A. Abdelouas, J. L. Crovisier, and W. Lutze, Hydrotalcite formation by alteration of R7T7 nuclear waste glass in a salt solution at 190°C. Comptes rendus de l'académie des sciences série 317, pp.1067-1072, 1993.

E. Ahmed and S. J. Holmström, The effect of soil horizon and mineral type on the distribution of siderophores in soil, Geochimica et Cosmochimica Acta, vol.131, pp.184-195, 2014.
DOI : 10.1016/j.gca.2014.01.031

G. Aouad, J. L. Crovisier, V. A. Geoffroy, J. M. Meyer, and P. Stille, Microbially-mediated glass dissolution and sorption of metals by Pseudomonas aeruginosa cells and biofilm, Journal of Hazardous Materials, vol.136, issue.3, pp.889-895, 2006.
DOI : 10.1016/j.jhazmat.2006.01.026

URL : https://hal.archives-ouvertes.fr/hal-00120132

P. C. Bennett, M. E. Melcer, D. I. Siegel, and J. P. Hassett, The dissolution of quartz in dilute aqueous solutions of organic acids at 25??C, Geochimica et Cosmochimica Acta, vol.52, issue.6, pp.1521-1530, 1988.
DOI : 10.1016/0016-7037(88)90222-0

P. C. Bennett, Quartz dissolution in organic-rich aqueous systems, Geochimica et Cosmochimica Acta, vol.55, issue.7, pp.1781-1797, 1991.
DOI : 10.1016/0016-7037(91)90023-X

J. Brandel, N. Humbert, M. Elhabiri, I. J. Schalk, G. L. Mislin et al., Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes, Dalton Transactions, vol.326, issue.6, pp.2820-2834, 2012.
DOI : 10.1007/s10534-011-9464-z

URL : https://hal.archives-ouvertes.fr/hal-00783434

A. Braud, F. Hoegy, K. Jézéquel, T. Lebeau, and I. J. Et-schalk, pyoverdine-iron uptake pathway, Environmental Microbiology, vol.30, issue.Part 1, pp.1079-1091, 2009.
DOI : 10.1111/j.1462-2920.2008.01838.x

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

S. Cagno, G. Nuyts, S. Bugani, K. De-vis, O. Schalm et al., Evaluation of manganese-bodies removal in historical stained glass windows via SR-??-XANES/XRF and SR-??-CT, Journal of Analytical Atomic Spectrometry, vol.15, issue.1, pp.2442-2451, 2011.
DOI : 10.1039/c1ja10204d

J. Cama and J. Ganor, The effects of organic acids on the dissolution of silicate minerals: A case study of oxalate catalysis of kaolinite dissolution, Geochimica et Cosmochimica Acta, vol.70, issue.9, pp.2191-2209, 2006.
DOI : 10.1016/j.gca.2006.01.028

S. Capone, A. De-robertis, D. Stefano, C. Scarcella, and R. , Thermodynamics of formation of magnesium, calcium, strontium and barium complexes with 2,2'-bipyridyl and 1,10-phenanthroline, at different ionic strengths in aqueous solution, Talanta, vol.32, issue.8, pp.675-682, 1985.
DOI : 10.1016/0039-9140(85)80168-5

J. Cervini-silva, J. Kearns, and J. Banfield, Steady-state dissolution kinetics of mineral ferric phosphate in the presence of desferrioxamine-B and oxalate ligands at pH=4???6 and T=24??0.6??C, Chemical Geology, vol.320, issue.321, pp.320-321, 2012.
DOI : 10.1016/j.chemgeo.2012.05.022

T. Chave, P. Frugier, S. Gin, and A. Ayral, Glass???water interphase reactivity with calcium rich solutions, Geochimica et Cosmochimica Acta, vol.75, issue.15, pp.4125-4139, 2011.
DOI : 10.1016/j.gca.2011.05.005

S. F. Cheah, S. M. Kraemer, J. Cervini-silva, and G. Sposito, Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron, Chemical Geology, vol.198, issue.1-2, pp.63-75, 2003.
DOI : 10.1016/S0009-2541(02)00421-7

