Doubly-resonant saddle-nodes in C^{3} and the fixed singularity at infinity in the Painlevé equations: formal classification.

Amaury Bittmann

To cite this version:

Amaury Bittmann. Doubly-resonant saddle-nodes in C^{3} and the fixed singularity at infinity in the Painlevé equations: formal classification.. Qualitative Theory of Dynamical Systems, 2016, 10.1007/s12346-016-0214-z . hal-01145314v3

HAL Id: hal-01145314
https://hal.science/hal-01145314v3
Submitted on 3 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Doubly-resonant saddle-nodes in \mathbb{C}^{3} and the fixed singularity at infinity in the Painlevé equations: formal classification.

Amaury Bittmann*

May 3, 2016

Abstract

In this work we consider formal singular vector fields in \mathbb{C}^{3} with an isolated and doubly-resonant singularity of saddle-node type at the origin. Such vector fields come from irregular two-dimensional systems with two opposite non-zero eigenvalues, and appear for instance when studying the irregular singularity at infinity in Painlevé equations $\left(\mathrm{P}_{j}\right)$, $j \in\{I, I I, I I I, I V, V\}$, for generic values of the parameters. Under generic assumptions we give a complete formal classification for the action of formal diffeomorphisms (by changes of coordinates) fixing the origin and fibered in the independent variable x. We also identify all formal isotropies (self-conjugacies) of the normal forms. In the particular case where the flow preserves a transverse symplectic structure, e.g. for Painlevé equations, we prove that the normalizing map can be chosen to preserve the transverse symplectic form.

Keywords: Painlevé equations, singular vector fields, irregular singularity, resonant singularity, normal form

1 Introduction

1.1 Definition and main result

We consider singular vector fields Y in \mathbb{C}^{3} which can be written in appropriate coordinates $(x, y):=\left(x, y_{1}, y_{2}\right)$ as

$$
\begin{equation*}
Y=x^{2} \frac{\partial}{\partial x}+\left(-\lambda y_{1}+F_{1}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{1}}+\left(\lambda y_{2}+F_{2}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{2}} \tag{1.1}
\end{equation*}
$$

[^0]where $\lambda \in \mathbb{C}^{*}$ and F_{1}, F_{2} are formal power series of order at least two. They represent singular irregular 2-dimensional systems having two opposite non-zero eigenvalues and a vanishing third eigenvalue.

Our main motivation is the study of the irregular singularity at infinity in Painlevé equations $\left(\mathrm{P}_{j}\right), j \in\{I, I I, I I I, I V, V\}$, for generic values of the parameters [22]. These equations, discovered (mainly) by Paul Painlevé [18], share the property that the only movable singularities of their solutions are poles (the so-called Painlevé property); this is the complete list of all such equations up to changes of variables. They have been intensively studied since the important work of Okamoto [16]. The study of fixed singularities, and more particularly those at infinity, started to be investigated by Boutroux with his famous tritronquées solutions [18]. Recently, several authors provided more complete information about such singularities, studying the so-called quasi-linear Stokes phenomena and also giving connection formulas ([10], [12] and [11]). However, to the best of our knowledge there are no general analytic classification for this kind of doubly-resonant saddle-nodes yet (using normal form theory).

More precisely, we would like to understand the action of germs of analytic diffeomorphisms on such vector fields by changes of coordinates. If one tries to do this, a first step would be to provide a formal classification, that is to study the action of formal changes of coordinates on these vector fields. This is the aim of this paper. Based on the usual strategy employed for the classification of resonant vector fields [15] in dimension 2, we give in a forthcoming paper a complete analytic classification for a more specific class of vector fields, by studying the non-linear Stokes phenomena.

To state our main results we need to introduce some notations and nomenclature.

- $\mathbb{C} \llbracket \mathbf{x} \rrbracket$ is the \mathbb{C}-algebra of formal power series in the (multi) variable $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in \mathbb{C}. We denote by \mathfrak{m} its unique maximal ideal: it is formed by formal series with null constant term. For any formal series f_{1}, \ldots, f_{m} in $\mathbb{C} \llbracket \mathbf{x} \rrbracket$, we denote by $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ the ideal generated by these elements.
- $\mathcal{D}^{(1)}$ is the Lie algebra of formal vector fields at the origin of \mathbb{C}^{3} which are singular (i.e. vanish at the origin). Any formal vector field in $\mathcal{D}^{(1)}$ can be written

$$
Y=b \frac{\partial}{\partial x}+b_{1} \frac{\partial}{\partial y_{1}}+b_{2} \frac{\partial}{\partial y_{2}}
$$

with $b, b_{1}, b_{2} \in \mathfrak{m}$.

