity n, P (t1, . . . , tn)
is an atomic formula (or atom) whenever t1, . . . , tn are terms.

Moreover, if t1, . . . , tn are all ground terms then P (t1, . . . , tn)
is a ground atom. ⊥ is the atomic formula representing the

contradiction. A literal is an atom or its negation. Other non

atomic formulas are built by using connectors, and quantifiers

applied to variables and the delimitors.

The choice of this language is justified by the following

facts:

• Procedural texts are composed by simple sentences with

a limited set of terms; it is easy to translate them into a

formal language (see Examples 1 and 2).

• First-order logic is a well known language with an

interesting basic expressivity.

• There are many possible extensions if we want to in-

crease this expressivity (for instance, the reintroduction

of functions).

• Several open-source solvers exist whose efficiency has

been proved by decades of research and competitions; in

this project, we choose to use the “Z3” solver (see [6])

that respects the formalism that is issued from the Satis-

fiability Modulo Theory (SMT) area, see [7].

The SMT library allows us to perform automated deduction

and provides methods for checking the satisfiability of first-

order formulas with regard to some set of logical formulas T

(called a theory). By being theory-specific and by restricting

to certain classes of first-order formulas, the SMT solvers can

be more efficient in practice than general-purpose theorem

provers. So, in order to be efficient, the formulas of our

language L will be expressed in the SMT formalism. It is

an important point for our tool since the size (in number of

formulas and in number of symbols) of the knowledge base

corresponding to a real example can very quickly become

huge.

B. Translation of the input data

Requirements and procedures are translated into first-order

logic. For each sentence, this translation is a three-step pro-

cess:

1) “cleaning” the text of the sentence by using the lists of

synonyms and by removing the articles, and identifying

the theme(s),

2) finding the mask corresponding to the sentence and

formatting it with regard to this mask,

3) translation of the clean and formatted sentence into first-

order logic, using the theme(s).

Several types of masks (reformulations) can be considered

according to the form of the sentence:

• masks that are reduced to only one simple component (a

simple sentence: a verb, its subject, its complements and

some adjuncts),

• masks corresponding to a complex component (a con-

junction or disjunction of simple components),

• masks corresponding to a sentence with conditions and

exceptions (thus giving a structure with 3 complex com-

ponents); for instance: if condition1 then action except if

condition2.

Moreover, each simple component can be instantiated by

several variants depending on the semantics of the sentence.

For instance:

• the subject of a verb can be a constant or can be quantified

universally or existentially;

• the sentence is in direct or indirect form;

• the verb is or is not an action verb . . .

Example 1 (cont): After cleaning, the text becomes (all the

non-tagged parts of the text are removed and the synonyms

given in Example 3 are used):

< procedure>

< theme> work at a height </theme>

< predicate> climb </predicate>

< location> roof </location>

< predicate> use </predicate>

< object> rope </object>

</procedure>

Then, for each sentence, a generic mask is identified and

the sentence is formatted with regard to this mask. In this

example, two masks are used (when an element is missing, it

is replaced by NULL, except for the time-step that is encoded

by an integer incremented at each instruction):

theme is work_at_a_height 0

(mask: subject state-verb attribute time)

NULL climb NULL NULL roof 1

(mask: subject action-verb direct-obj

method place time)

NULL use rope NULL NULL 2

(mask: subject action-verb direct-obj

method place time)

Each sentence/instruction is considered as a first-order for-

mula that must be true at the moment corresponding to the

execution of the instruction. So, this procedure corresponds to

the three following first-order formulas:

is(theme,work_at_a_height,0)

climb(op,NULL,NULL,roof,1)

use(op,rope,NULL,NULL,2)

Since, the chosen solver is the “Z3” solver (see [6]) that

uses the SMT formalism (see [7]), this procedure is encoded

in the SMT formalism and the resulting program code consists

of:

• first, the definition of the different elements used in

the language (here Agent, Item, Place, Attribute and

Method); note that temporal elements are encoded as inte-

gers (Int is a predefined element in the SMT formalism);

• then, for each sentence, there are the definition of the

predicate (a function in the SMT formalism), the defini-

tion of the constants, the formula.

