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Abstract

In the present paper spaces of fifth-order tensors involved in bidimensional strain gradient elas-
ticity are studied. As a result complete sets of matrices representing these tensors in each one
of their anisotropic system are provided. This paper completes and ends some previous studies
on the subject providing a complete description of the anisotropic bidimensional strain gradient
elasticity. It is proved that this behavior is divided into 14 non equivalent anisotropic classes, 8
of them being isotropic for classical elasticity. The classification and matrix representations of
the acoustical gyrotropic tensor are also provided, these results may find interesting applications
to the study of waves propagation in dispersive micro-structured-media.

Keywords: Strain gradient elasticity, Anisotropy, Higher-order tensors, Chirality, Acoustical
activity

1. Introduction

Understanding and modeling wave propagation in periodic lattices is a problem of prime
importance for the design of metamaterials. The shape of the elementary cell and its point
group determines the elementary vibration modes of the lattice (Dresselhaus et al., 2008), hence
the number and nature of acoustical and optical branches of the dispersion curves. The structure
of branches are important since it determines the band gaps (Kittel, 2007), which are responsible
for some ”macroscopic” non standard effects. Another specific feature of wave propagation in
periodic lattices is a strong directionality at high frequencies, which cannot always be described
by a classical continuous formulation.

At the present time, the study of wave propagation in periodic lattices relies on FEM
computation on a unit cell. Results of such simulations can be found in numerous references
(Phani et al., 2006; Spadoni et al., 2009; Liu et al., 2011). The determination of a continuous
substitution medium that would replace the explicit micro-structure might be valuable, especially
regarding optimization purposes (Jensen and Sigmund, 2004). Since the loading wavelengths are
a few times the scale of the unit cell, wave propagation through the medium is dispersive, i.e.
the phase velocity of a wave depends on its frequency. And, as well-known, classical linear
elasticity is not dispersive (Royer and Dieulesaint, 2000). This raises the question of how to
model dispersivity in a continuous fashion. Such a formulation is appealing for studying wave
transmission and reflection across material discontinuities, which could find natural applications
both in biomechanics (Rosi et al., 2014) and nondestructive damage evaluation (dell’Isola et al.,
2011).

∗Corresponding author
Email address: Nicolas.auffray@univ-mlv.fr (N. Auffray)

Preprint submitted to IJSS March 30, 2015



This question began to be investigated in the field of condensed matter physics during the
1960s (Toupin, 1962; Portigal and Burstein, 1968). The aim was to circumvent the uses of cum-
bersome models of lattice dynamics in the modeling of dispersive behaviors. Physical motivations
were two-fold:

Acoustical activity which concerns the rotation of the plane of polarization of a transverse
wave through its propagation, was observed in some crystals. This effect, which can
be encoded by a fifth-order gyrotropic tensor (Bhagwat et al., 1986), couples strain and
strain-gradient effects.

Ballistic phonon imaging is an high-energy imaging technique used to investigate the anisotropic
features of crystals. Using heat pulses of very high frequency (0.1-1 THz), for very low
room temperature (Wolfe, 2005), the heat propagation is no more diffusive but ballistic
and described by the elastic properties of the crystal lattice. To study departure from
classical elasticity that occurs at high-frequency, DiVincenzo (1986) proposed a continuum
extension that involved not only a fifth-order elasticity tensor but also a sixth-order one.

Nowadays problematics in metamaterials studies are very similar1. Since effective description
using classical elasticity is not sufficient, one can use generalized continuum theories which are
known to be dispersive. There are two ways to extend classical continuum mechanics (Toupin,
1962; Mindlin, 1964, 1965; Erigen, 1967; Mindlin and Eshel, 1968):

Higher-order continua: with this option the number of degrees of freedom is extended. These
theories can model optical branches. The Cosserat elasticity in which local rotations are
added as degrees of freedom belongs to this family (Cosserat and Cosserat, 1909). This en-
hancement can be extended further to obtain the micromorphic elasticity (Green and Rivlin,
1964; Mindlin, 1964; Germain, 1973).

Higher-grade continua: the other option is to keep the same degrees of freedom but to add
higher-order gradients of the displacement field into the energy density. Within this frame-
work no optical branch is added to the acoustical ones. Mindlin first strain-gradient elastic-
ity (SGE) (Mindlin, 1964; Mindlin and Eshel, 1968), and second strain gradient elasticity
(Mindlin, 1965) belongs to this family. Higher-grade continua can be conceived as low
frequency, long wave-length approximations of higher-order continua (Mindlin, 1964).

This situation is sketched in Table 1.
In order to mimic the general approach followed in physics which are based on Taylor expan-

sion of a non-local constitutive operator, the higher-grade path will be followed. In the present
paper, Mindlin strain-gradient elasticity (SGE) will be considered. This model can be seen as
a phenomenological approximation of the expansion used by Portigal and Burstein (1968) or
DiVincenzo (1986)2.

modeling anisotropic wave propagation in this framework requires knowing the
matrix representations of

• higher-order inertia tensors;

• higher-order elasticity tensors;

1It is worth noting an important difference between these two approaches: for condensed matter physics, the
number of degrees of freedom of the microproblem is finite, whereas this number is infinite for metamaterials.

2DiVicenzo’s perturbative approach and the Mindlin strain-gradient phenomenological continuum agree on
both the fourth- and fifth-order tensors, but differ for the sixth-order one. To obtain a strict agreement on this
tensor, Mindlin second strain-gradient elasticity should be used (Mindlin, 1965). Since the nature of the correct
continuum extension remains unclear today, attention will be concentrated in the present paper on the simplest
consistent extension.
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Table 1: Basic extensions of a classical continuum. From the left to the right, rotation then strech are added to
the kinematics. For higher-order continua these extensions are independent DOF, for higher-grade continua they
are controlled by higher-order gradients of the displacement field.

in each anisotropic system. The first point has rarely been addressed in the lit-
erature, and at the present time little is known, except in some specific situations
(Wang and Sun, 2002; Bacigalupo and Gambarotta, 2014). Despite its interest, this
subject will not be considered in the present paper in which attention will be fo-
cused on higher-order elasticity tensors. If higher-order inertia tensors are specific
to dynamics, higher-order elasticity tensors are also involved in statics. Hence, our
results may find applications both for static and dynamics.

