

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12557

To link to this article : doi: 10.1109/IRI.2013.6642505
URL : http://dx.doi.org/10.1109/IRI.2013.6642505

To cite this version : Ziani, Adel and Hamid, Brahim and Geisel,
Jacob and Bruel, Jean-Michel A Model-based Repository of Security
and Dependability Patterns for Trusted RCES. (2013) In: IEEE
International Conference on Information Reuse and Integration (IRI),
14 August 2013 - 16 August 2013 (San Francisco, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Model-based Repository of Security and Dependability Patterns
for Trusted RCES

Adel Ziani, Brahim Hamid, Jacob Geisel and Jean-Michel Bruel
IRIT - University of Toulouse

118 Route de Narbonne, 31062 Toulouse Cedex 9, France
{ziani,hamid,geisel,bruel}@irit.fr

Abstract

The requirement for higher Security and Dependabil-
ity (S&D) of systems is continuously increasing, even
in domains traditionally not deeply involved in such is-
sues. Nowadays, many practitioners express their wor-
ries about current S&D software engineering practices.
New recommendations should be considered to ground
this discipline on two pillars: solid theory and proven
principles. We took the second pillar towards software
engineering for embedded system applications, focusing
on the problem of integrating S&D by design to foster
reuse.

Model driven approaches combined with patterns
can be extremely helpful to deal with these strong
requirements. In this work, we present a framework
for trusted Resource Constrained Embedded Systems
(RCES) development by design, by defining both a
model to represent S&D pattern language and an archi-
tecture for development tools. The implementation of
a repository of S&D patterns and their complementary
property models is discussed in detail.

Keywords. Resource Constrained Embedded Sys-
tems, Security, Dependability, Repository, Pattern,
Metamodel, Model-Driven Engineering.

1 Introduction

Non-functional requirements such as Security and
Dependability (S&D) [14] become more and more im-
portant as well as more and more difficult to achieve,
particularly in Resource Constrained Embedded Sys-
tems (RCES) [18, 7]. Such systems come with a large
number of common characteristics, including real-time,
temperature, memory, computational processing power
and/or energy consumption constraints, as well as se-

curity, dependability and efficiency requirements. The
integration of S&D features requires the availability of
both application domain specific knowledge and S&D
expertise at the same time. Hence capturing and pro-
viding this expertise by means of S&D patterns can
enhance embedded systems development.

In our previous work [8], we studied pattern mod-
eling frameworks and we proposed methods to model
security and dependability aspects in patterns and to
validate whether these still hold in RCES after pat-
tern application. The question remains at which stage
of the development process to integrate S&D patterns.
In our work, we promote a new discipline for system
engineering using a pattern as its first class citizen:
Pattern-based System Engineering (PBSE). PBSE ad-
dresses challenges similar to those studied in software
engineering focusing on patterns and from this view-
point addresses two kind of processes: the process of
pattern development and system development with pat-
terns. In order to interconnect these two processes, we
promote a structured model-based repository of S&D
patterns and property models. Therefore, instead of
defining new modeling artifacts, that usually are time
and efforts consuming as well as errors prone, the sys-
tem developer merely needs to select appropriate pat-
terns from the repository and integrate them in the
system under development.

According to Bernstein and Dayal [2], a repository
is a shared database of information on engineered arti-
facts. They introduce the fact that a repository has (1)
a Manager for modeling, retrieving, and managing the
objects in a repository, (2) a Database to store the data
and (3) Functionalities to interact with the repository.
In our work, we go one step further: a model-based
repository to support the specifications, the definitions
and the packaging of a set of modeling artifacts to as-
sist developers of trusted applications for resource con-
strained embedded systems. In this paper, we propose
an Model Driven Engineering (MDE) approach to pro-

duce a repository of modeling artifacts (S&D patterns,
resource models, S&D models,. . .). S&D patterns, de-
rived from and associated with domain specific models,
will help developers to integrate application building
blocks with S&D building blocks. The pattern building
process, clearly related to domain models, is the reason
why we advocate the use of a model-based repository.