So, the final translation of this example is:

(declare-sort Agent)

(declare-sort Item)

(declare-sort Place)

(declare-sort Attribute)

(declare-sort Method)

(echo "< theme> sweep a chimney</theme>")

(declare-fun

is (Item Attribute Place Int)

Bool)

(declare-const

it_theme

Item)

(declare-const

att_theme_work_at_a_height

Attribute)

(declare-const

pl_NULL

Place)

(declare-const

ag_NULL

Agent)

(declare-const

me_NULL

Method)

(assert

(is it_theme att_theme_work_at_a_height

pl_NULL 0))

(echo "< predicate> climb </predicate>

< object> onto the roof </object>")

(declare-fun

climb (Agent Item Method Place Int)

Bool)

(declare-const

it_roof

Item)

(assert

(climb ag_NULL it_roof me_NULL

pl_NULL 1))

(echo "< predicate> use </predicate>

< object> a rope </object> ")

(declare-const

it_rope Item)

(assert

(use ag_NULL it_rope me_NULL

pl_NULL 2))

Note that the initial sentence (before cleaning) is kept as a

comment for an easier reading of the result (“echo” line in the

translation).

C. Checking correctness with a SMT solver

We propose 3 kinds of validation for procedures with regard

to requirements:

• consistency checking,

• incompleteness detection,

• non-redundancy checking.

All these validations are realized by using the notion of

satisfiability5 of a formula (a set of formulas is handled as the

logical conjunction of the formulas of the set). φ |= ⊥ denotes

the fact that φ is unsatisfiable. Checking satisfiability will be

done with a solver (here the Z3 solver). In this document, we

will use the following notations:

Notation 1: Fi denotes the formula corresponding to

the ith instruction of the procedure. R denotes the formula

corresponding to the set of requirements. Lit(F) = {l1, ..., ln}
denotes the set of (positive or negative) literals used in the

formula F .

5Let φ be a first-order formula. φ is satisfiable iff there exists a model of
φ (i.e. some assignment of appropriate values to its symbols under which φ

is evaluated to true)

1) Inconsistency Detection: The detection of inconsistency

can be done either on a set of requirements, or on a procedure

(a set of instructions), or between a set of requirements and

an instruction (or a set of instructions). This detection can be

formally defined as follows:

Definition 1 (Inconsistency Detection): Let R be a set of

requirements. Let {F1, . . . , Fn} be a set of instructions.

• There exists an inconsistency in the set of requirements

iff R |= ⊥.

• There exists an inconsistency in the set of instructions iff

F1 ∧ . . . ∧ Fn |= ⊥.

• There exists an inconsistency between the set of require-

ments and the set of instructions iff R∧F1∧. . .∧Fn |= ⊥.

Example 4: Input data are the followings:

• requirements:

< requirement> in case of

< theme> work at a height </theme>

< predicate> be protected </predicate>

< predicate> do not use </predicate>

< object> ropes </object>

</requirement>

• instructions:

< procedure> in order to

< theme> sweep a chimney </theme>

< predicate> climb </predicate>

< location> onto the roof </location>

< predicate> use </predicate>

< object> a rope </object>

</procedure>

The logical translation of these data corresponds to the

following formulas:
R: (is(theme, work_at_a_height)

→ is(op, protected))
∧(is(theme, work_at_a_height)

→ ¬use(op, rope))

F1: is(theme, work_at_a_height)

F2: climb(op, roof)

F3: use(op, rope)

Here, requirements are consistent (R 6|= ⊥), instructions are

consistent ((F1∧F2∧F3) 6|= ⊥) and there is an inconsistency

between requirements and instructions ((R∧F1 ∧F2 ∧F3) |=
⊥).