Concerning higher-order elasticity tensors, if matrix representations are known
for the sixth-order elasticity tensor (Auffray et al., 2009a, 2013), the fifth-order
tensor involved in this model has not been studied; it is the purpose of the present
contribution to provide a complete set of anisotropic matrix representation for this
fifth-order coupling tensor. For the sake of simplicity, our investigation will be
restricted to a bidimensional physical space. As a consequence:

• the description of the static anisotropic 2D strain-gradient elasticity model is
now complete. 2D static strain-gradient elasticity possesses 14 different types
of anisotropy, 8 of them being isotropic for classical elasticity;

• the complete set of gyrotropic tensors responsible for the so-called acoustical

activity, that is the rotation of the plane of polarization of a transverse wave
through its propagation3, is also obtained.

The paper is organized as follows. First, the constitutive law of SGE is recalled and results
regarding symmetry classes are recapitulated. The main results obtained for the coupling elas-
ticity (CE) tensor and the acoustic gyrotropic (AG) tensor are given in Section 3, where explicit
matrix representations for all the symmetry classes are provided. In Section 4 results concerning
tensors of SGE are summarized, and the complete classification of SGE law is given. The dif-
ferent kinds of coupling which may occur are detailed. It will be shown that, in 2D, fifth-order
coupling elasticity plays a limited role in the modeling of chiral sensitivity. Finally, in Section 5
a few concluding remarks are drawn.

2. Strain-gradient elasticity

In this section, the basic equations of strain gradient elasticity are presented. The constitutive
relations are considered first, followed by the equation of motion. These different relations

3If the nature of this effect is rather clear in a 3D space, its interpretation in 2D remains unclear.
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involve the classical fourth-order elasticity tensor supplemented by a fifth-order coupling tensor
and a sixth-order tensor. It should be noted that the motion equation only involves a particular
combination of components of the fifth-order tensor. This leads to the definition of the fifth-order
acoustical gyrotropic tensor. As will be shown hereafter, these two fifth-order tensors behave
differently with respect to material symmetries.

2.1. Constitutive equations

In the strain-gradient theory of linear elasticity (Mindlin, 1964; Mindlin and Eshel, 1968),
the constitutive law gives the symmetric Cauchy stress tensor σ and the hyperstress tensor τ in
terms of:

• the infinitesimal strain tensor: ε

• the strain-gradient tensor: η = ε ⊗∇ which, using index notation, gives ηijk =
εij,k the comma denoting a derivation.

through the two linear relations:

{
σij = Cijlmεlm +Mijlmnηlmn,

τijk = Mlmijkεlm +Aijklmnηlmn.
(1)

Above,

• C is the classical fourth-order elastic tensor;

• M is the fifth-order coupling elastic (CE) tensor;

• A is the sixth-order second-order elastic (SOE) tensor.

These tensors satisfy the following index permutation symmetry:

C(ij)(lm) ; M(ij)(kl)m ; A(ij)k (lm)n

where the notation (..) stands for the minor symmetries, whereas .. stands for the major one. In
the case where the microstructure of a material exhibits centro-symmetry, the fifth-order elastic
stiffness tensor M vanishes. It is worth noting that in even dimension the inversion is a proper
transformation. As a consequence, and contrary to the 3D case, the vanishing of an odd-order
tensor is not related to chirality. In 2D, odd-order tensors are null for even-order rotational
invariant media (Auffray et al., 2009b). Hence, as it will be shown, the fifth-order coupling
tensor exists both for chiral and achiral media.

2.2. Dynamics

As the foreseen applications concern dispersive elastodynamics, the associated equation and
construction of the acoustic gyrotropic tensor are presented here. This topic will be considered
more in depth in a forthcoming paper (Rosi and Auffray, 2015). In the absence of body
double-forces, the motion equation of a strain-gradient media subjected to body
forces fi reads:

sij,j + fi = ρüi − κjiküj,k − κjkilüj,kl (2)

where sij is the effective second-order symmetric stress tensor, κjik is a third order
micro-inertia tensor and κjkil a fourth order micro-inertia tensor (Mindlin and Eshel,
1968; Mindlin, 1964; Ben-Amoz, 1976; Askes and Aifantis, 2011; Bacigalupo and Gambarotta,
2014) . It is important to remark that the third order micro-inertia tensor κjik
is vanishing for centrosymmertic materials (see e.g. Bacigalupo and Gambarotta
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(2014)).
This tensor is defined as follows:

sij = σij − τijk,k.

Using the general constitutive law (1), the effective second-order tensor takes the form

sij = Cijlmεlm + (Mijklm −Mklijm)εlm,k −Aijklmnεlm,nk

which can be rewritten in the following way

sij = Cijlmεlm +M ♯
ijklmεlm,k −Aijklmnεlm,nk (3)

with the dynamic fifth-order tensor M♯ defined as

M ♯
ijklm = Mijklm −Mklijm

This tensor possesses the following index symmetries:

M ♯

(ij)(kl)m
(4)

where the notation .... indicates antisymmetry with respect to block permutation (Boutin, 1996;
Triantafyllidis and Bardenhagen, 1996). In physics this tensor is known as the acoustical gy-
rotropic tensor and is responsible for the-called acoustical activity (Portigal and Burstein, 1968;
Srinivasan, 1988).