The contribution of this work is threefold:

• Design framework: we propose a set of modeling
languages to specify a pattern for security and de-
pendability associated with property models inde-
pendent from end-development applications and a
structured repository.

• Tooling: we propose a Connected Data Objects
(CDO)1 based implementation of the repository
and a set of EMF tree-based editors to create pat-
terns and the required libraries,

• Validation: apply in practice to a resource con-
strained embedded system (RCES) in the context
of TERESA project [18, 7].

The rest of this paper is organized as follows. Sec-
tion 2 describes some modeling frameworks dealing
with repository of models and patterns. In Section 3,
we discuss the concepts as the basis for the definition of
the proposed modeling framework. Then, in Section 4,
we detail the specification of modeling languages for
patterns and properties. Section 5 describes the im-
plementation of the repository. Section 6 describes the
usage of the defined modeling framework in the context
of trusted RCES applications through the railway case
study. Section 7 provides a preliminary evaluation of
the approach along ISO-9126’s quality-in-use dimen-
sions. Finally, Section 8 concludes and draws future
work directions.

2 Related Work

In Model-Driven Development (MDD), model repos-
itories [12, 5, 2] are used to facilitate the exchange of
models through tools by managing modeling artifacts.
For instance, as presented in the standard ebXML [13]
and the ebXML Repository Reference Implementa-
tion2, a service repository can be seen as a metadata
repository that contains metadata on location infor-
mation to find a service. In [12], the authors propose
a reusable architecture decision model for setting-up
model and metadata repositories. In addition, some
helpers are included in the product for selecting a basic

1http://www.eclipse.org/cdo/
2http://ebxmlrr.sourceforge.net/

repository technology, choosing appropriate repository
metadata and selecting suitable modeling levels for the
model information stored in the repository.

The ReMoDD (Repository for Model Driven Devel-
opment) project [5] focuses on MDD for reducing the
effort of developing complex software by raising the
level of abstraction at which software systems are devel-
oped. This approach is based on a repository contain-
ing artifacts (e.g. documented MDD case studies, mod-
eling exercises and problems) that support research and
education in MDD. Another issue is graphical modeling
tool generation as studied in the GraMMi project [16].
GraMMi’s Kernel allows to manage persistent objects.
The kernel aims at converting the objects (models) in
an understandable form for the user via the graphical
interface. Recently, the MORSE project [9] proposes a
Model-Aware Service Environment repository address-
ing two common problems in MDD systems: traceabil-
ity and collaboration.

Pattern repositories are introduced to comprehen-
sibly explain pattern classification. The organization
of patterns in a repository allows to discover the re-
lationships among them and to facilitate the selection
of the most appropriate one. The repository may have
a structure in order to optimize the access (selecting
patterns with criteria and publishing new ones). How-
ever it is still difficult to find patterns solving particu-
lar security and/or dependability problems, caused by
the lack of a dedicated classification scheme for S&D
patterns and the lack of precise specification languages
for patterns. Some classifications are based on secu-
rity concepts. For example, ISO/IEC 13335 [11] pro-
vides a definition of the five key concepts: security,
confidentiality, integrity, availability and accountabil-
ity. A pattern classification scheme based on these do-
main level concepts, will facilitate pattern mining and
pattern navigation. An implicit approach for support-
ing developers in choosing patterns suitable for a given
problem is described in [3]. In this vision, the reposi-
tory contains patterns that are selected depending on
the history of their use regarding decisions made by
other developers to deal with related problems. An on-
tological approach for selecting design patterns is pro-
posed in [6] to facilitate the understanding and reuse
during software development.

3 The Framework for Trusted RCES
Applications

In our work, we promote a new discipline for system
engineering using a pattern as its first class citizen:
Pattern-based System Engineering (PBSE). PBSE ad-
dresses challenges similar to those studied in software

2

engineering. Therefore, PBSE focuses on patterns and
from this viewpoint addresses two kind of processes:
the process of pattern development and system devel-
opment with patterns. The main concern of the first
process is designing patterns for reuse and the second
one is finding the adequate patterns and evaluating
them with regard the system-under-development’s re-
quirements. In order to interconnect these two pro-
cesses, we promote a structured model-based reposi-
tory of S&D patterns and property models.