P. F. Chin and G. L. Mills, Kinetics and mechanisms of kaolinite dissolution: effects of organic ligands, Chemical Geology, vol.90, issue.3-4, pp.307-317, 1991.
DOI : 10.1016/0009-2541(91)90106-2

L. Chou and R. Wollast, Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor, Geochimica et Cosmochimica Acta, vol.48, issue.11, pp.2205-2217, 1984.
DOI : 10.1016/0016-7037(84)90217-5

C. Cocozza, C. C. Tsao, S. F. Cheah, S. M. Kraemer, K. N. Raymond et al., Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores, Geochimica et Cosmochimica Acta, vol.66, issue.3, pp.431-438, 2002.
DOI : 10.1016/S0016-7037(01)00780-3

S. Coluccia, A. Chiorino, E. Guglielminotti, and C. Morterra, Adsorption of 2,2???-bipyridyl on magnesium oxide and calcium oxide. Infrared spectra of neutral and anionic surface species, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.75, issue.0, pp.2188-2198, 1978.
DOI : 10.1039/f19797502188

J. L. Crovisier, T. Advocat, and J. L. Dussossoy, Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses), Journal of Nuclear Materials, vol.321, issue.1, pp.91-109, 2003.
DOI : 10.1016/S0022-3115(03)00206-X

E. Curti, J. L. Crovisier, G. Morvan, and A. M. Karpoff, Long-term corrosion of two nuclear waste reference glasses (MW and SON68): A kinetic and mineral alteration study, Applied Geochemistry, vol.21, issue.7, pp.1152-1168, 2006.
DOI : 10.1016/j.apgeochem.2006.03.010

URL : https://hal.archives-ouvertes.fr/hal-00082196

V. Daux, C. Guy, T. Advocat, J. L. Crovisier, and P. Stille, Kinetic aspects of basaltic glass dissolution at 90??C: role of aqueous silicon and aluminium, Chemical Geology, vol.142, issue.1-2, pp.109-135, 1997.
DOI : 10.1016/S0009-2541(97)00079-X

J. I. Drever and L. L. Stillings, The role of organic acids in mineral weathering. Colloids Surf, pp.167-181, 1997.

R. Drewello and R. Weissmann, Microbially influenced corrosion of glass, Applied Microbiology and Biotechnology, vol.47, issue.4, pp.337-346, 1997.
DOI : 10.1007/s002530050937

L. Elandalloussi, Effect of desferrioxamine and 2,2???-bipyridyl on the proliferation of Perkinsus atlanticus, Biomolecular Engineering, vol.20, issue.4-6, pp.349-354, 2003.
DOI : 10.1016/S1389-0344(03)00047-9

E. Farkas, E. A. Enyedy, and H. Csoka, A comparison between the chelating properties of some dihydroxamic acids, desferrioxamine B and acetohydroxamic acid, Polyhedron, vol.18, issue.18, pp.2391-2398, 1999.
DOI : 10.1016/S0277-5387(99)00144-8

J. Ferrand, Le phénomène de brunissement des vitraux médiévaux : critères d'identification et nature de la phase d'altération. Thèse de doctorat, p.207, 2014.

E. A. Ferreiro, S. G. Bussetti, and A. K. Helmy, Sorption of 2,2???-bipyridine on clays and oxides, Zeitschrift f??r Pflanzenern??hrung und Bodenkunde, vol.12, issue.3, pp.369-378, 1983.
DOI : 10.1002/jpln.19831460312

E. A. Ferreiro and S. G. Bussetti, Thermodynamic parameters of adsorption of 1,10- phenanthroline and 2,2'-bipyridyl on hematite, kaolinite and montmorillonites. Colloids Surf, pp.117-128, 2007.