2.3. Synthesis

Until now, C and A, the vector spaces of C and A, have been investigated, both in a 2D
and 3D euclidean spaces (Mehrabadi and Cowin, 1990; Forte and Vianello, 1996; Auffray et al.,
2009a, 2013). Also, the answers to the following three questions have been provided:
(a) How many symmetry classes and which symmetry classes do C and A have?
(b) For every given symmetry class, how many independent material parameters do C and A

have?
(c) For each given symmetry class, what is the explicit matrix form of C and A relative to an
orthonormal basis?

In 2D, for C, He and Zheng (1996) demonstrated that the space of classical fourth-order
tensors is divided in 4 classes. This result was also obtained by a different mean by Vianello
(1997). For A the question was solved in 2D by Auffray et al. (2009a), the space of sixth-order
tensors is more complex since it is divided in 8 classes. For the 3D case, the number of symme-
try classes increases since C is now divided into 8 classes (Forte and Vianello, 1996), and A into
17 classes (Olive and Auffray, 2013; Auffray et al., 2013). At the present time, these questions
remain open for the fifth-order tensor spaces M and M

♯, both in 2D and 3D. Some theoreti-
cal results are available concerning the 3D case (Olive and Auffray, 2014; Auffray,
2014), but without explicit construction. In order to have a complete SGE theory to
model dispersive media, answering the aforementioned three questions for M and M

♯ is impor-
tant. In the following this study will be conducted for M and results for M♯ will then be deduced.

2.4. Symmetry classes

Let Q be an element of the 2D orthogonal group4 O(2). M is said to be invariant under the
action of Q if

QioQjpQkqQlrQmsMopqrs = Mijklm. (5)

4The orthogonal group in 2D is defined as O(2) = {Q ∈ GL(2)|QT = Q−1}, in which GL(2) denotes the set
of invertible transformations acting on R

2.
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The symmetry group of M is defined as the subgroup GM of O(2) constituted of all the orthog-
onal tensors leaving M invariant:

GM = {Q ∈ O(2) |QioQjpQkqQlrQmsMopqrs = Mijklm }. (6)

As proposed by Forte and Vianello (1996) it is meaningful to consider two tensors M and N as
exhibiting symmetry of the same kind if their symmetry groups are conjugate in the sense that

there exists a Q ∈ O(2) such that GN = QGMQT . (7)

Thus, the symmetry classes associated to M can be naturally defined as the set [GM] of all the
subgroups of O(2) conjugate to GM:

[GM] = {G ⊆ O(2)
∣∣G = QGMQT ,Q ∈O(2)}. (8)

In other words, the symmetry class to which M belongs corresponds to its symmetry group
modulo its orientation, i.e. O(2). Furthermore, it is known (Zheng and Boehler, 1994) that in a
bidimensional space, the symmetry class of a tensor is conjugate to a closed subgroup of O(2).
The collection of these subgroups are known and are elements of the following set (Armstrong,
1983):

{Id,Zπ
2 ,Zk,Dk, SO(2),O(2)}k∈N>1

in which the following groups are involved:

• Id, the identity group;

• Zk, the cyclic group5 with k elements generated by R(2π/k), a rotation angle 2π/k;

• SO(2), the infinitesimal rotation group, the cyclic limit group for k → ∞;

• Zπ
2 , where π denotes a mirror transformation through the y axis;

• Dk, the dihedral group with 2k elements generated by R(2π/k) and π;

• O(2), the infinitesimal orthogonal, the dihedral limit group for k → ∞;

In the following a group will be said mirror-invariant, M, if it contains the reflection-
operation, π, and centro-invariant, I, if it contains the inversion-operation i = R(π). In 2D,
and in contrary to 3D, the inversion implies the presence of an even-order rotation;
hence the inversion is, in this case, a proper transformation. As a consequence, in
2D, chirality is not equivalent to non-centro symmetry, but to the lack of mirror
symmetry only. Hence the set of closed subgroups of O(2) can be divided in four subsets
according to whether groups are mirror-invariant (M) or not (M), centro-invariant (I) or not
(I). The following table contains the different cases:

I I
M D2k,O(2) Zπ

2 , D2k+1

M Z2k, SO(2) Z2k+1

Table 2: Classification of O(2) subsets according to their mirror- and centro-invariance

As will be seen, these four sets describe the different couplings that may, or may not, exist
in the complete SGE model.

5It has to be noted that Zπ
2 and Z2 are isomorphic as group but not conjugate.
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In a side paper (Auffray et al., 2015), it is proved that, in 2D, the vector space M is divided
into 6 symmetry classes: one isotropic and five anisotropic. These results are summarized in
Table 3. Some comments concerning this classification have to be made:
• In order to be complete, and even if it reduces to the null tensor, the isotropic symmetry class
[O(2)] has been included in the classification;
• A tensor which is Z5-invariant has its symmetry group conjugate to a D5-invariant one. As a
consequence the pentachiral class [Z5] is empty.

Name Oblique Rectangular Trichiral Trigonal Pentachiral Pentagonal Isotropic

GM Id Zπ
2 Z3 D3 Z5 D5 O(2)

#indep(M) 18 (17) 9 6 (5) 3 2 (1) 1 0

[GM] [Id] [Zπ
2 ] [Z3] [D3] [D5] [D5] [O(2)]

Table 3: The names, the sets of subgroups [GM] and the numbers of independent components #indep(M) for the
6 symmetry classes of M. The in-parenthesis number indicates the minimal number of components of the matrix
in an appropriate basis.

The symmetry classes of the vector space M
♯ are very different, since the classes [Z3] and

[D5] are now empty. Results for the space of gyrotropic tensors6 are summarized in Table 4.

Name Oblique Rectangular Trichiral Trigonal Isotropic

GM Id Zπ
2 Z3 D3 O(2)

#indep(M
♯) 6 (5) 3 2 (1) 1 0

[GM♯ ] [Id] [Zπ
2 ] [D3] [D3] [O(2)]

Table 4: The names, the sets of subgroups [GM♯ ] and the numbers of independent components #indep(M
♯) for

the 4 symmetry classes of M♯. The in-parenthesis number indicates the minimal number of components of the
matrix in an appropriate basis.