- $\widehat{\text { Diff }}$ is the group of formal diffeomorphisms fixing the origin of \mathbb{C}^{3}. It acts on $\mathcal{D}^{(1)}$ by conjugacy: if $(\Phi, Y) \in \widehat{\text { Diff }} \times \mathcal{D}^{(1)}$,

$$
\begin{equation*}
\Phi_{*}(Y):=(\mathrm{D} \Phi \cdot Y) \circ \Phi^{-1} \tag{1.2}
\end{equation*}
$$

where $\mathrm{D} \Phi$ is the Jacobian matrix of Φ.

- $\widehat{\text { Diff }}_{\text {fib }}$ is the subgroup of $\widehat{\text { Diff }}^{\text {of diffeomorphisms fibered in the } x \text {-coordinate, }}$ i.e. of the form $(x, \mathbf{y}) \mapsto(x, \phi(x, \mathbf{y}))$.

Definition 1.1. A doubly-resonant saddle-node is a vector field $Y \in \mathcal{D}^{(1)}$ which is $\widehat{\text { Diff }}_{\text {fib }}$-conjugate to one of the form

$$
Y=x^{2} \frac{\partial}{\partial x}+\left(-\lambda y_{1}+F_{1}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{1}}+\left(\lambda y_{2}+F_{2}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{2}},
$$

with $\lambda \in \mathbb{C}^{*}$ and $F_{1}, F_{2} \in \mathfrak{m}^{2}$. We will denote by $\widehat{\mathcal{S N}}$ the set of all such formal vector fields.

By Taylor expansion up to order 1 with respect to \mathbf{y}, given a vector field $Y \in$ $\widehat{\mathcal{S N}}$ written as above we can consider the associated 2-dimensional differential system:

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d} \mathbf{y}}{\mathrm{~d} x}=\alpha(x)+\mathbf{A}(x) \mathbf{y}(x)+\mathbf{f}(x, \mathbf{y}(x)), \tag{1.3}
\end{equation*}
$$

where $\mathbf{y}=\left(y_{1}, y_{2}\right)$, such that the following conditions hold:

- $\alpha(x)=\binom{\alpha_{1}(x)}{\alpha_{2}(x)}$, with $\alpha_{1}, \alpha_{2} \in\langle x\rangle^{2} \subset \mathbb{C} \llbracket x \rrbracket$
- $\mathbf{A}(x) \in \operatorname{Mat}_{2,2}(\mathbb{C} \llbracket x \rrbracket)$ with $\mathbf{A}(0)=\operatorname{Diag}(-\lambda, \lambda), \lambda \in \mathbb{C}^{*}$
- $\mathbf{f}(x, \mathbf{y})=\binom{f_{1}(x, \mathbf{y})}{f_{2}(x, \mathbf{y})}$, with $f_{1}, f_{2} \in\left\langle y_{1}, y_{2}\right\rangle^{2} \subset \mathbb{C} \llbracket x, \mathbf{y} \rrbracket$.

Based on this expression, we state:
Definition 1.2. The residue of $Y \in \widehat{\mathcal{S N}}$ is the complex number

$$
\operatorname{res}(Y):=\left(\frac{\operatorname{Tr}(\mathbf{A}(x))}{x}\right)_{\mid x=0} .
$$

We say that Y is non-degenerate if $\operatorname{res}(Y) \in \mathbb{C} \backslash \mathbb{Q}_{\leq 0}$, and we denote by $\widehat{\mathcal{S N}}_{\mathrm{nd}} \subset \widehat{\mathcal{S N}}$ the subset of non-degenerate vector fields.

We will prove in subsection 3.1 that the residue of $Y \in \widehat{\mathcal{S N}}$ is invariant under the action of $\widehat{\text { Diff }}_{\text {fib }}$ by conjugacy. We can state now our first main result.
Theorem 1.3. Let $Y \in \widehat{\mathcal{S N}}_{\mathrm{nd}}$ be a non-degenerate doubly-resonant saddlenode. Then there exists a fibered diffeomorphism $\Phi \in \widehat{\text { Diff }}_{\text {fib }}$ such that:

$$
\begin{align*}
\Phi_{*}(Y)= & x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x+c_{1}(v)\right) y_{1} \frac{\partial}{\partial y_{1}} \\
& +\left(\lambda+a_{2} x+c_{2}(v)\right) y_{2} \frac{\partial}{\partial y_{2}}, \tag{1.4}
\end{align*}
$$

where we put $v:=y_{1} y_{2}$. Here, c_{1}, c_{2} in $\langle v\rangle=v \mathbb{C} \llbracket v \rrbracket$ are formal power series with null constant term and $a_{1}, a_{2} \in \mathbb{C}$ are such that $a_{1}+a_{2}=\operatorname{res}(Y)$.