D. Fliegel, E. Knowles, R. Wirth, A. Templeton, H. Staudigel et al., Characterization of alteration textures in Cretaceous oceanic crust (pillow lava) from the N-Atlantic (DSDP Hole 418A) by spatially-resolved spectroscopy, Geochimica et Cosmochimica Acta, vol.96, pp.80-93, 2012.
DOI : 10.1016/j.gca.2012.08.026

M. Fournier, S. Gin, and P. Frugier, Resumption of nuclear glass alteration: State of the art, Journal of Nuclear Materials, vol.448, issue.1-3, pp.348-363, 2014.
DOI : 10.1016/j.jnucmat.2014.02.022

T. R. Fox and N. B. Comerford, Low-Molecular-Weight Organic Acids in Selected Forest Soils of the Southeastern USA, Soil Science Society of America Journal, vol.54, issue.4, pp.1139-1144, 1990.
DOI : 10.2136/sssaj1990.03615995005400040037x

S. P. Franklin, A. J. Hajash, T. A. Dewers, and T. T. Tieh, The role of carboxylic acids in albite and quartz dissolution: An experimental study under diagenetic conditions, Geochimica et Cosmochimica Acta, vol.58, issue.20, pp.4259-4279, 1994.
DOI : 10.1016/0016-7037(94)90332-8

G. Furrer and W. Stumm, The coordination chemistry of weathering: I. Dissolution kinetics of ??-Al2O3 and BeO, Geochimica et Cosmochimica Acta, vol.50, issue.9, pp.1847-1860, 1986.
DOI : 10.1016/0016-7037(86)90243-7

J. P. Gallien, B. Gouget, F. Carrot, F. Orial, and A. Brunet, Alteration of glasses by micro-organisms, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.181, issue.1-4, pp.610-615, 2001.
DOI : 10.1016/S0168-583X(01)00530-4

I. Galeczka, D. Wolff-boenisch, E. H. Oelkers, and S. R. Gislason, An experimental study of basaltic glass???H2O???CO2 interaction at 22 and 50??C: Implications for subsurface storage of CO2, Geochimica et Cosmochimica Acta, vol.126, pp.123-145, 2014.
DOI : 10.1016/j.gca.2013.10.044

L. Gentaz, Simulation et modélisation de l'altération des verres de composition médiévale dans l'atmosphère urbaine, Thèse de doctorat, 2011.

S. Gin, X. Beaudoux, F. Angéli, C. Jégou, and N. Godon, Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides, Journal of Non-Crystalline Solids, vol.358, issue.18-19, pp.2559-2570, 2012.
DOI : 10.1016/j.jnoncrysol.2012.05.024

S. Gin, P. Frugier, P. Jollivet, F. Bruguier, and E. Curti, New Insight into the Residual Rate of Borosilicate Glasses: Effect of S/V and Glass Composition, International Journal of Applied Glass Science, vol.932, issue.350, pp.371-382, 2013.
DOI : 10.1111/ijag.12048

S. Mitsui, K. T. Mueller, J. C. Marra, C. G. Pantano, E. M. Pierce et al., An international initiative on long-term behavior of high-level nuclear waste glass, Mater Today, vol.16, pp.243-248, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00864925

S. Gin, P. Jollivet, M. Fournier, F. Angeli, P. Frugier et al., Origin and consequences of silicate glass passivation by surface layers, Nature Communications, vol.2, p.6360, 2015.
DOI : 10.1038/ncomms7360

URL : https://hal.archives-ouvertes.fr/hal-01157456

S. R. Gislason and E. H. Oelkers, Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature, Geochimica et Cosmochimica Acta, vol.67, issue.20, pp.3817-3832, 2003.
DOI : 10.1016/S0016-7037(03)00176-5

S. R. Gislason, E. H. Oelkers, E. S. Eiriksdottir, M. I. Kardjilov, G. Gisladottir et al., Direct evidence of the feedback between climate and weathering, Earth and Planetary Science Letters, vol.277, issue.1-2, pp.213-222, 2009.
DOI : 10.1016/j.epsl.2008.10.018

N. Godon, J. H. Thomassin, and J. C. Touray, Experimental alteration of R7T7 nuclear model glass in solutions with different salinities (90???C, 1 bar): implications for the selection of geological repositories, Journal of Materials Science, vol.42, issue.2, pp.126-134, 1988.
DOI : 10.1007/BF01174043

A. A. Gorbushina and K. A. Palinska, Biodeteriorative processes on glass: experimental proof of the role of fungi and cyanobacteria, Aerobiologia, vol.15, issue.3, pp.183-191, 1999.
DOI : 10.1023/A:1007616614172