3. Matrix representations of the coupling elasticity tensor

The goal of the present section is to determine, for each symmetry class, the explicit matrix

form ofM andM
♯ relative to an orthonormal basis {e1, e2}. To that aim we follow a strategy

introduced for classical elasticity by Mehrabadi and Cowin (1990) and extended to
strain-gradient elasticity in Auffray et al. (2009a) and Auffray et al. (2013). This
approach is summarized hereafter.

3.1. Orthonormal basis and matrix component ordering

Let be defined the following spaces:

T(ij) = {T ∈ Tij |T =
2∑

i,j=1

Tijei ⊗ ej , Tij = Tji}

T(ij)k = {T ∈ Tijk|T =
2∑

i,j,k=1

Tijkei ⊗ ej ⊗ ek, Tijk = Tjik}

which are, in 2D, respectively, 3- and 6-dimensional vector spaces. Therefore

6It can be noted that the following results are the same as for the space of piezoelectric tensors (Auffray et al.,
2015; Vannucci, 2007).
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• the first-order elasticity tensor C is a self-adjoint endomorphism of T(ij);

• the coupling elasticity tensor M is a linear application from T(ij)k to T(ij);

• the second-order elasticity tensor A is a self-adjoint endomorphism of T(ij)k.

In order to express the Cauchy-stress tensor σ, the strain tensor ε, the strain-gradient tensor
η and the hyperstress tensor τ as 3- and 6-dimensional vectors and write C, M and A as,
respectively: a 3 × 3, 3 × 6 and 6 × 6 matrices, we introduce the following orthonormal basis
vectors:

ẽI =

(
1− δij√

2
+

δij
2

)
(ei ⊗ ej + ej ⊗ ei) , 1 ≤ I ≤ 3

êα =

(
1− δij√

2
+

δij
2

)
(ei ⊗ ej + ej ⊗ ei)⊗ ek, 1 ≤ α ≤ 6

where the summation convention for a repeated subscript does not apply. Then, the aforemen-
tioned tensors can be expressed as:

ε̃ =

3∑

I=1

ε̃I ẽI , σ̃ =

3∑

I=1

σ̃I ẽI , η̂ =

6∑

α=1

η̂αêα, τ̂ =

6∑

α=1

τ̂αêα (9)

C̃ =

3,3∑

I,J=1,1

C̃IJ ẽI ⊗ ẽJ M =

3,6∑

I,α=1,1

M IαẽI ⊗ êα, Â =

6,6∑

α,β=1,1

Âαβ êα ⊗ êβ , (10)

so that the relations in (1) can be written in the matrix form

{
σ̃I = C̃IJ ε̃J +M Iαη̂α

τ̂α = MαJ ε̃J + Ãαβ η̂β
(11)

The relationship between the matrix components ε̃I and εij , and between η̂α and ηijk are

ε̃I =

{
εij if i = j,√
2εij if i 6= j;

η̂α =

{
ηijk if i = j,√
2ηijk if i 6= j;

(12)

and, obviously, the same relations between σ̃I and σij and τ̂α and τijk hold. For the constitutive
tensors we have the following correspondences:

C̃IJ =





Cijkl if i = j and k = l,√
2Cijkl if i 6= j and k = l or i = j and k 6= l,

2Cijkl if i 6= j and k 6= l.

(13)

M Iα =





Mijklm if i = j and k = l,√
2Mijklm if i 6= j and k = l or i = j and k 6= l,

2Mijklm if i 6= j and k 6= l.

(14)

Âαβ =





Aijklmn if i = j and l = m,√
2Aijklmn if i 6= j and l = m or i = j and l 6= m,

2Aijklmn if i 6= j and l 6= m.

(15)

It remains to choose appropriate two-to-one and three-to-one subscript correspondences between
ij and I, on one hand, and ijk and α, on the other hand. For the classical variables the standard
two-to-one subscript correspondence is used, i.e:

8



I 1 2 3

ij 11 22 12

Table 5: The two-to-one subscript correspondence for 2D strain/stress tensors

The three-to-one subscript correspondence for strain-gradient/hyperstress tensor, specified
in Table 5, is chosen in order to make the 6th-order tensor A block-diagonal for dihedral classes
(c.f. Appendix B)7.

α 1 2 3

ijk 111 221 122 Privileged direction: 1

α 4 5 6

ijk 222 112 121 Privileged direction: 2

Table 6: The three-to-one subscript correspondence for 2D strain-gradient/hyperstress tensors

The matrix representations of first- and second-order elasticity tensors have already been
investigated. Their different forms are recalled in Appendix A and Appendix B. Hence, in the
remaining subsection, attention will be devoted to CE tensors.

3.2. Transformation matrix

Using the introduced orthogonal bases and the subscript correspondences, the action of a
rotation tensor Q ∈ O(2) on M can be represented using two different matrices: a 3× 3 matrix
Q̃, and a 6× 6 matrix Q̂ in a way such that

QioQjpQkqQlrQmsMopqrs = Q̃IJMJαQ̂αβ (16)

where

Q̃IJ =
1

2
(QioQjp +QipQjo) ; Q̂αβ =

1

2
(QioQjp +QipQjo)Qkq (17)

with I and J being associated to ij and op, and α and β being associated to ijk and opq
respectively. Thus, formula (5) expressing the invariance ofM under the action ofQ is equivalent
to

Q̃MQ̂T = M (18)

where Q̃ stands for the 3 × 3 matrix of components Q̃IJ , Q̂ stands for the 6 × 6 matrix of
components Q̂αβ and M the 3× 6 matrix of components MJα.