Moreover, using an ATMS (see [8]), it is possible to identify

the origin of the inconsistency. This can be done very simply

by first translating every formula in one or several clauses6

then introducing a new predicate of arity 0 (called assumption

predicate) for each clause and in each clause. The ATMS is

able to detect the nogoods of the knowledge base, i.e. subsets

N of formulas such that:

1) the formulas of N are only assumption predicates,

2) the set N is inconsistent with the knowledge base,

3) N is minimal with regard to set-inclusion among the

sets respecting 1) and 2).

Example 4 (cont): In this example, the knowledge base con-

tains 5 clauses (R produces two clauses) completed with the

assumption predicates R1, R2, F1, F2, F3:

6A clause is a disjunction of atomic formulas.

(R1 ∧ is(theme,work_at_a_height))
→ is(op,protected)

(R2 ∧ is(theme,work_at_a_height))
→ ¬use(op,rope)

F1 → is(theme,work_at_a_height)

F2 → climb(op,roof)

F3 → use(op,rope)

Then, using an ATMS, the set {R2, F1, F3} is a nogood that

gives the origin of the inconsistency between requirements and

instructions: if someone works at a height then he cannot use

ropes (R2); someone works at a height (F1); and he uses ropes

(F3).

Note that the computation of the nogoods is already partially

implemented in the SMT-solver Z3, since it is possible to

assign a name for each assertion and to extract unsatisfiable

cores (i.e., a subset of assertions that are mutually unsatisfi-

able). However this set is not guaranteed to be minimal and

only one set is returned even when there are several possible

causes for inconsistency7; so using the Z3 function, we can

directly have a set containing one of the nogoods.

2) Checking non-redundancy: The check of non-

redundancy consists in verifying that the addition of a

new instruction to a set of instructions allows the inference

of new formulas (otherwise it is the symptom that this new

instruction is useless). This check can be formally defined as

follows:

Definition 2 (Non-redundancy check): Let {F1, . . . , Fj} be

a set of instructions. Let Fk be a new instruction. If F1∧ . . .∧
Fj∧Fk 6|= ⊥ then Fk is not redundant iff F1∧. . .∧Fj∧¬Fk 6|=
⊥8.

Example 4 (cont): In this example, let us consider that the

third instruction F3 (which produces an inconsistency) has

been replaced by the following new instruction F ′

3
:

< predicate> climb </predicate>

< location> onto the roof </location>

This instruction is exactly the instruction F2. So there is a

redundancy that is detected as follows: F1 ∧F2 ∧F ′

3
6|= ⊥ (no

inconsistency in the procedure) and F1 ∧ F2 ∧ ¬F ′

3
|= ⊥ (so

F1∧F2 |= F ′

3
). This means that F ′

3
is inferred by F1∧F2 and

so F ′

3
is useless.

Note that it is possible to explain the source of redundancy

(as done for inconsistency in Section III-C1) by extracting un-

satisfiable cores containing the negation of the new instruction.

In the previous example we would obtain that F ′

3
is redundant

with {F2} (since {F2,¬F3} is an unsatisfiable core).

3) Incompleteness detection: Searching for incompleteness

corresponds to two distinct options that can be formally define

as follows:

Definition 3 (Incompleteness detection): Let R be a set of

requirements. Let {F1, . . . , Fj} be a set of instructions and

Fk be a new instruction.

• There exists an incompleteness in the set of requirements

iff there is at least a ground literal l ∈ Lit(R) such that

R |= l.

7A solution has been proposed by Liffiton and Malik [9] but it is not yet
available in the standard solver.

8That means that Fk is not inferred by {F1, . . . , Fj}.

• There exists an incompleteness of the instruction with

regard to the set of requirements iff there is at least one

ground literal l ∈ Lit(R∧Fk) such that R 6|= l, F1∧ . . .∧
Fj ∧ Fk 6|= l, R ∧ F1 ∧ . . . ∧ Fj ∧ Fk |= l.