Remark 1.4. We will see in Corollary 3.4 and Proposition 3.2 that Φ as above is essentially unique (that is, unique up to pre-composition by linear transforms).
Definition 1.5. The parameter space for $\widehat{\mathcal{S N}}_{\text {nd }}$ is the set

$$
\mathcal{P}:=\left\{\mathbf{p}=\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) \in \mathbb{C}^{*} \times\left(\mathbb{C}^{2} \backslash \Delta\right) \times(v \mathbb{C} \llbracket v \rrbracket)^{2}\right\}
$$

where

$$
\Delta=\left\{\left(a_{1}, a_{2}\right) \in \mathbb{C}^{2} \mid a_{1}+a_{2} \in \mathbb{Q}_{\leq 0}\right\}
$$

is the locus of degeneracy. A vector field in the form (1.4) will be called a normal form of $\widehat{\mathcal{S N}}_{\text {nd }}$ with parameters $\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right)$ in \mathcal{P}.

Let us consider the quotient space

$$
\mathcal{P} /\left(\mathbb{C}^{*} \times \mathbb{Z} / 2 \mathbb{Z}\right)
$$

where the group $\left(\mathbb{C}^{*} \times \mathbb{Z} / 2 \mathbb{Z}\right)$ acts on \mathcal{P} as follows. Given $\mathbf{p}=\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) \in$ $\mathcal{P}, \theta \in \mathbb{C}^{*}$ and $\epsilon \in \mathbb{Z} / 2 \mathbb{Z}$ we define

$$
\begin{aligned}
\theta \cdot\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) & =\left(\lambda, a_{1}, a_{2}, c_{1} \circ \varphi_{\theta}, c_{2} \circ \varphi_{\theta}\right) \\
\epsilon \cdot\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) & = \begin{cases}\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) & , \text { if } \epsilon=0 \\
\left(-\lambda, a_{2}, a_{1}, c_{2}, c_{1}\right) & , \text { if } \epsilon=1\end{cases}
\end{aligned}
$$

where φ_{θ} is the homothecy $v \mapsto \theta v$. If two parameters $\mathbf{p}, \mathbf{p}^{\prime} \in \mathcal{P}$ are in the same orbit for this action we write $\mathbf{p} \sim \mathbf{p}^{\prime}$. Our second main result shows the uniqueness of the normal forms up to this action.
Theorem 1.6. Suppose Z and Z^{\prime} are two normal forms of $\widehat{\mathcal{S N}}_{\text {nd }}$ with respective parameters $\mathbf{p}=\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) \in \mathcal{P}$ and $\mathbf{p}^{\prime}=\left(\lambda^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}\right) \in \mathcal{P}$. Then Z and Z^{\prime} are $\widehat{\text { Diff }}_{\text {fib }}$-conjugate if and only $\mathbf{p} \sim \mathbf{p}^{\prime}$.

One can rephrase the above results in terms of group actions as follows.
Corollary 1.7. There exists a bijection

$$
\widehat{\mathcal{S N}}_{\mathrm{nd}} / \widehat{\mathrm{Diff}}_{\mathrm{fib}} \simeq \mathcal{P} /\left(\mathbb{C}^{*} \times \mathbb{Z} / 2 \mathbb{Z}\right)
$$

where $\widehat{\text { Diff }}_{\text {fib }}$ acts on $\widehat{\mathcal{S N}}_{\mathrm{nd}}$ by conjugacy.
Let us make some remarks.

Remark 1.8.

1. The condition of non-degeneracy is necessary to obtain such normal forms. For instance for any $a_{1}, a_{2} \in \mathbb{C}$ such that $a_{1}+a_{2}=-\frac{p}{q} \in \mathbb{Q} \leq 0$, with $(p, q) \in \mathbb{N} \times \mathbb{N}^{*}$, the vector field

$$
Y=x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x+x^{p+1}\left(y_{1} y_{2}\right)^{q}\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+a_{2} x\right) y_{2} \frac{\partial}{\partial y_{2}}
$$

with residue $\operatorname{res}(Y)=-\frac{p}{q}$ is not $\widehat{\text { Diff }}_{\text {fib }}$-conjugate to a normal form as in Theorem 1.3. Indeed, the resonant term $x^{p+1}\left(y_{1} y_{2}\right)^{q}$ cannot be eliminated by the action of $\widehat{\mathrm{Diff}}_{\mathrm{fib}}$.
2. Notice that the above two results are not immediate consequences of Poincaré-Dulac normal form theory. In fact, the usual Poincaré-Dulac normal form possibly contains several additional resonant terms of the form $\left(x^{k}\left(y_{1} y_{2}\right)^{l}\right)_{k, l \in \mathbb{N}}$, and is far from being unique.