3.1 An S&D Pattern Repository

Usually, a pattern refers to a template which de-
scribes solutions for commonly occurring problems.
Unfortunately, most of them are expressed in a textual
form, as informal indication,s on how to solve prob-
lems. The same limitation applies to S&D patterns [8].
In this work we deal with a modeling and development
framework to support the specifications, the definitions
and the packaging of a set of S&D patterns and their
related models to assist the developers of trusted appli-
cations targeting several domains in RCES. Achieving
this goal requires to get (a) a common representation
of S&D models and artifacts for several domains, (b)
a flexible structure, (c) guidelines for platform specific
implementations and (d) guidelines to guarantee the
correctness of the models and artifacts integration step.

Security and dependability patterns are not only de-
fined from a platform independent viewpoint (i.e. they
are independent from the implementation), they are
also expressed in a consistent way with domain specific
trust models. Consequently, they will be much easier
to understand and validate by application designers in
a specific area. That is: (1) S&D experts can make
patterns publicly available, (2) S&D patterns can be
used by RCES developers in other companies, (3) S&D
patterns can be derived from and associated with do-
main specific models and (4) S&D patterns help ap-
plication developers to integrate application building
blocks with S&D building blocks. This is the reason
why we advocate the use of a model-based repository,
where patterns are clearly related to domain models.

Concretely, our repository system is a structure that
stores S&D patterns, property models and relation-
ships among them, coupled with a set of tools to man-
age, visualize, export and instantiate these artifacts in
order to use them in engineering processes (see Fig. 1).
We start with a set of definitions and concepts that
might prove useful in understanding our approach.

Adapting the definition of [17], we propose the fol-
lowing:

Definition 1 (S&D Pattern.) A security and de-

pendability pattern describes a particular recurring se-
curity and/or dependability problem that arises in
specific contexts and presents a well-proven generic
scheme for its solution.

Definition 2 (S&D Pattern System.) We define a
security and dependability pattern system as a model-
ing artifact system where its constituent parts are secu-
rity and dependability patterns, its referenced property
models and their relationships.

Definition 3 (Domain.) We define a domain as a
field or a scope of knowledge or activity that is charac-
terized by the concerns, methods, mechanisms,. . .
employed in the development of a system. The ac-
tual clustering into domains depends on the given
group/community implementing the target methodol-
ogy.

In this context, we use the pattern classification of
Riehle and Buschmann [15, 4], which is (1) System
Patterns, Architectural Patterns, Design Patterns and
Implementation Patterns to classify these patterns. In
addition, we recommend that a domain should include
knowledge about: protocols, processes, methods, tech-
niques, practices, OS, HW systems, measurement and
certification related to the specific domain. For ex-
ample, in a Railway domain, it’s recommended to use
HMAC as a mechanism for the realization of the secure
communication pattern.

3.2 The Repository System Framework

The repository presented here is a model-based
repository of S&D patterns. It constitutes one of the
most important key elements in the engineering process
for resource constrained embedded systems. Now, we
introduce our repository system framework as a work-
flow components (see Fig. 1).

• Repository Generation. The core of the framework
is the definition of specification languages to sup-
port the design of S&D pattern, S&D property
and resource property models. These languages
are obtained by using metamodeling approach as
illustrated in the next sections.

• Repository Implementation. Once these specifica-
tion languages have been defined, it is possible to
develop a repository. The development of such a
repository is based on transformation techniques
and the availability of MDE tools. As we shall
see in Section 4.4, the MDE transformation tech-
niques are use for the automatic generation of the
repository structure.

3

Figure 1. The proposed framework for trusted RCES applications based on a repository

• Repository Populating. The development environ-
ment associated to the repository is based on the
specification languages for defining S&D patterns
and property models. It is composed of tools for
the design, the instantiation and the validation of
these modeling artifacts. These tools support ba-
sic features including the storage in the repository.

• Repository Managing. In this part, we focus on
the management of the repository content. We
provide software to manage relationships among
S&D patterns specifications, and between S&D
patterns and their related property models. More-
over, we support basic features such as artifact
management and user management.