3.3. Matrix representations of M and M
♯
for all symmetry classes

We are now ready to give the explicit expressions of M and M
♯
for each of the 5 anisotropic

classes. Matrices will first be given in a brut form, and in a second time split into sub-matrices
so as to make appear elementary building blocks. The order adopted to specify the expressions
of M for the symmetry classes [Zk] and [Dk] is k = 1, 3, 5.

3.3.1. Symmetry class characterized by [Id]

Constitutive tensor. In this most general case, illustrated by Figure 1, the material in question
is fully anisotropic and the CE matrix M comprises 18 independent components. The explicit

7Further comments on the reason of such a choice can be found in Auffray et al. (2013).

9



Figure 1: Oblique system (Id-invariance): the material is completely asymmetric.

expression of M as a full 3× 6 matrix is:

MId =



m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36




This matrix can be decomposed into sub-matrices that constitute elementary building blocks.
To that aim we first define the nm-dimensional space M(n,m) composed of n × m matrices.
Then, we can write M in the following way

MId =

(
A(6) B(6)

C(3) D(3)

)

where the form and number of independent components of each involved sub-matrix are specified
by

• A(6), B(6) ∈ M(2, 3);

• C(3), D(3) ∈ M(1, 3);

For example, A(6) is an element of M(2, 3) and contains 6 independent components while C(3)

belongs to M(1, 3) and comprises 3 independent components. It should be noted that it
is possible to find rotations that increases by one the number of zeros in MId. For
those particular angles, the matrix representation of the rotated tensor involves 17
components. If the associated physical is clear in classical elasticity Norris (1989),
its counterpart, if any, for strain-gradient elasticity is unclear.

Gyrotropic tensor. In this situation, the AG matrix M
♯
includes 6 independent components

M
♯
Id =




0 m♯
12 m♯

13 m♯
14 0 m♯

16

−m♯
12 0 m♯

23 0 −m♯
14 m♯

26

−m♯
16 −m♯

26 0 −m♯
23 −m♯

13 0




These components are related to those of MId through the relations:

m♯
12 = m12 −m21 ; m♯

13 = m13 −m35 ; m♯
23 = m23 −m34

m♯
16 = m16 −m31 ; m♯

14 = m14 −m25 ; m♯
26

= m26 −m32

It should be noted that it is possible to find rotations that make one more zero appears in

the previous matrix M
♯
Id. Therefore, in these specific bases the matrix M

♯
Id is defined by 5

components.
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Figure 2: Rectangular system (Zπ
2 -invariance): the material exhibits a symmetry plane.

3.3.2. Symmetry class characterized by [Zπ
2 ]

Constitutive tensor. The materials having the symmetry classes [Zπ
2 ], shown in Figure 2 is re-

ferred to as being rectangular. The CE matrix M contains 9 independent components. Using the
three-to-one subscript correspondence given in Table 5, the associated matrix has the following
brut form:

MZπ
2
=




m11 m12 m13 0 0 0

m21 m22 m23 0 0 0

0 0 0 m34 m35 m36




Gyrotropic tensor. In this situation the AG matrix M
♯
includes 3 independent components

M
♯
Zπ
2
=




0 m♯
12 m♯

13 0 0 0

−m♯
12 0 m♯

23 0 0 0

0 0 0 −m♯
23 −m♯

13 0




These components are related to those of MZπ
2
through the relations:

m♯
12 = m12 −m21 ; m♯

13 = m13 −m35 ; m♯
23 = m23 −m34

3.3.3. Symmetry classes [Z3] and [D3]

The materials having the symmetry classes [Z3] and [D3], as shown in Figures 3 and 4, are
referred to as trichiral and trigonal, respectively.

Constitutive tensors. The CE matrix M contains, respectively, 6 or 3 independent components.
Using the three-to-one subscript correspondence given in Table 5, the CE matrices exhibiting
the Z3-symmetry and D3-symmetry have the following brut forms:

MZ3 =



m11 −m11−
√
2
2
(m34+m35) −

√
2m11− 1

2
(3m34−m35) m24+

√
2m31 −m24−

√
2
2
(m31−m32) −

√
2m24− 1

2
(m31+m32)

m11+
√
2m34 −m11−

√
2
2
(m34−m35) −

√
2m11− 1

2
(m34+m35) m24 −m24−

√
2
2
(m31+m32) −

√
2m24− 1

2
(3m31−m32)

m31 m32

√
2
2
(m31−m32) m34 m35

√
2
2
(m34−m35)




MD3 =




m11 −m11−
√
2
2
(m34+m35) −

√
2m11− 1

2
(3m34−m35) 0 0 0

m11+
√
2m34 −m11−

√
2
2
(m34−m35) −

√
2m11− 1

2
(m34+m35) 0 0 0

0 0 0 m34 m35

√
2
2
(m34−m35)



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Figure 3: Trichiral system (Z3-invariance): the material is 2π
3
-invariant.

Figure 4: Trigonal system (D3-invariance): the material is 2π
3
-invariant and exhibits 3 symmetry planes.

And, using block matrix notations,:

MZ3 =

(
A(1) B(1)

C(2) D(2)

)
+

(
f(D(2)) f(C(2))

0 0

)
; MD3 =

(
A(1) 0

0 D(2)

)
+

(
f(D(2)) 0

0 0

)

First, the expressions of A(1) and B(1) with 1 independent component are specified by

A(1) =

(
a11 −a11 −

√
2a11

a11 −a11 −
√
2a11

)
; B(1) =

(
b11 −b11 −

√
2b11

b11 −b11 −
√
2b11

)

for the remaining independent components:

C(2) =
(
c11 c12

√
2
2 (c11 − c12)

)
; D(2) =

(
d11 d12

√
2
2 (d11 − d12)

)

and for the dependent ones:

f(C(2)) =

(√
2c11 −

√
2
2 (c11 − c12) −1

2(c11 + c12)