1.2 Painlevé equations and the transversally symplectic case

In [22] Yoshida shows that a vector field in the class $\widehat{\mathcal{S N}}_{\text {nd }}$ naturally appears after a suitable compactification (given by the so-called Boutroux coordinates [2]) of the phase-space of Painlevé equations $\left(\mathrm{P}_{j}\right), j \in\{I, I I, I I I, I V, V\}$ (for generic values of the parameters). In these cases the vector field presents an additional Hamiltonian structure that will interest us.

Let us illustrate these computations in the case of the first Painlevé equation:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} z_{1}}{\mathrm{~d} t^{2}}=6 z_{1}^{2}+t \tag{I}
\end{equation*}
$$

As is well known since Okamoto [17], $\left(P_{I}\right)$ can be seen as a non-autonomous Hamiltonian system

$$
\left\{\begin{array}{l}
\frac{\partial z_{1}}{\partial t}=-\frac{\partial H}{\partial z_{2}} \\
\frac{\partial z_{2}}{\partial t}=\frac{\partial H}{\partial z_{1}}
\end{array}\right.
$$

with Hamiltonian

$$
H\left(t, z_{1}, z_{2}\right) \quad:=2 z_{1}^{3}+t z_{1}-\frac{z_{2}^{2}}{2}
$$

More precisely, if we consider the standard symplectic form $\omega_{s t}:=d z_{1} \wedge d z_{2}$ and the vector field

$$
Z:=\frac{\partial}{\partial t}-\frac{\partial H}{\partial z_{2}} \frac{\partial}{\partial z_{1}}+\frac{\partial H}{\partial z_{1}} \frac{\partial}{\partial z_{2}}
$$

induced by $\left(P_{I}\right)$, then the Lie derivative

$$
\mathcal{L}_{Z}\left(\omega_{s t}\right)=\left(\frac{\partial^{2} H}{\partial t \partial z_{1}} \mathrm{~d} z_{1}+\frac{\partial^{2} H}{\partial t \partial z_{2}} \mathrm{~d} z_{2}\right) \wedge \mathrm{d} t=\mathrm{d} z_{1} \wedge \mathrm{~d} t
$$

belongs to the ideal $\langle\mathrm{d} t\rangle$ generated by $\mathrm{d} t$ in the exterior algebra $\Omega^{*}\left(\mathbb{C}^{3}\right)$ of differential forms in variables $\left(t, z_{1}, z_{2}\right)$. Equivalently, for any $t_{1}, t_{2} \in \mathbb{C}$ the flow of Z at time $\left(t_{2}-t_{1}\right)$ acts as a symplectomorphism between fibers $\left\{t=t_{1}\right\}$ and $\left\{t=t_{2}\right\}$.

The weighted compactification given by the Boutroux coordinates [3] (see also [6]) defines a chart near $\{t=\infty\}$ as follows:

$$
\left\{\begin{array}{l}
z_{2}=y_{2} x^{-\frac{3}{5}} \\
z_{1}=y_{1} x^{-\frac{2}{5}} \\
t=x^{-\frac{4}{5}}
\end{array}\right.
$$

In the coordinates $\left(x, y_{1}, y_{2}\right)$, the vector field Z is transformed, up to a translation $y_{1} \leftarrow y_{1}+\zeta$ with $\zeta=\frac{i}{\sqrt{6}}$, into the vector field

$$
\begin{equation*}
\tilde{Z}=-\frac{5}{4 x^{\frac{1}{5}}} Y \tag{1.5}
\end{equation*}
$$

where

$$
\begin{align*}
Y= & x^{2} \frac{\partial}{\partial x}+\left(-\frac{4}{5} y_{2}+\frac{2}{5} x y_{1}+\frac{2 \zeta}{5} x\right) \frac{\partial}{\partial y_{1}} \\
& +\left(-\frac{24}{5} y_{1}^{2}-\frac{48 \zeta}{5} y_{1}+\frac{3}{5} x y_{2}\right) \frac{\partial}{\partial y_{2}} \tag{1.6}
\end{align*}
$$