• Repository Accessing. Here we focus on the repos-
itory accessing techniques providing simple inter-
faces one for each artifact kind (S&D pattern and
property model). By accessing the repository, we
provide features based on model transformation
techniques to adapt the model of the pattern to
the target development environment. In addition,
some facilitators are provided guiding the end-
user choices on S&D patterns which can be used
to satisfy the system-under-development’s require-
ments.

4 Specification Languages

In the proposed vision, a pattern is the key ele-
ment for building trusted applications for resource con-
strained embedded systems. A pattern uses, in its turn,
a property model for specifying its properties. We begin
with an overview of the repository structure model.

4.1 A Model-based Repository of S&D Patterns
Model

The specification of the structure of the repository,
as visualized in Fig. 2 is based on the organization of its
content, mainly the S&D patterns, the property models
and their relationships. For instance, an S&D pattern
is linked with the other patterns and associated with
S&D and resource property models using a predefined
set of reference kinds.

4.2 Generic Property Modeling Language
(GPRM)

The metamodel of property [19] captures the com-
mon concepts of the two main concerns of trusted
RCES applications: Security, Dependability and Re-
source on the one hand and Constraints on these prop-
erties on the other hand. The libraries of properties
and constraints includes units, types, categories and
operators. For instance, security and dependability at-
tributes [1] such as authenticity, confidentiality and

Figure 2. The (simplified) Model-based repos-
itory Model

availability are defined as categories. These categories
require a set of measures types (degree, metrics, . . .)
and units (boolean, float,. . .). For that, we instanti-
ate the appropriate type library and its correspond-
ing unit library. These models are used as external
model libraries to type the properties of the patterns.
Especially during the design of the pattern (see next
sections) we define the properties and the constraints
using these libraries.

Figure 3. The (simplified) GPRM Metamodel

4.3 Pattern Specification Metamodel

The System and software Pattern Metamodel
(SEPM) [8], as visualized in Fig. 4, is a metamodel
defining a new formalism for describing patterns. Such

a formalism describes the concepts (and their rela-
tions) required to capture all the facets of patterns.
In addition to defining pattern concepts, the pat-
tern metamodel provides an instantiation mechanism
that enables the separation on the one hand between
the domain independent (DIPM) and domain specific
(DSPM) and on the other hand between the design
life cycle stage. We illustrate the usage of the SEPM
for specifying a pattern at domain independent and at
domain specific with the example of secure communica-
tion pattern. For the sake of simplicity, we only specify
the interfaces and the properties.

Figure 4. The (simplified) SEPM Metamodel

For the DIPM, a subset of the functions provided by
the external interfaces are:

• send(P, ch, m) : P sends message m to Q on the
channel ch,

• receive(P, ch, m) : P receives and accepts message
m from Q on the channel ch,

with P, Q ∈ {C, S}, ch(C, S) = ch(S, C) denoting the
communication channel of client (C) and server (S),
and m a message. The properties definitions require
the availability of the required property libraries. Here,
we specify an S&D property: “authenticity of sender
and receiver”. To type the category of this property
we use a category from the once defined in the S&D
category library: “Authenticity”.

The DSPM modeling level is a refinement of the
DIPM. In our example, we use HMAC protocol as a
mechanism related to the application domain to re-
fine the secure communication pattern. Therefore, the
external interfaces and properties refine the ones de-
fined at DIPM introducing domain specific concepts
related to the HMAC mechanism. For example, a

5

function send(P, ch, m, mac) refines the DIPM func-
tion send(P, ch, m) adding the mac as the generated
message authentication code.

In addition to the refinement of the concepts used
at DIPM, the DSPM involves developing technical in-
ternal interfaces as a set of functions related to the use
of HMAC to refine the secure communication pattern.
A subset of the functions provided by the internal in-
terfaces are:

• generateAH(P, keymac, m, mac) to prepare an
appropriate authentication header (MAC) for the
message m.