0 −
√
2
2 (c11 + c12) −1

2(3c11 − c12)

)
;

f(D(2)) =

(
0 −

√
2
2 (d11 + d12) −1

2(3d11 − d12)√
2d11 −

√
2
2 (d11 − d12) −1

2(d11 + d12)

)

It should be noted that it is possible to find rotations that reduce the number of coefficients in
MZ3 . For example, under a rotation of angle θ solution of:

tan 3θ =
c11 − c12
d11 − d12

(19)

the former matrix is transformed into a new one:

M
⋆
Z3

=

(
A(1) B⋆(1)

C⋆(1) D(2)

)
+

(
f(D(2)) f(C⋆(2))

0 0

)

12



Figure 5: Pentachiral system (Z5-invariance): the material is 2π
5
-invariant.

with

C⋆(1) =
(
c⋆11 c⋆11 0

)
; f(C⋆(1)) =

(√
2c⋆11 0 −c⋆11
0 −

√
2c⋆11 −c⋆11

)

In this specific basis the number of components needed to define MZ3 is decreased by one. But
it should be observed that after being rotated the resulting matrix is still different from MD3 .
Therefore the two symmetry classes are distinct.

Gyrotropic tensor. The AG matrices M
♯
have the following shapes:

M
♯
Z3

=




0 m♯
12

√
2
2 m♯

12 m♯
14 0 −

√
2
2 m♯

14

−m♯
12 0

√
2
2 m♯

12 0 −m♯
14 −

√
2
2 m♯

14√
2
2 m♯

14

√
2
2 m♯

14 0 −
√
2
2 m♯

12 −
√
2
2 m♯

12 0




M
♯
D3

=




0 m♯
12

√
2
2 m♯

12 0 0 0

−m♯
12 0

√
2
2 m♯

12 0 0 0

0 0 0 −
√
2
2 m♯

12 −
√
2
2 m♯

12 0




These components are related to those of MZπ
3
through the relations:

m♯
12 = −2m11 −

√
2

2
(3m34 +m35) ; m♯

14 = 2m24 +

√
2

2
(3m31 +m32)

It should be noted that it is possible to find rotations that transform the M
♯
Z3

into M
♯
D3

.
Therefore if for M the classes [Z3] and [D3] are distinct, this is no longer the case for M♯. It
means that if the constitutive tensor M is chiro-sensitive, the gyrotropic tensor M♯ is not.

3.3.4. Symmetry classes [Z5] and [D5].

Constitutive tensors. Whether a material is Z5-invariant or D5-invariant, the number of indepen-
dent parameters in the matrix representation is 2 or 1. But as it will be shown, there exists only
one symmetry class, the pentagonal one [D5]. The CE matrices MZ5 and MD5 for pentachiral
and pentagonal material systems (see Figures 5 and 6) are given respectively by

MZ5 =




m11 −m11 −
√
2m11 −m24 m24

√
2m24

−m11 m11

√
2m11 m24 −m24 −

√
2m24

√
2m24 −

√
2m24 −2m24

√
2m11 −

√
2m11 −2m11




MD5 =




m11 −m11 −
√
2m11 0 0 0

−m11 m11

√
2m11 0 0 0

0 0 0
√
2m11 −

√
2m11 −2m11



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Figure 6: Pentagonal system (D5-invariance): the material is 2π
5
-invariant and possesses 5 mirror lines.

And, using the block matrix notation:

MZ5 =

(
A(1) B(1)

0 0

)
+

(
0 0

f(B(1)) f(A(1))

)
; MD5 =

(
A(1) 0
0 0

)
+

(
0 0

0 f(A(1))

)

A(1) =

(
a11 −a11 −

√
2a11

−a11 a11
√
2a11

)
; B(1) =

(
−b11 b11

√
2b11

b11 −b11 −
√
2b11

)

f(A(1)) =
(√

2a11 −
√
2a11 −2a11

)
; f(B(1)) =

(√
2b11 −

√
2b11 −2b11

)

It is important to note that it is possible to find a rotation that reduces the number of coefficients
of MZ5 . Under a rotation of angle θ solution of:

tan 5θ =
−a11
b11

(20)

the former matrix is transformed into a new one:

M
⋆
Z5

=

(
A⋆(1) 0
0 0

)
+

(
0 0

0 f(A⋆(1))

)

with A⋆(1) having the same form as A(1). Therefore, after this rotation, M
⋆
Z5

= MD5 . Hence, as
announced in Section 2.4, the symmetry class [Z5] is empty.

Gyrotropic tensor. For these material symmetries, the gyrotropic tensor vanishes.

4. Complete 2D strain-gradient anisotropic systems

By combining the results of the previous section with previously published results (summa-
rized in the appendices), the shapes of complete strain-gradient elasticity can be given for all
the symmetry classes in 2D. To that aim, let us define the following space:

Sgr = {L = (Cijkl,Mijklm, Aijklmn) ∈ C×M× A}

which is the complete space of SGE. The symmetry group of L is defined as:

GL = GA ∩GM ∩GC

and, as for a single tensor, we can define the symmetry class of a linear law as:

[GL] = {G ⊆ O(2)|G = QGLQ
T ,Q ∈O(2)} (21)

As the union of the symmetry classes for each tensor space of the constitutive law covers all the
O(2)-subgroups allowed by the Hermann theorem (Auffray, 2008), there is no need to conduct
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a specific study to determinate the set of symmetry classes of Sgr. The number and type of
symmetry classes are known for each tensor space of Mindlin strain-gradient elasticity.

Before stating the classification, let us recap some results:

• Classical elasticity : the classification has been done by He and Zheng (1996). Their results
are synthesized in the following table:

Name Digonal Orthotropic Tetragonal Isotropic

[GC] [Z2] [D2] [D4] [O(2)]

#indep(C) 6 (5) 4 3 2

Table 7: The names, the sets of subgroups [GC] and the numbers of independent components #indep(C) for the
4 symmetry classes of C. The in-parenthesis number indicates the minimal number of components of the matrix
in an appropriate basis.