The first point of Definition 3 is not, strictly speaking, an

“incompleteness” (it rather means that the set R is too strong

deductively), whereas the second point exactly corresponds to

an incompleteness since it means that the union of require-

ments and instructions allows the inference of new formulas

that are not inferred by the instructions alone (which means

that these instructions are too weak deductively).

Example 4 (cont): In this example, let us consider only

the requirements R and the first instruction F1. There is an

incompleteness of this instruction with regard to requirements.

Indeed, considering the ground literals that can be defined

from R ∧ F1, we have:

ground atom v |= by |= by
R ∧ F1 F1

is(theme,work_at_a_height) Yes Yes
is(op,protected) Yes No ⋆

use(op,rope) No No
¬is(theme,work_at_a_height) No No

¬is(op,protected) No No
¬use(op,rope) Yes No ⋆

Using only the instruction, it is not possible to deduce the

ground atoms indicated with the ⋆ symbol. This means that

the instruction is incomplete with regard to the requirements.

Indeed, the procedure lacks at least an instruction in order to

be protected and another one for forbidding the use of ropes.

IV. FUNCTIONAL DESCRIPTION OF THE TOOL

The tool (described on the French website [10]9) has been

realized in the Java language; it mainly implements four

features:

1) Project definition: a project gathers several textual pro-

cedures, requirements and synonyms files, the user can

create and modify projects.

2) “Cleaning” and cutting sentences: it consists in suppress-

ing useless words and replacing some words by their

standard synonyms, translation of tagged sentences is-

sued from TEXTCOOP into formatted sentences accord-

ing to different masks (the tagged sentences correspond

either to requirements or to instructions). At this stage

“manual correction” is enabled: the user can propose

other synonyms or disagree on the mask chosen.

3) Consistency, completeness and non-redundancy check-

ing: these functionalities are available after a translation

of formatted sentences into first-order formulas using the

SMT formalism. Then the user can run inconsistency

detection in requirements, or in instructions, or between

requirements and instructions (using a sliding window

on the set of instructions). After having checked con-

sistency, the user can run a completeness check in the

requirements and for an instruction with regard to the

9Note that this tool is in French language.

requirements. The user can also run a non-redundancy

check inside the instructions.

4) Miscellaneous: two other functionalities have been pro-

posed, the possibility to automatically load the require-

ments associated with a procedure by using its theme(s)

and the possibility to take into account numeric interval

values checking.

A. Project definition

In order to provide a convivial tool, several files can be

gathered in one project. Those files and the ones that will be

generated will be stored in the same directory. The interface

for the project handling divides the screen in three parts,

requirement files, procedure files and synonyms files. The tool

enables the user to add or remove files.

B. “Cleaning” and cutting

This functionality consists of removing the words that are

not tagged by TEXTCOOP. In a second time all articles and

prepositions are removed. Moreover the text is updated in

order to reduce at most the vocabulary used, this is done by

using synonyms files. Before this update, the tool checks for

the consistency of synonyms files in order to avoid problems

like “word A should be replaced by word B”, and “word A

should be replaced by word C”; then the tool does a transitive

closure of the synonyms files in order to simplify cases where

“word A should be replaced by word B” and “word B should

be replaced by word C”.

The cutting part consists in matching the clean sentence

with a predefined mask. In practice this is done by studying

the tags that have been given by TEXTCOOP in order to fit

the mask.

It is possible for the user to browse the different files, and

to open a detailed view of these files in the main part of the

screen (see Figure 1). The different stages of the cleaning and

cutting processes are shown to the user who can check for the

validity of the current translation (and may alert the system if

there is a wrong mask selected).

Since the tool is in an experimental stage, it may pro-

duce some mistakes. Those mistakes may come from a bad

tagging by TEXTCOOP due to the use of too complex sen-

tences, or ambiguous vocabulary, or simply to unpredicted

language use. This leads us to allow for manual corrections:

the user is enabled to give new synonyms, to alert about

some mask mistakes and to propose another tagging of some

words and eventually to write an explanation/comment for the

TEXTCOOP administrator.