We observe that Y is a non-degenerate doubly-resonant saddle-node Y as in Definitions 1.1 and 1.2 with residue res $(Y)=1$. Furthermore we have:

$$
\left\{\begin{aligned}
\mathrm{d} t & =-\frac{4}{5} 5^{\frac{4}{5}} x^{-\frac{9}{5}} \mathrm{~d} x \\
\mathrm{~d} z_{1} \wedge \mathrm{~d} z_{2} & =\frac{1}{x}\left(\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}\right)+\frac{1}{5 x^{2}}\left(2 y_{1} \mathrm{~d} y_{2}-3 y_{2} \mathrm{~d} y_{1}\right) \wedge \mathrm{d} x \\
& \in \frac{1}{x}\left(\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}\right)+\langle\mathrm{d} x\rangle
\end{aligned}\right.
$$

where $\langle\mathrm{d} x\rangle$ denotes the ideal generated by $\mathrm{d} x$. We finally obtain

$$
\left\{\begin{array}{l}
\mathcal{L}_{Y}\left(\frac{\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}}{x}\right)=\frac{1}{5 x}\left(3 y_{2} \mathrm{~d} y_{1}-\left(2 \zeta+2 y_{1}\right) \mathrm{d} y_{2}\right) \wedge \mathrm{d} x \\
\mathcal{L}_{Y}(\mathrm{~d} x)=2 x \mathrm{~d} x
\end{array}\right.
$$

Therefore, both $x \mathcal{L}_{Y}\left(\frac{\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}}{x}\right)$ and $\mathcal{L}_{Y}(\mathrm{~d} x)$ are differential forms which lie in the ideal $\langle\mathrm{d} x\rangle$. This motivates the following definition.

Definition 1.9. Consider the rational 1-form

$$
\omega:=\frac{\mathrm{d} y_{1} \wedge \mathrm{~d} y_{2}}{x}
$$

We say that a formal vector field $Y \in \mathcal{D}^{(1)}$ is transversally Hamiltonian (with respect to ω and $\mathrm{d} x$) if

$$
\mathcal{L}_{Y}(\mathrm{~d} x) \in\langle\mathrm{d} x\rangle \quad \text { and } \quad x \mathcal{L}_{Y}(\omega) \in\langle\mathrm{d} x\rangle
$$

We say a formal diffeomorphism $\Phi \in \widehat{\text { Diff }}$ is transversally symplectic (with respect to ω and $\mathrm{d} x$) if

$$
\Phi^{*}(x)=x \text { and } x \Phi^{*}(\omega) \in x \omega+\langle\mathrm{d} x\rangle
$$

(Here $\Phi^{*}(\omega)$ denotes the pull-back of ω by Φ.)
We denote respectively by \mathcal{D}_{ω} and $\widehat{\text { Diff }}_{\omega}$ the sets of transversally Hamiltonian vector fields and transversally symplectic diffeomorphisms.

Remark 1.10.

- The flow of a transversally Hamiltonian X defines a map between fibers $\left\{x=x_{1}\right\}$ and $\left\{x=x_{2}\right\}$ which sends $\omega_{\mid x=x_{1}}$ onto $\omega_{\mid x=x_{2}}$, since

$$
(\exp (X))^{*}(\omega) \in \omega+\langle\mathrm{d} x\rangle
$$

- By our definition, a transversally symplectic diffeomorphism $\Phi \in \widehat{\text { Diff }}_{\omega}$ is necessarily a fibered diffeomorphism. In other words: $\widehat{\text { Diff }}_{\omega} \subset \widehat{\text { Diff }}_{\text {fib }}$.

Definition 1.11. A transversally Hamiltonian doubly-resonant saddlenode is a vector field $Y \in \mathcal{D}_{\omega}$ which is $\widehat{\operatorname{Diff}}_{\omega}$-conjugate to one of the form

$$
Y=x^{2} \frac{\partial}{\partial x}+\left(-\lambda y_{1}+F_{1}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{1}}+\left(\lambda y_{2}+F_{2}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{2}}
$$

with $\lambda \in \mathbb{C}^{*}$ and $F_{1}, F_{2} \in \mathfrak{m}^{2}$. We will denote by $\widehat{\mathcal{S N}}_{\omega}$ the set of all such formal vector fields.