• checkAH(P, keymac, m, mac) verifies that the
message authentication code for m is correct and
originates from Q.

with P, Q ∈ {C, S}, ch(C, S) = ch(S, C) denoting
the communication channel of client (C) and server
(S), m a message and mac the generated message au-
thentication code. The interfaces (external and inter-
nal) with the required libraries of properties are then
used for developing the pattern properties. Here, in ad-
dition to the refinement of the S&D properties identi-
fied in the DIPM, at this level we identify some related
resource properties, e.g. the size of the cryptographic
key.

4.4 CDO Repository Implementation

Gaya is a repository platform to store the modeling
artifact specifications and instances through the APIs.
The structure is derived from the repository model and
implemented using Java and the Eclipse CDO Server
technology. Then, we provide the environment for the
use of Gaya repository.

The server part is responsible for managing and stor-
ing the data, and provides a set of features to interact
with the repository content. As shown in Fig. 8, thanks
to UML component diagram the server part is com-
posed of two components: (1) GayaServer providing
the implementation of the common API and (2) Gaya-
MARS providing the storage mechanisms. The server
part of the repository is provided as an Eclipse plugin
that will handle the launch of a CDO server defined
by a configuration file. The client part is responsible
for populating the repository and for using its content.
For this, we identify a set of CDO-based clients as de-
picted in Fig. 8. These clients provide APIs interfaces
(APIs) for applications in order to create the modeling
artifact, in order to use them and in order to man-
age the repository. These APIs are Gaya4Pattern (im-
plements the API4PatternDesigner), Gaya4Property

(implements the API4PropDesigner), Gaya4Admin
(implements API4Admin) and Gaya4SystemDeveloper
(implements the API4PatternUser).

4.5 Repository Populating - Design Tools

Tiqueo is an EMF generated tree-based editor for
specifying models of properties and constraints. In
addition, Tiqueo provides some features to create a
library for reusable objects, like the types and units
which allows us to use the libraries in a domain inde-
pendent manner. Furthermore, Tiqueo includes mech-
anisms to validate the conformity of the property and
constraint library to the GPRM metamodels and to
publish the results into the Gaya repository using the
Gaya4Property API.

For a DSPM pattern, the Arabion design environ-
ment is presented in Fig. 5. There is a design palette
on the right, a tree view of the project on the left and
the main design view in the middle. The design palette
is updated regarding the one used for a DIPM pattern
to display suitable design entities for building patterns
at DSPM. These entities are internal interfaces, do-
main and refinement. DS patterns are built by refining
DI patterns. In our example, the SecurityCommunica-
tionLayer@Design pattern refines the SecureCommu-
nication@Design pattern for the railway domain using
the HMAC mechanism. Like DI patterns, the DS pat-
tern has external interfaces. Furthermore, Arabion in-
cludes mechanisms to validate the conformity of the
pattern to the SEPM metamodel and to publish the
results to the repository using the repository interfaces
(Gaya4Pattern API).

4.6 Repository Managing

For the repository management, we provide a set of
facilities for the repository organization allowing the
enhancement of its usage using the Gaya4Admin API.
We provide also basic features such as user, domain and
artifact management. Moreover, we provide features to
support the management of the relationships among
artifacts specifications and between artifacts specifica-
tions and their complementary models. For instance,
as visualized in Fig. 6, a pattern is linked with other
patterns and associated with S&D and resource prop-
erty models using a predefined set of reference kinds
such as those proposed in the SARM metamodel.

Figure 5. Designing a Patten

Figure 6. Repository Management and re-
organization

4.7 Repository Accessing (Retrieval)

5 Architecture and Implementation
Tools

Using the proposed metamodels, ongoing experi-
mental work with the Semcomdt3 tool (IRIT editors
and platform as Eclipse plugins), as visualized in Fig. 8.

The tool uses the Gaya4SystemDeveloper API for
3http://www.semcomdt.org

Figure 7. Access Tool/ Pattern Instantiation

the search/selection/sorting of the patterns which is
used during a pattern and a system development pro-
cess. The Tool includes features for exportation and
instantiation as dialogs, mainly those based on model
transformation techniques to adapt the model of the
pattern to the target development environment. For
the use case presented in the next section, the trans-
lation is implemented to target Rhapsody UML [10].