C. Logical correctness

Once the clean and corrected sentences have been associated

with a mask, they are translated into logic (as explained in

Section III-B), then the logical formula is sent to Z3 solver.

The results are parsed in order to give a clear diagnostic and

they are presented thanks to a translation into XSL which

allows to show the texts in a browser in a more convenient

way, using colors and fold/unfold effects. More precisely the

Fig. 1. Results of the different stages of the cleaning and cutting processes in LELIE on a French example

original sentences are shown in the initial order that they had

in the procedure, they are coloured by the system (for instance

the inconsistencies appear in red while correct instructions are

in green, see Figure 2), every item is unfoldable in order to

see their different translation stages and it is possible to obtain

an explanation of the inconsistency by clicking on the item

“inconsistency sources” (see Section III-C1).

A procedure being consistent, its completeness should be

checked. An item “Completeness check” is proposed to the

user and can be unfolded by clicking on it. The red color

is used to signal the requirements that are not fulfilled. If a

redundancy is detected then the corresponding text is colored

in yellow.

D. Miscellaneous

The automatic selection of the requirements related to a

procedure according to its theme is an available feature of the

tool.

The procedure consistency can be checked either instruction

by instruction or by checking a group of instructions together

and by shifting the entire group forward of one instruction.

Another feature is the ability to detect and reason about

numerical values and intervals of numeric values. For instance,

it is possible to use numbers in instructions or requirements

“check that the sensor temperature is equal to 25”, “the sensor

temperature should be between 5 and 10”. This has been done

by adding comparison tags to the masks as well as values or

interval values. In particular, it is possible to set the time as

well as the place of an instruction. The time being represented

by an integer, it can be used in comparisons.

Note that due to the many possible file formats for text

encoding (specially for French), this encoding should be

specified by the user. The tool may run on different operating

systems, the operating system is detected automatically (it is

necessary for a correct handling of the file storage).

V. RELATED WORKS AND DISCUSSION

This paper describes a tool that is based on AI-techniques

and automatic natural language processing, more precisely the

part of the tool that is able to translate procedural texts into

a predicate language in order to detect logical incorrectness.

This detection is done thanks to the Z3 SMT-solver. The choice

to use a SMT-solver and not a SAT-solver is justified by the

fact that it is easier to translate a sentence in natural language

by a logical expression using a predicative form than into an

expression with propositional variables. Moreover in a SMT-

solver it is possible to handle numerical values which are

frequent in industrial domains, the availability of quantifiers

and function symbols was also one reason for our choice even

if we do not use them in the current version of the tool. The use

of Prolog could also have been chosen in order to check logical

inconsistencies, the benefit of SMT-solver is their efficiency

in time (this is due to the SAT research progress that have

been stimulated by the international competitions among SAT-

solvers [11] and among SMT-solvers [12]).

Our use of the SMT-solver Z3 is a new application for

this kind of solvers that were initially designed for software

verification and analysis [6], [13]. It also has numerous other

applications in automated theorem proving, in hardware verifi-

cation [14], and in scheduling and planning problems [15] for

Fig. 2. Results of an inconsistency detection with LELIE on a French variant of Example 4-Section III-C1 (in red – or dark grey in the black-and-white
document – the unfolded instruction that produces the inconsistency)

instance. But as far as we know this is the first use of Z3 in

combination with an automatic handling of natural language

in order to detect logical incorrectness in texts.

The LELIE project is a new approach for analyzing techni-

cal texts. In this framework, the existing systems were either

only able to correct grammatical mistakes or only dedicated

to manage the requirements files and handle requirements

traceability (see [16] for a review of the existing softwares).

The idea to help people to correct higher-level mistakes like

logical ones is completely new in the domain of automatic and

interactive correction of written technical texts. The correction

checks that are carried out by our tool are crucial to reduce

complexity and mistakes in industrial texts hence to prevent

industrial risks.

