Reliable computation of a multiple integral involved in the neutron star theory

Abstract : The following multiple integral is involved in the neutron star theory: \[\tau(\epsilon,\upsilon)=\frac{1}{\omega(\epsilon)}\int_{0}^{\pi/2}d\theta sin(\theta) \int_{0}^{\infty}dnn^{2} \int_{0}^{\infty}dph(n, p, \theta, \epsilon, \upsilon)\] where \[h(n,p,\theta,\epsilon,\upsilon)=\psi(z)\phi(n-\epsilon-z)+\psi(-z)\phi(n-\epsilon+z)-\psi(z)\phi(n+\epsilon-z)-\psi(z)\phi(n+\epsilon+z)\] and \[z=\sqrt{p^{2}+(\upsilon \sin(\theta))^{2}},\psi(x)=\frac{1}{\exp x + 1},\phi(x)=\frac{x}{\exp x - 1}.\] $\omega(\epsilon)$ is a normalization function. The aim is to get a table for $\tau(\epsilon,\upsilon)$ for some values of $(\epsilon,\upsilon)$ in $[10^{−4},10^{4}]\times[10^{−4},10^{3}]$ and then to interpolate for the others. We present a new strategy, using the Gauss–Legendre quadrature formula, which allows to have one code available whatever the values of vv and εε are. We guarantee the accuracy of the final result including both the truncation error and the round-off error using Discrete Stochastic Arithmetic.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01146493
Contributor : Lip6 Publications <>
Submitted on : Tuesday, April 28, 2015 - 2:43:01 PM
Last modification on : Friday, May 24, 2019 - 5:31:55 PM

Identifiers

Citation

Fabienne Jézéquel, Fabien Rico, Jean-Marie Chesneaux, Mourad Charikhi. Reliable computation of a multiple integral involved in the neutron star theory. Mathematics and Computers in Simulation, Elsevier, 2006, 71 (1), pp.44-61. ⟨10.1016/j.matcom.2005.11.014⟩. ⟨hal-01146493⟩

Share

Metrics

Record views

128