B. Grambow, A General Rate Equation for Nuclear Waste Glass Corrosion, MRS Proceedings, vol.8, pp.15-27, 1985.
DOI : 10.1016/0016-7037(80)90220-3

F. Grases, C. Genestar, and A. Millan, The influence of some metallic ions and their complexes on the kinetics of crystal growth of calcium oxalate, Journal of Crystal Growth, vol.94, issue.2, pp.507-512, 1989.
DOI : 10.1016/0022-0248(89)90028-6

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson et al., Nanometre-scale evidence for interfacial dissolution???reprecipitation control of silicate glass corrosion, Nature Materials, vol.180, issue.350, pp.307-311, 2015.
DOI : 10.1038/nmat4172

B. J. Hernlem, L. M. Vane, and G. D. Sayles, Stability constants for complexes of the siderophore desferrioxamine B with selected heavy metal cations, Inorganica Chimica Acta, vol.244, issue.2, pp.179-184, 1996.
DOI : 10.1016/0020-1693(95)04780-8

L. Hersman, T. Lloyd, and G. Sposito, Siderophore-promoted dissolution of hematite, Geochimica et Cosmochimica Acta, vol.59, issue.16, pp.3327-3330, 1995.
DOI : 10.1016/0016-7037(95)00221-K

G. R. Holdren and P. M. Speyer, Reaction rate-surface area relationships during the early stages of weathering???I. Initial observations, Geochimica et Cosmochimica Acta, vol.49, issue.3, pp.675-681, 1985.
DOI : 10.1016/0016-7037(85)90162-0

B. A. Holmen and W. H. Casey, Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [??-FeOOH(s)], Geochimica et Cosmochimica Acta, vol.60, issue.22, pp.4403-4416, 1996.
DOI : 10.1016/S0016-7037(96)00278-5

E. Hutchens, Microbial selectivity on mineral surfaces: possible implications for weathering processes, Fungal Biology Reviews, vol.23, issue.4, pp.115-121, 2009.
DOI : 10.1016/j.fbr.2009.10.002

P. Jollivet, F. Angeli, C. Cailleteau, F. Devreux, P. Frugier et al., Investigation of gel porosity clogging during glass leaching, Journal of Non-Crystalline Solids, vol.354, issue.45-46, pp.4952-4958, 2008.
DOI : 10.1016/j.jnoncrysol.2008.07.023

B. E. Kalinowski, L. J. Liermann, S. L. Brantley, A. Barnes, and C. G. Pantano, X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende, Geochimica et Cosmochimica Acta, vol.64, issue.8, pp.1331-1343, 2000.
DOI : 10.1016/S0016-7037(99)00371-3

B. E. Kalinowski, L. J. Liermann, S. Givens, and S. L. Brantley, Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches, Chemical Geology, vol.169, issue.3-4, pp.357-370, 2000.
DOI : 10.1016/S0009-2541(00)00214-X

K. G. Knauss, J. W. Johnson, and C. I. Steefel, Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chemical Geology, vol.217, issue.3-4, pp.339-350, 2005.
DOI : 10.1016/j.chemgeo.2004.12.017

E. Knowles, H. Staudigel, and T. A. , Geochemical characterization of tubular alteration features in subseafloor basalt glass, Earth and Planetary Science Letters, vol.374, pp.239-250, 2013.
DOI : 10.1016/j.epsl.2013.05.012

S. M. Kraemer, S. F. Cheah, R. Zapf, J. Xu, K. N. Raymond et al., Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite, Geochimica et Cosmochimica Acta, vol.63, issue.19-20, pp.3003-3008, 1999.
DOI : 10.1016/S0016-7037(99)00227-6

S. M. Kraemer, Iron oxide dissolution and solubility in the presence of siderophores, Aquatic Sciences - Research Across Boundaries, vol.66, issue.1, pp.3-18, 2004.
DOI : 10.1007/s00027-003-0690-5

G. Libourel, A. Verney-carron, A. Morlok, S. Gin, J. Sterpenich et al., The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses, Comptes Rendus Geoscience, vol.343, issue.2-3, pp.237-245, 2011.
DOI : 10.1016/j.crte.2010.12.004