If the studied framework is enlarged to other kinds of text,

there exists at least one other tool (see [17]), that also tries

to combine natural language processing and logic; this work

concerns regulation texts; nevertheless, these texts are more

complex that the technical ones and so the formal language

used in [17] is a very complex logic, a default temporal logic,

without efficient solvers.

Concerning future work, we would like to consider at least

the following directions:

• the use of ontologies in order to exploit the hierarchical

links between the manipulated objects (for instance to

exploit more intelligently the synonym files).

• a user-validation of the set of existing masks on real-

cases (for instance, do we need masks containing univer-

sal/existential quantifiers?); and, more generally, the use

of real-case is needed for validating the principles and the

tool, since the scalability of the tool is very important, it

is an ongoing task,

• the automatic correction of inconsistencies (possibly by

giving priorities to some requirements),

• an applet version of this tool.

REFERENCES

[1] Health and Safety Executive, “Fatal injury statistics,” http://www.hse.
gov.uk/statistics/fatals.htm.

[2] F. Barcellini, C. Albert, and P. Saint-Dizier, “Risk analysis and preven-
tion: LELIE, a tool dedicated to procedure and requirement authoring,”
in Proc. of LREC. ACL, 2012.

[3] P. Saint-Dizier, Challenges of Discourse Processing: the case of techni-

cal texts. Cambridge University Press, 2014.
[4] ——, “Processing natural language arguments with the textcoop plat-

form,” Argumentation and Computation, vol. 3, no. 1, pp. 49–82, 2012.
[5] M. Fitting, First-Order Logic and Automated Theorem Proving, ser.

Graduate Texts in Computer Science. Springer, 1996.
[6] L. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and

Algorithms for the Construction and Analysis of Systems, ser. LNCS,
C. Ramakrishnan and J. Rehof, Eds. Springer, 2008, vol. 4963, pp.
337–340.

[7] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” in Proc. of the 8th Intl. WS on Satisfiability Modulo Theories,
A. Gupta and D. Kroening, Eds., 2010.

[8] J. D. Kleer, “An assumption-based TMS,” Artificial Intelligence, vol. 28,
pp. 127–162, 1986.

[9] M. Liffiton and A. Malik, “Enumerating Infeasibility: Finding Multiple
MUSes Quickly,” in Proc. of CPAIOR, 2013, pp. 160–175.

[10] W. Raynaut, Module IA de l’Outil LELIE. Un logiciel intelligent d’aide

au diagnostic de risques dans les procédures industrielles, IRIT, http:
//www.irit.fr/~Marie-Christine.Lagasquie-Schiex/Lelie, 2013.

[11] M. Järvisalo, D. L. Berre, O. Roussel, and L. Simon, “The international
SAT solver competitions,” AI Magazine, vol. 33, no. 1, pp. 89–92, 2012.

[12] C. Barrett, L. de Moura, and A. Stump, “SMT-COMP: Satisfiabil-
ity modulo theories competition,” in Computer Aided Verification.
Springer, 2005, pp. 20–23.

[13] S. Lahiri and S. Qadeer, “Back to the future: revisiting precise program
verification using SMT solvers,” ACM SIGPLAN Notices, vol. 43, no. 1,
pp. 171–182, 2008.

[14] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani, “A lazy and layered SMT (BV) solver for
hard industrial verification problems,” in Computer Aided Verification.
Springer, 2007, pp. 547–560.

[15] P. Gregory, D. Long, M. Fox, and J. Beck, “Planning modulo theories:
Extending the planning paradigm.” in ICAPS, 2012.

[16] C. Ebert and R. Wieringa, “Requirements engineering: Solutions and
trends,” in Engineering and Managing Software Requirements, A. Au-
rum and C. Wohlin, Eds. http://dx.doi.org/10.1007/3-540-28244-0_20:
Springer Berlin Heidelberg, 2005, pp. 453–476.

[17] U. o. Pennsylvania Engineering, “Extracting traceable formal representa-
tions from natural language regulatory documents,” http://rtg.cis.upenn.
edu/extract-fm.