Notice that a transversally Hamiltonian doubly-resonant saddle-node $Y \in$ $\widehat{\mathcal{S N}}_{\omega}$ is necessarily non-degenerate since its residue is always equal to 1 . In other words: $\widehat{\mathcal{S N}}_{\omega} \subset \widehat{\mathcal{S N}}_{\text {nd }}$.
Theorem 1.12. Let $Y \in \widehat{\mathcal{S N}}_{\omega}$ be a transversally Hamiltonian doubly-resonant saddle-node. Then, there exists a transversally symplectic diffeomorphism $\Phi \in$ $\widehat{\operatorname{Diff}}_{\omega}$ such that:

$$
\begin{equation*}
\Phi_{*}(Y)=x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x-c(v)\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+a_{2} x+c(v)\right) y_{2} \frac{\partial}{\partial y_{2}} \tag{1.7}
\end{equation*}
$$

where we put $v:=y_{1} y_{2}$. Here, $c(v)$ in $v \mathbb{C} \llbracket v \rrbracket$ is a formal power series with null constant term and $a_{1}, a_{2} \in \mathbb{C}$ are such that $a_{1}+a_{2}=\operatorname{res}(Y)=1$. Furthermore this normal form is unique with respect to the action of $\widehat{\operatorname{Diff}}_{\omega}$.

One can rephrase the theorem above in terms of group action.
Corollary 1.13. There exists a bijection

$$
\widehat{\mathcal{S N}}_{\omega} / \widehat{\operatorname{Diff}}_{\omega} \simeq \mathbb{C}^{*} \times\left\{\left(a_{1}, a_{2}\right) \in \mathbb{C}^{2} \mid a_{1}+a_{2}=1\right\} \times v \mathbb{C} \llbracket v \rrbracket
$$

Remark 1.14.

1. As for Theorem $1.3, \Phi$ is essentially unique (Corollary 3.4). This is an immediate consequence of Theorem 1.6. However, the fact that the normalizing diffeomorphism Φ in Theorem 1.12 is transversally symplectic is not an immediate consequence of Theorem 1.6.
2. The above normalization theorem can be interpreted as defining local action-angle coordinates for vector fields in $\widehat{\mathcal{S N}}_{\omega}$. More precisely, if we consider the successive symplectic changes of coordinates

$$
\left\{\begin{array}{l}
y_{1}=\frac{e^{i \frac{\pi}{4}}}{\sqrt{2}}\left(u_{1}+i u_{2}\right) \\
y_{2}=\frac{e^{i \frac{1}{4}}}{\sqrt{2}}\left(u_{1}-i u_{2}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
u_{1}=\sqrt{2 \rho} \cos \varphi \\
u_{2}=\sqrt{2 \rho} \sin \varphi
\end{array}\right.
$$

then the vector field (1.7) becomes:

$$
x^{2} \frac{\partial}{\partial x}+e^{-i \frac{\pi}{4}} x \sqrt{\rho} \frac{\partial}{\partial \rho}+i\left(\lambda+c(i \rho)+\frac{\left(a_{2}-a_{1}\right)}{2} x\right) \frac{\partial}{\partial \varphi} .
$$

Notice that the corresponding differential equation can be explicitly integrated by quadratures in terms of an anti-derivative of c.

We will explain in section 4 how to compute inductively any finite jet of $c(v)$ in the case of the Painlevé equations (for which $c(v)$ is a germ of an analytic function at the origin).

Corollary 1.15. Let Y be as in (1.6). Then $a_{1}=a_{2}=\frac{1}{2}, \lambda=\frac{8 \sqrt{36}}{5}=$ $\frac{4 \cdot 2^{\frac{3}{4}} \cdot 3^{\frac{1}{4}}}{5} e^{\frac{i \pi}{4}}$ and

$$
\begin{aligned}
c(v)= & 3 v+\left(9+\frac{167 \cdot 2^{\frac{1}{4}} \cdot 3^{\frac{3}{4}}}{96} e^{\frac{3 i \pi}{4}}\right) v^{2} \\
& +\left(16+\frac{31837 \sqrt{6}}{6912} i+\frac{5}{2} \cdot 2^{\frac{1}{4}} \cdot 3^{\frac{1}{4}} \cdot e^{\frac{3 i \pi}{4}}\right) v^{3}+O\left(v^{4}\right) .
\end{aligned}
$$