L. J. Liermann, B. E. Kalinowski, S. L. Brantley, and J. G. Ferry, Role of bacterial siderophores in dissolution of hornblende, Geochimica et Cosmochimica Acta, vol.64, issue.4, pp.587-602, 2000.
DOI : 10.1016/S0016-7037(99)00288-4

T. Lombardo, L. Gentaz, A. Verney-carron, A. Chabas, C. Loisiel et al., Characterisation of complex alteration layers in medieval glasses, Corrosion Science, vol.72, pp.10-19, 2013.
DOI : 10.1016/j.corsci.2013.02.004

B. Luckscheiter and M. Nesovic, Short-term corrosion of HLW glass in aqueous solutions enriched with various metal cations, Journal of Nuclear Materials, vol.327, issue.2-3, pp.182-187, 2004.
DOI : 10.1016/j.jnucmat.2004.02.005

C. Ludwig, W. H. Casey, and P. A. Rock, Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes, Nature, vol.375, issue.6526, pp.44-47
DOI : 10.1038/375044a0

J. G. Alarcon, Leaching kinetics of iron from low grade kaolin by oxalic acid solutions, Appl. Clay Sci, vol.51, pp.473-477, 2011.

G. Nord and O. Wernberg, Reduction of tris(2,2'-bipyridyl) and tris(1,10-phananthroline) complexes of iron(III) and osmium(III) by hydroxide ion, J. Chem. Soc, pp.845-849, 1975.

E. H. Oelkers, General kinetic description of multioxide silicate mineral and glass dissolution, Geochimica et Cosmochimica Acta, vol.65, issue.21, pp.3703-3719, 2001.
DOI : 10.1016/S0016-7037(01)00710-4

E. H. Oelkers and S. R. Gislason, The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25??C and pH = 3 and 11, Geochimica et Cosmochimica Acta, vol.65, issue.21, pp.3671-3681, 2001.
DOI : 10.1016/S0016-7037(01)00664-0

E. H. Oelkers and J. Schott, Does organic acid adsorption affect alkali-feldspar dissolution rates?, Chemical Geology, vol.151, issue.1-4, pp.235-245, 1998.
DOI : 10.1016/S0009-2541(98)00082-5

E. H. Oelkers and J. Schott, Thermodynamics and kinetics of water-rock interaction, Rev. Mineral. Geochem, vol.70, issue.569, 2009.

E. H. Oelkers, J. Schott, and J. L. Devidal, The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions, Geochimica et Cosmochimica Acta, vol.58, issue.9, pp.2011-2024, 1994.
DOI : 10.1016/0016-7037(94)90281-X

A. A. Olsen and D. R. Rimstidt, Oxalate-promoted forsterite dissolution at low pH, Geochimica et Cosmochimica Acta, vol.72, issue.7, pp.1758-1766, 2008.
DOI : 10.1016/j.gca.2007.12.026

B. Parruzot, P. Jollivet, D. Rébiscoul, and S. Gin, Long-term alteration of basaltic glass: Mechanisms and rates, Geochimica et Cosmochimica Acta, vol.154, pp.28-48, 2015.
DOI : 10.1016/j.gca.2014.12.011

E. Pelegrin, G. Calas, P. Ildefonse, P. Jollivet, and L. Galoisy, Structural evolution of glass surface during alteration: Application to nuclear waste glasses, Journal of Non-Crystalline Solids, vol.356, issue.44-49, pp.44-49, 2010.
DOI : 10.1016/j.jnoncrysol.2010.02.022

URL : https://hal.archives-ouvertes.fr/hal-00568820

E. M. Pierce, E. A. Rodriguez, L. J. Calligan, W. J. Shaw, and B. P. Mcgrail, An experimental study of the dissolution rates of simulated aluminoborosilicate waste glasses as a function of pH and temperature under dilute conditions, Applied Geochemistry, vol.23, issue.9, pp.2559-2573, 2008.
DOI : 10.1016/j.apgeochem.2008.05.006

S. P. Poulson, J. I. Drever, and L. L. Stillings, Aqueous Si-oxalate complexing, oxalate adsorption onto quartz, and the effect of oxalate upon quartz dissolution rates, Chemical Geology, vol.140, issue.1-2, pp.1-7, 1997.
DOI : 10.1016/S0009-2541(96)00177-5