• Second-order elasticity : the classification has been done by Auffray et al. (2009a), and are
synthesized in the following table:

Name Digonal Orthotropic Tetrachiral Tetragonal

[GA] [Z2] [D2] [Z4] [D4]

#indep(A) 21 (20) 12 9 (8) 6

Name Hexachiral Hexagonal Hemitropic Isotropic

[GA] [Z6] [D6] [SO(2)] [O(2)]

#indep(A) 7 (6) 5 5 4

Table 8: The names, the sets of subgroups [GA] and the numbers of independent components #indep(A) for the
8 symmetry classes of A. The in-parenthesis number indicates the minimal number of components of the matrix
in an appropriate basis.

As a result we obtain 14 non equivalent symmetry classes, which are reported together with
their number of independent components in the following table:

Name Oblique Rectangular Digonal Orthotropic Trichiral Trigonal Tetrachiral Tetragonal

[GL] [Id] [Zπ
2 ] [Z2] [D2] [Z3] [D3] [Z4] [D4]

#indep(L) 45 (44) 27 36 (35) 16 15 (14) 10 13 (12) 9

Name Pentachiral Pentagonal Hexachiral Hexagonal Hemitropic Isotropic

[GL] [Z5] [D5] [Z6] [D6] [SO(2)] [O(2)]

#indep(L) 9 (8) 7 9 (8) 7 7 6

Table 9: The names, the sets of subgroups [GL] and the numbers of independent components #indep(L) for the
14 symmetry classes of L. The in-parenthesis number indicates the minimal number of components of the law in
an appropriate basis.
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As a result, in each symmetry class, the constitutive law has the following synthetic form:

LId =

(
CZ2 MId

MT
Id AZ2

)
; LZπ

2
=

(
CZ2 MZπ

2

MT
Zπ
2

AZ2

)
(22)

LZ2 =

(
CZ2 0
0 AZ2

)
; LD2 =

(
CD2 0
0 AD2

)
(23)

LZ3 =

(
CO(2) MZ3

MT
Z3

AZ6

)
; LD3 =

(
CO(2) MD3

MT
D3

AD6

)
(24)

LZ4 =

(
CD4 0
0 AZ4

)
; LD4 =

(
CD4 0
0 AD4

)
(25)

LZ5 =

(
CO(2) MD5

MT
D5

ASO(2)

)
; LD5 =

(
CO(2) MD5

MT
D5

AO(2)

)
(26)

LZ6 =

(
CO(2) 0

0 AZ6

)
; LD6 =

(
CO(2) 0

0 AD6

)
(27)

LSO(2) =

(
CO(2) 0

0 ASO(2)

)
; LO(2) =

(
CO(2) 0

0 AO(2)

)
(28)

In can be observed that among those 14 different classes, 8 of them are isotropic for classical
elasticity. These classes will be refered to as Cauchy-isotropic:

Iso = {[Z3], [D3], [Z5], [D5], [Z6], [D6], [SO(2)], [O(2)]}

and among them the following 4 ones are chiro-sensitive

Cir = {[Z3], [Z5], [Z6], [SO(2)]}

in which only [Z3], [Z6] are compatible with the crystallographic restriction. These different
Cauchy-isotropic classes differ by the nature and the kind of second-order anisotropic coupling.
Let us detail now the different kind of couplings that can be produced.

4.1. S- and O-type coupling

Auffray et al. (2009a) has pointed out that the sixth-order tensor A encodes some kind of
chiral behavior. In Section 3, another type of coupling encoded by the fifth-order tensor M has
been identified. These 2 couplings are distinct:

• The fifth-order tensor couples first order and second order terms. This cou-
pling of order (O-type) is due to the lack of the central symmetry (I) that
occurs for symmetry classes [Z2k+1] and [D2k+1]. For these classes the stress and
hyperstress equations are coupled. In other terms:

∂σ

∂η
6= 0 and

∂τ

∂ε
6= 0

This coupling may exist both for chiral and achiral symmetry classes.

• Chiral coupling phenomena described by the sixth-order tensor are of spatial type (S-type).
This mechanism occurs for the symmetry classes [Zk]. In such cases a chiral coupling is
created between the spatial directions and solely concerns second-order effects. Let consider
LSO(2) which is the simplest example of this situation. For this class M is null, therefore

∂σ

∂η
= 0 and

∂τ

∂ε
= 0
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This means that first- and second-order elasticity are not coupled. Let us now consider
the linear relation between τ and η in this particular case:




τ111
τ221√
2τ122
τ222
τ112√
2τ121




=




a11 a12
a11−a22√

2
−a23 0 a15 −a15√

2

a22 a23 −a15 0 −a15√
2

a11+a22
2

−a12
a15√

2

a15√
2

0

a11 a12
a11−a22√

2
−a23

a22 a23
a11+a22

2
−a12







η111
η221√
2η122
η222
η112√
2η121




The spatial coupling is encoded by the following antisymmetric matrix:




0 a15 −a15√
2

−a15 0 −a15√
2

a15√
2

a15√
2

0




which disappears in the symmetry class [O(2)]. This effect, which is present for all [Z2k]
symmetry classes, is a consequence of the absence mirror symmetries (Auffray et al., 2013).

Therefore the symmetry classes of SGE, can be split in 4 sets:

1. SO: Constitutive laws belonging to this set present both spatial- and order-coupling. This
set contains [Z2k+1], and hence corresponds to IM subgroup of O(2);

2. S: Constitutive laws belonging to this set present spatial-coupling. This set contains [Z2k]
and [SO(2)], and hence corresponds to IM subgroup of O(2);

3. O: Constitutive laws belonging to this set present order-coupling. This set contains
[D2k+1], and hence corresponds to IM subgroup of O(2);

4. A: Constitutive laws belonging to this set are uncoupled. This set contains [D2k] and
[O(2)], and hence corresponds to IM subgroup of O(2).