Figure 8. An Overview of the Tools Components

Moreover, the tool provides a set of facilities to help se-
lecting appropriate patterns including key word search
and life cycle stage search, as shown in the right part of
Fig. 7. The results are displayed in search result tree
as System, Architecture, Design and Implementation
patterns. For example, the right part of Fig. 7 shows
that there is a DI pattern at design level targeting the
Confidentiality S&D property4, named communication
and has a keyword secure. In our case, we select the
Secure Communication pattern for instantiation pro-
viding the necessary information, including the project
path and instance name (see the left part of Fig. 7). In
addition, the tool includes dependency checking mech-
anisms. For example, a pattern can’t be instantiated,
when a property library is missing, an error message
will be thrown.

6 Application of a Model-based Repos-
itory of S&D Patterns to Industrial
Case Studies

In the context of the TERESA project5, we eval-
uated the PBSE approach to build two demonstra-
tors combining MDE and a model-based repository of
S&D patterns and their related property models: (1)
Railway Safe4Rail application in charge of the emer-
gency brake of a railway system and (2) Metrology
SmartMeterGateway application in charge of connect-
ing Smart Metering devices. The TERESA repository
contains so far (as of March 2013):

• Users. 5 organizations and 10 users.

• Property Libraries. 55 property model libraries,
including 12 Unit Libraries, 23 Type Libraries, 20
Category Libraries.

4In our modeling, this means that the pattern has a property
with a confidentiality category type.

5http://www.teresa-project.org/

• Patterns. 59 patterns, which are 20 System Level
patterns (12 DIPM, 8 DSPM), 25 Architecture
Level patterns (9 DIPM, 16 DSPM) and 14 De-
sign Level patterns (3 DI, 11 DSPM)

We used the design tools (Tiqueo and Arabion ed-
itors) to populate the Gaya repository and the Gaya
manager tool to set the relationships between the pat-
terns. Fig. 9 depicts an overview of the railway S&D
pattern language.

Figure 9. Railway Pattern Language -
Overview

Once the repository6 is available, it serves our un-
derlying PBSE for trust engineering process. In this
process model, the developer starts by requirements
engineering/specification, followed by system specifica-
tion. For each phase, the system developer executes the
search/select from the repository to instantiate appro-
priate patterns in its modeling environment using the
Access tool and then integrates them in its models fol-
lowing an incremental process. Moreover, the system
developer can use the pattern designer tool (Arabion)
to develop their own solutions when the repository fails
to deliver appropriate patterns at this phase.

6The repository system populated with S&D Patterns.

The process flow for the example of the Safe4Rail
application development can be summarized with the
following steps:

• Once the requirements are properly captured and
imported into the development environment, for
instance Rhapsody7, the repository may suggest
possible patterns to meet general or specific S&D
needs (according to requirements and application
domain): e.g. if the requirements contain the key-
words Redundancy or SIL4, a suggestion could be
to use a TMR pattern at architecture level. In ad-
dition, some diagnosis techniques imposed by the
railway standard may be suggested: TMR (sug-
gested by the tool), Diagnosis techniques (sug-
gested by the tool) and Sensor Diversity (searched
by the System Architect).

• Based on the selected patterns, the repository may
suggest related or complementary patterns. For
instance, if the TMR has been integrated , the fol-
lowing patterns may be proposed, thanks to the
repository structure, in a second iteration, for in-
stance at design phase: Data Agreement, Voter,
Black Channel Clock Synchronization.

7 Assessment

This section provides a preliminary evaluation of
the approach along ISO-9126 ’s quality-in-use dimen-
sions, i.e. effectiveness, productivity, safety and satis-
faction. Eleven TERESA members participated. They
were handed out a sheet with instructions for each task
(e.g., what properties to specify and what patterns de
develop, when to take note of the time, etc.).