D. Rebiscoul, P. Frugier, S. Gin, and A. Ayral, Protective properties and dissolution ability of the gel formed during nuclear glass alteration, Journal of Nuclear Materials, vol.342, issue.1-3, pp.26-50, 2005.
DOI : 10.1016/j.jnucmat.2005.03.018

URL : https://hal.archives-ouvertes.fr/hal-00077997

P. U. Reichard, R. Kretzschmar, and S. M. Kraemer, Dissolution mechanisms of goethite in the presence of siderophores and organic acids, Geochimica et Cosmochimica Acta, vol.71, issue.23, pp.5635-5650, 2007.
DOI : 10.1016/j.gca.2006.12.022

D. R. Rosenberg and M. P. , Siderophore adsorption to and dissolution of kaolinite at pH 3 to 7 and 22??C, Geochimica et Cosmochimica Acta, vol.67, issue.2, pp.223-229, 2003.
DOI : 10.1016/S0016-7037(02)01082-7

M. Rozalen, M. E. Ramos, F. J. Huertas, S. Fiore, and F. Gervilla, Dissolution kinetics and biodurability of tremolite particles in mimicked lung fluids: Effect of citrate and oxalate, Journal of Asian Earth Sciences, vol.77, 2013.
DOI : 10.1016/j.jseaes.2013.04.008

O. Schalm, K. Proost, K. De-vis, S. Cagno, K. Janssens et al., MANGANESE STAINING OF ARCHAEOLOGICAL GLASS: THE CHARACTERIZATION OF Mn-RICH INCLUSIONS IN LEACHED LAYERS AND A HYPOTHESIS OF ITS FORMATION, Archaeometry, vol.135, issue.4, pp.103-122, 2010.
DOI : 10.1111/j.1475-4754.2010.00534.x

S. Shen, Z. Wu, and W. Peng, Experimental study on weathering of seafloor volcanic glass by bacteria (Pseudomonas fluorescens) ? Implications for the contribution of bacteria to the water-rock reaction at the Mid-Oceanic Ridge setting, J. Asian Earth Sci, vol.90, pp.15-25, 2014.

A. Silvestri, G. Molin, and G. Salviulo, Archaeological glass alteration products in marine and land-based environments: morphological, chemical and microtextural characterization, Journal of Non-Crystalline Solids, vol.351, issue.16-17, pp.1338-1349, 2005.
DOI : 10.1016/j.jnoncrysol.2005.03.013

M. T. Souza, M. C. Crovace, C. Schröder, H. Eckert, O. Peitl et al., Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in Bioglass-derived glasses, Journal of Non-Crystalline Solids, vol.382, pp.57-65, 2013.
DOI : 10.1016/j.jnoncrysol.2013.10.001

H. Staudigel, R. A. Chastain, A. Yayanos, and W. Bourcier, Biologically mediated dissolution of glass, Chemical Geology, vol.126, issue.2, pp.147-154, 1995.
DOI : 10.1016/0009-2541(95)00115-X

J. Sterpenich, Les interactions fluide/roche: des vitraux médiévaux à la sequestration géologique du CO2, Thèse de doctorat, p.283, 2011.

L. L. Stillings, J. I. Drever, S. L. Brantley, and Y. Sun, rates of feldspar dissolution at pH 3???7 with 0???8 m M oxalic acid, Chemical Geology, vol.132, issue.1-4, pp.79-89, 1995.
DOI : 10.1016/S0009-2541(96)00043-5

L. L. Stillings, J. I. Drever, and S. R. Poulson, ) Surface and Models for Ligand-Promoted Dissolution, Environmental Science & Technology, vol.32, issue.19, pp.2856-2864, 1998.
DOI : 10.1021/es980258d

G. J. Stockmann, L. S. Shirokova, O. S. Pokrovsky, P. Bénézeth, N. Bovet et al., Does the presence of heterotrophic bacterium Pseudomonas reactans affect basaltic glass dissolution rates?, Chemical Geology, vol.296, issue.297, pp.296-297, 2012.
DOI : 10.1016/j.chemgeo.2011.12.011