1.3 Known results

In [22], [21] Yoshida shows that the doubly-resonant saddle-nodes arising from the compactification of Painlevé equations $\left(\mathrm{P}_{j}\right), j \in\{I, I I, I I I, I V, V\}$ (for generic values for the parameters) is conjugate to polynomial vector fields of the form

$$
\begin{align*}
Z= & x^{2} \frac{\partial}{\partial x}+\left(-\left(1+\gamma y_{1} y_{2}\right)+a_{1} x\right) y_{1} \frac{\partial}{\partial y_{1}} \\
& +\left(1+\gamma y_{1} y_{2}+a_{2} x\right) y_{2} \frac{\partial}{\partial y_{2}} \tag{1.8}
\end{align*}
$$

with $\gamma \in \mathbb{C}^{*}$ and $\left(a_{1}, a_{2}\right) \in \mathbb{C}^{2}$ such that $a_{1}+a_{2}=1$. One drawback of this result is that Yoshida admits fibered transformations $\Psi(x, \mathbf{y})=\left(x, \psi_{1}(x, \mathbf{y}), \psi_{2}(x, \mathbf{y})\right)$
of a more general form:

$$
\begin{equation*}
\psi_{i}(x, \mathbf{y})=y_{i}\left(1+\sum_{\substack{\left(k_{0}, k_{1}, k_{2}\right) \in \mathbb{N}^{3} \\ k_{1}+k_{2} \geq 1}} \frac{q_{i, \mathbf{k}}(x)}{x^{k_{0}}} y_{1}^{k_{1}+k_{0}} y_{2}^{k_{1}+k_{0}}\right) \tag{1.9}
\end{equation*}
$$

where each $q_{i, \mathbf{k}}$ is a formal power series. Notice that x can appear with negative exponents and therefore $\Psi \notin \widehat{\text { Diff. As we will see in the next subsection, the }}$ problem (when seen from the viewpoint of analytic classification) is that the transformations used by Yoshida have "small" regions of convergence, in the sense that one cannot cover an entire neighborhood of the origin in \mathbb{C}^{3} by taking the union of these regions. On the contrary, we prove in an upcoming work that the formal normalizations presented here can be embodied by diffeomorphisms analytic on finitely many sectors whose union is a neighborhood of the origin. This entails the classical theory of summability of formal power series.

1.4 Analytic results

Several authors studied the problem of convergence of the conjugating transformations described above. Some results (that we recall soon) will hold not only in the class of formal objects, but also for Gevrey (and even summable) ones, or more generally for holomorphic functions with asymptotic expansions in sectorial domains. We refer to [13] and [15] for details on asymptotic expansions, Gevrey and summability theory.

Assuming that the initial vector field is analytic, Yoshida proves in [21] that he can chose a conjugacy of the form (1.9) which is the asymptotic expansion of an analytic function in a domain

$$
\left\{(x, \mathbf{z}) \in S \times \mathbf{D}(0, \mathbf{r})| | z_{1} z_{2}|<\nu| x \mid\right\}
$$

for some small $\nu>0$, where S is a sector of opening less than π with vertex at the origin and $\mathbf{D}(0, \mathbf{r})$ is a polydisc of small poly-radius $\mathbf{r}=\left(r_{1}, r_{2}\right)$. Moreover, the $\left(q_{i, \mathbf{k}}(x)\right)_{i, \mathbf{k}}$ are in fact Gevrey- 1 series.

Under more restrictive conditions (which correspond to $c_{1}=c_{2}=0$ and $\operatorname{Re}\left(a_{1}+a_{2}\right)>0$ in Theorem 1.3), Shimomura, improving on a result by Iwano [9], shows in [19] that analytic doubly-resonant saddle-nodes satisfying these conditions are conjugate to:

$$
x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+a_{2} x\right) y_{2} \frac{\partial}{\partial y_{2}}
$$

via a diffeomorphism whose coefficients have asymptotic expansions as $x \rightarrow 0$ in sectors of opening greater than π. Stolovitch generalized this result for any dimension in [20]. Unfortunately, as shown by Yoshida in [22], the hypothesis $c_{1}=c_{2}=0$ is not met in the case of Painlevé equations.

In a forthcoming series of papers we will prove an analytic version of Theorem 1.12 , valid in sectorial domains with sufficiently large opening, which in turn will help us to provide an analytic classification. Let us insist once more on the key fact that the union of these sectorial domains forms a whole neighborhood of the origin.

1.5 Outline of the paper

- In section 2 we recall some basic concepts and results from the theory of formal vector fields and differential forms.
- In section 3 we prove Theorems 1.3, 1.6 and 1.12, and compute the isotropies of the associated normal forms.
- In section 4 we explain how to compute any finite jet of the formal invariant c in Theorem 1.12 in the case of the Painleve equations.