This structure is summed-up in the following diagram:

SO σ
//

i
��

S
i
��

O σ
// A

in which σ denotes reflection and i the inversion.
Hence in 2D the chiral coupling is encoded by the second-order elasticity tensor,
while non-centro-symetric coupling is encoded by the fifth-order tensor.

4.2. Discussion

It is interesting to note that, in the literature devoted to chiral lattices (Spadoni et al.,
2009; Liu et al., 2012; Spadoni and Ruzzene, 2012) and auxetic materials (Prall and Lakes, 1997;
Dirrenberger et al., 2011), attention has only been focused on geometries that induce S-type
chiral coupling8. The main difficulty to explore O-type chirality in 2D is that the associated
rotational groups are not compatible with translational symmetry:

• if a material is both [Z3] and invariant by translation, it is automatically [Z6]-invariant
9;

8Whereas in 3D, as the microstructure is generally neglected, attention is devoted to hemitropic SGE, i.e. to
O-type chiral coupling induced by the fifth-order tensor (Papanicolopulos, 2011).

9It is worth being noted that this symmetry may be broken down by using different materials in the tiling.
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• a [Z5]-invariance is not compatible with any translational invariance. It worth noting that
this kind of rotational invariance can be found in quasi-crystallographic tilings such as the
Penrose tilings.

Periodic tiling only present S-type coupling. A well-known example is the hexachiral struc-
ture (Figure 7(a)). This tiling was proposed by Lakes (1991) and studied in Prall and Lakes
(1997). Since then this material has bee studied by numerous authors (Spadoni et al., 2009;
Liu et al., 2012; Dirrenberger et al., 2011, 2012, 2013; Bacigalupo and Gambarotta, 2014). The
symmetry class of this pattern is [Z6], and hence, in the framework of SGE, there is no coupling
between first- and second-order elasticity. This observation is in agreement with the one made
by Spadoni and Ruzzene (2012) in the context of micropolar elasticity: first- and second-order
elasticity are not coupled for hexachiral structures.

(a) Mono-material: hexachiral

(b) Bi-material: trichiral,

Figure 7: Mono- and bi- material patterns, which belong to the [Z6] and [Z3] respectively

However, if we consider a bi-material hexachiral pattern, i.e with ligaments made
of a different material as in figure 7(b), this coupling between first- and second-order
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elasticity is necessary. Indeed, this new material will now belong to the class [Z3],
for which the tensor M is not vanishing.
The framework presented in this paper is then particularly useful when considering
chiral or periodic bi-material composites, whose higher order properties cannot
be taken into account when using other formulations, e.g. Cauchy or Micropolar
continua.

5. Conclusions

This paper completes some previous publications (Auffray et al., 2009a, 2010) on the de-
scription of anisotropic bidimensional strain-gradient elastic behavior. Two spaces of fifth-order
tensors have been studied:

1. the space of coupling elasticity tensors involved in the constitutive law;

2. the space of gyroptropic tensors, responsible of the so-called acoustic activity.

In both cases, a complete set of anisotropic matrices has been provided. As a consequence,
the anisotropic description of bidimensional strain-gradient elasticity is now complete. This
behavior is divided into 14 non-equivalent anisotropic classes, 8 of them being isotropic for
classical elasticity. We believe that those results will be useful for the continuous description of
architectured material, and especially for the modeling of non-classical waves propagation.
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Appendix A. Matrix representations for C

CZ(2)
=



c11 c12 c13

c22 c23
c33


 , CD(2)

=



c11 c12 0

c22 0
c33


 (A.1)

CZ(4)
=



c11 c12 c13

c11 −c13
c33


 , CD(4)

=



c11 c12 0

c11 0
c33


 (A.2)

CO(2) =



c11 c12 0

c11 0
c11 − c12


 (A.3)

Appendix B. Matrix representations for A

AZ(2)
=




a11 a12 a13 a14 a15 a16
a22 a23 a24 a25 a26

a33 a34 a35 a36
a44 a45 a46

a55 a56
a66




, AD(2)
=




a11 a12 a13 0 0 0
a22 a23 0 0 0

a33 0 0 0
a44 a45 a46

a55 a56
a66




(B.1)
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AZ(4)
=




a11 a12 a13 0 a15 a16
a22 a23 −a15 0 a26

a33 −a16 −a26 0
a11 a12 a13

a22 a23
b55




, AD(4)
=




a11 a12 a13 0 0 0
a22 a23 0 0 0

a33 0 0 0
a11 a12 a13

a22 a23
b55




(B.2)

AZ6 =




a11 a12
a11−a22√

2
−a23 0 a15 −a15√

2

a22 a23 −a15 0 −a15√
2

a11+a22
2

−a12
a15√

2

a15√
2

0

a44 a11−a44+a12
3a11−a22√

2
−a23−

√
2a44

a22+a44−a11
√
2(a44−a11)+a23

−3a11+a22
2

−a12+2a44




(B.3)

AD6 =




a11 a12
a11−a22√

2
−a23 0 0 0

a22 a23 0 0 0
a11+a22

2
−a12 0 0 0

a44 a11−a44+a12
3a11−a22√

2
−a23−

√
2a44

a22+a44−a11
√
2(a44−a11)+a23

−3a11+a22
2

−a12+2a44




(B.4)

ASO(2) =




a11 a12
a11−a22√

2
−a23 0 a15 −a15√

2

a22 a23 −a15 0 −a15√
2

a11+a22
2

−a12
a15√

2

a15√
2

0

a11 a12
a11−a22√

2
−a23

a22 a23
a11+a22

2
−a12




(B.5)

AO(2) =




a11 a12
a11−a22√

2
−a23 0 0 0
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