N. A. Stroncik and H. U. Schmincke, Palagonite ??? a review, International Journal of Earth Sciences, vol.91, issue.4, pp.680-697, 2002.
DOI : 10.1007/s00531-001-0238-7

I. Techer, T. Advocat, J. Lancelot, and J. M. Liotard, Basaltic glass: alteration mechanisms and analogy with nuclear waste glasses, Journal of Nuclear Materials, vol.282, issue.1, pp.40-46, 2000.
DOI : 10.1016/S0022-3115(00)00399-8

D. Templeton, Molecular and Cellular Iron Transport, 2002.
DOI : 10.1201/9780824744175

B. M. Thien, N. Gordon, A. Ballestero, S. Gin, and A. Ayral, The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses, Journal of Nuclear Materials, vol.427, issue.1-3, pp.297-310, 2012.
DOI : 10.1016/j.jnucmat.2012.05.025

W. J. Ullman, D. L. Kirchman, S. A. Welch, and P. Vandevivere, Laboratory evidence for microbially mediated silicate mineral dissolution in nature, Chemical Geology, vol.132, issue.1-4, pp.11-17, 1996.
DOI : 10.1016/S0009-2541(96)00036-8

A. Verney-carron, S. Gin, and G. Libourel, A fractured roman glass block altered for 1800 years in seawater: Analogy with nuclear waste glass in a deep geological repository, Geochimica et Cosmochimica Acta, vol.72, issue.22, pp.5372-5385, 2008.
DOI : 10.1016/j.gca.2008.08.018

X. Wang, Q. Li, H. Hu, T. Zhang, and Y. Zhou, Dissolution of kaolinite induced by citric, oxalic, and malic acids, Journal of Colloid and Interface Science, vol.290, issue.2, pp.481-488, 2005.
DOI : 10.1016/j.jcis.2005.04.066

D. Watkinson, L. Weber, and K. Anheuser, STAINING OF ARCHAEOLOGICAL GLASS FROM MANGANESE-RICH ENVIRONMENTS*, Archaeometry, vol.27, issue.4, pp.69-82, 2005.
DOI : 10.1111/j.1475-4754.2005.00188.x

F. Watteau and J. , Microbial dissolution of iron and aluminum from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids, Soil Biology, vol.30, pp.1-9, 1994.

S. Welch and W. Ullman, The effect of organic acids on plagioclase dissolution rates and stoichiometry, Geochimica et Cosmochimica Acta, vol.57, issue.12, pp.2725-2736, 1992.
DOI : 10.1016/0016-7037(93)90386-B

S. A. Welch and W. J. Ullman, The effect of organic acids on plagioclase dissolution rates and stoichiometry, Geochimica et Cosmochimica Acta, vol.57, issue.12, pp.2725-2736, 1993.
DOI : 10.1016/0016-7037(93)90386-B

D. Wolff-boenisch and S. J. Traina, A comparative study of the effect of desferrioxamine B, oxalic acid, and Na-alginate on the desorption of U(VI) from goethite at pH 6 and 25??C, Geochimica et Cosmochimica Acta, vol.70, issue.17, pp.4356-4366, 2006.
DOI : 10.1016/j.gca.2006.06.1565

D. Wolff-boenisch and S. J. Traina, The effect of desferrioxamine B, enterobactin, oxalic acid, and Na-alginate on the dissolution of uranyl-treatedgoethite at pH 6 and 25????C, Chemical Geology, vol.243, issue.3-4, pp.357-368, 2007.
DOI : 10.1016/j.chemgeo.2007.06.013

D. Wolff-boenisch, S. Wenau, S. R. Gislason, and E. H. Oelkers, Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: Implications for mineral sequestration of carbon dioxide, Geochimica et Cosmochimica Acta, vol.75, issue.19, pp.5510-5525, 2011.
DOI : 10.1016/j.gca.2011.07.004

B. Zinder, G. Furrer, and W. Stumm, The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides, Geochimica et Cosmochimica Acta, vol.50, issue.9, pp.1861-1869, 1986.
DOI : 10.1016/0016-7037(86)90244-9