The study was divided into three tasks. Before they
started, a general description of the aim of the study
was given (30’). Some running examples was intro-
duced to them. After these two tasks, achieved during
the TERESA MDE workshop in Toulouse (April 2012),
a 6-months evaluation was conducted. All the sub-
jects were already familiarized with MDE, S&D pat-
terns and Eclipse, though some did not know some of
the companion plugins (e.g. Acceleo). Hence, the gen-
eration of documentation was not part of the evalua-
tion. The procedure includes five tasks: SEMCO plug-
in installation, property models development, pattern
development, patterns instantiation and patterns inte-
gration. Here, we present only the users satisfaction.

Satisfaction is the capability of the software prod-
uct to satisfy its users. In this case, the product is the

7Rhapsody is the modeling environment used by Ikerlan Cen-
tre engineers.

repository of S&D patterns engine, and its ability to
develop a trusted RCES application. We asked partic-
ipants to give scores from 1 to 5 (5 is the best) and
comments. We first evaluated the perceived usefulness
of the solution itself (items 1-5). Next, we focus on the
tool-suite as a mean to build the modeling artifacts.
We separately collected the satisfaction along the four
tasks (items 6-14). Finally, we want also to measure
the willingness to use repository of modeling of S&D
patterns in the future in the related activities (items
15-20). The following table depicts an overview of the
results of our experiment.

Item Mean St. Dev.

1. I think ’model based repository’ is a good idea 4.90 0.18
2. I think ’model based repository’ helps to keep focus without 4.40 0.48
being distracted by other aspect of software engineering
3. I think ’model based repository’ are useful for defining 4.50 0.48
meaningful ’units of solution’
4. I think ’model based repository’ save me time to develop 4.40 0.50
S&D Embedded Systems
5. I think ’model based repository’ avoids re-inventing 4.60 0.48
existing solutions
6. I think the installation of the SEMCO plug-in is easy 4.10 0.48
7. I think repository populating tools are easy to use 3.80 0.54
8. I think repository access tools are easy to use 4.10 0.68
9. I think it is easy for me to develop new S&D patterns 3.50 0.36
10. I think it is easy for me to develop new properties models 3.80 0.70
11. I think S&D patterns instantiation is easy to use 3.80 0.64
12. I think properties models instantiation is easy to use 3.50 0.64
13. I think S&D patterns integration is easy to use 3.40 0.60
14. I think properties models integration is easy to use 4.60 0.60
15. I would like to develop S&D patterns in the future 3.80 0.56
16. I would like to develop properties models in the future 4.10 0.68
17. I would like to install other SEMCO plugins in the future 3.50 0.54
18. I would like to exchange SEMCO in the future 3.60 0.56
19. I would like to customize some SEMCO plugins 3.60 0.76
in the future
20. I would like to extend some SEMCO features 3.70 0.83
in the future

Figure 10. Satisfaction Results from 1 (total
disagreement) to 5 (total agreement).

These results seem to suggest that subjects like the
notion of model-based repository of patterns as a way
to speed the development of S&D applications by de-
sign (e.g. reuse existing solution through pattern), and
in so doing, improving focus on tough tasks (e.g. im-
plementation). However, pattern integration stands
up as the main stumbling block for pattern-based sys-
tem development adoption. More to the point, if we
consider that the subjects were programmer natives
(i.e. accustom to use programming language for se-
curity engineering). Specifically, users tend to over-
look the four rules that govern pattern-based system
development (i.e. (1) each pattern must be specified
domain-application independently, (2) every pattern
should instantiated in the context of the system-under-
development, (3) every pattern should instantiated in
the target domain-development environment, and (4)
more than one pattern is required to fulfill one S&D
property). They also point out the importance of the
automatic search for the user to derive those ’S&D pat-
terns’ from the requirements analysis.

8 Conclusion

In this paper, we target the development of a model-
based repository of S&D patterns that follows the MDE
paradigm. Our framework is based on metamodeling
techniques that allow to specify the S&D patterns at
different levels of abstraction and an operational ar-
chitecture of the repository. Furthermore, we walk
through a prototype with EMF editors and a CDO-
based repository supporting the approach. Currently
the tool suite named semcomdt is provided as Eclipse
plugins.

The approach presented here has been evaluated in
in the context of the TERESA project for a reposi-
tory of S&D patterns and property models targeting
RCES applications. First evidences indicate that users
are satisfied with the notion of ’model-based reposi-
tory of S&D patterns’. The approach paves the way to
let users define their own road-maps upon the PBSE
methodology. First evaluations are encouraging with
85% of the subjects being able to complete the tasks.
However, they also point out two main challenges: pat-
tern integration and automatic search for appropriate
patterns.

As future work, we plan to perform additional case
studies to evaluate both the expressiveness and usabil-
ity of the methodology, the DSLs and the tools. We will
seek new techniques for the automation of the search
and instantiation of models and patterns. Our vision
is for ’S&D patterns’ to be inferred from the browsing
history of users built from a set of already developed
applications.

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic Concepts and Taxonomy of De-
pendable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1:11–33, 2004.

[2] P. A. Bernstein and U. Dayal. An Overview of Repos-
itory Technology. In Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, VLDB
’94, pages 705–713. Morgan Kaufmann Publishers
Inc., 1994.

[3] R. Birukou, E. Blanzieri, P. Giorgini, and M. Weiss.
Facilitating pattern repository access with the im-
plicit culture framework. In Proceedings of ”EuroPLoP
2007”, 2007.

[4] G. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal. Pattern-Oriented Software Architec-
ture: a system of patterns, volume 1. John Wiley and
Sons, 1996.

[5] R. B. France, J. M. Bieman, and B. H. C. Cheng.
Repository for Model Driven Development (Re-

MoDD). In MoDELS Workshops’06, pages 311–317,
2006.

[6] R. Girardi and A. N. Lindoso. An ontology-based
knowledge base for the representation and reuse of
software patterns. ACM SIGSOFT Software Engineer-
ing Notes, 31(1):1–6, 2006.

[7] B. Hamid, N. Desnos, C. Grepet, and C. Jouvray.
Model-based security and dependability patterns in
RCES: the TERESA approach. In 1st International
Workshop on Security and Dependability for Resource
Constrained Embedded Systems (SD4RCES), 2010.

[8] B. Hamid, S.Gurgens, C. Jouvray, and N. Desnos.
Enforcing S&D Pattern Design in RCES with Mod-
eling and Formal Approaches. In J. Whittle, edi-
tor, ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MOD-
ELS), volume 6981, pages 319–333. Springer, octobre
2011.

[9] T. Holmes, U. Zdun, and S. Dustdar. MORSE: A
Model-Aware Service Environment, 2009.

[10] IBM. Rhapsody UML. http://www-
142.ibm.com/software/products/us/en/ratirhapfami/.

[11] ISO/IEC. Standard: ISO/IEC 13335, 2004.
[12] C. Mayr, U. Zdun, and S. Dustdar. Reusable Architec-

tural Decision Model for Model and Metadata Repos-
itories. In FMCO, pages 1–20, 2008.

[13] Oasis. ebXML: Oasis Registry Services Specification
v2.5, 2003.

[14] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattan-
gady. Security in embedded systems: Design chal-
lenges. ACM Trans. Embed. Comput. Syst., 3(3):461–
491, 2004.

[15] D. Riehle and H. Züllighoven. Understanding and us-
ing patterns in software development. TAPOS, 2(1):3–
13, 1996.

[16] C. Sapia, M. Blaschka, and G. Höfling. GraMMi: Us-
ing a Standard Repository Management System to
Build a Generic Graphical Modeling Tool. In Pro-
ceedings of the 33rd Hawaii International Conference
on System Sciences-Volume 8 - Volume 8, HICSS ’00,
pages 8058–. IEEE Computer Society, 2000.

[17] M. Schumacher. Security Engineering with Patterns
- Origins, Theoretical Models, and New Applications,
volume 2754 of Lecture Notes in Computer Science.
Springer, 2003.

[18] TERESA Consortium. TERESA Project.
http://www.teresa-project.org/.

[19] A. Ziani, B. Hamid, and S. Trujillo. Towards a
Unified Meta-model for Resources-Constrained Em-
bedded Systems. In 37th EUROMICRO Conference
on Software Engineering and Advanced Applications,
pages 485–492. IEEE, 2011.