Contents

1 Introduction 1
1.1 Definition and main result 1
1.2 Painlevé equations and the transversally symplectic case 5
1.3 Known results 8
1.4 Analytic results 9
1.5 Outline of the paper 10
2 Background 11
2.1 Formal power series, vector fields and diffeomorphisms 11
2.2 Exponential map and logarithm 13
2.3 Jordan decomposition and Dulac-Poincaré normal forms 14
2.4 Formal differential forms 16
2.5 Transversal Hamiltonian vector fields and transversal symplecto- morphisms 18
3 Formal classification under fibered transformations 20
3.1 Invariance of the residue by fibered conjugacy 20
3.2 Proof of Theorems 1.3 and 1.12 21
3.3 Uniqueness: proof of Theorem 1.6 24
3.4 Fibered isotropies of the formal normal form 28
4 Applications to Painlevé equations 29
4.1 Asymptotically Hamiltonian vector fields 29
4.2 Periods of the Hamiltonian on $\{x=0\}$ 32
4.3 Example: the case of the first Painlevé equation 35
5 Acknowledgement 37

2 Background

We refer the reader to [8], [14] and [4] for a detailed introduction to formal vector fields and formal diffeomorphisms. Although these concepts are well-known by specialists, we will recall briefly the needed results and nomenclature.

2.1 Formal power series, vector fields and diffeomorphisms

As usual, we will denote a formal power series as $f(\mathbf{x})=\sum_{\mathbf{k}} f_{\mathbf{k}} \mathrm{x}^{\mathbf{k}}$ where, for all $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}, f_{\mathbf{k}} \in \mathbb{C}$ and $\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$. We will also use the notation $|\mathbf{k}|=k_{1}+\cdots+k_{n}$ for the degree of a monomial $\mathbf{x}^{\mathbf{k}}$ (which is of homogenous degree $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$).

We denote respectively by $\mathbb{C} \llbracket \mathbf{x} \rrbracket, \mathcal{D}$, $\widehat{\text { Diff }}$ the sets of formal power series (equipped with an algebra structure), vector field (equipped with a Lie algebra structure), diffeomorphisms (equipped with a group structure). The maximal ideal of the algebra $\mathbb{C} \llbracket x \rrbracket$ formed by formal power series with null constant term is denoted by \mathfrak{m}.

A vector field will be seen either as a an element of $(\mathbb{C} \llbracket \mathbf{x} \rrbracket)^{n}$ or as a derivation on $\mathbb{C} \llbracket \mathbf{x} \rrbracket$: for any vector field

$$
\begin{equation*}
X=\alpha_{1} \frac{\partial}{\partial x_{1}}+\cdots+\alpha_{n} \frac{\partial}{\partial x_{n}} \in(\mathbb{C} \llbracket \mathbf{x} \rrbracket)^{n} \tag{2.1}
\end{equation*}
$$

its Lie derivative is defined as the operator

$$
\begin{equation*}
\mathcal{L}_{X}(f)=\alpha_{1} \frac{\partial f}{\partial x_{1}}+\cdots+\alpha_{n} \frac{\partial f}{\partial x_{n}} \tag{2.2}
\end{equation*}
$$

for any formal power series $f \in \mathbb{C} \llbracket \mathbf{x} \rrbracket$. The Lie bracket $[X, Y]$ of two vector fields $X, Y \in \mathcal{D}$ is defined by

$$
\mathcal{L}_{[X, Y]} \quad(f)=\mathcal{L}_{X}\left(\mathcal{L}_{Y}(f)\right)-\mathcal{L}_{Y}\left(\mathcal{L}_{X}(f)\right)
$$

for all $f \in \mathbb{C} \llbracket \mathbf{x} \rrbracket$.
Similarly, a formal diffeomorphism will be seen either as an element of $\Phi(\mathbf{x}) \in(\mathbb{C} \llbracket \mathbf{x} \rrbracket)^{n}$ such that $\Phi(\mathbf{0})=\mathbf{0}$ and $\mathrm{D}_{\mathbf{0}} \Phi=\operatorname{Jac}(\Phi(\mathbf{0})) \in \mathrm{Gl}_{n}(\mathbb{C})$, or as an algebra automorphism of $\mathbb{C} \llbracket \mathbf{x} \rrbracket$: given a formal series $f=\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \in \mathbb{C} \llbracket \mathbf{x} \rrbracket$, we denote by

$$
\begin{equation*}
\Phi^{*}(f)=\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \phi_{1}^{k_{1}} \cdots \phi_{n}^{k_{n}} \tag{2.3}
\end{equation*}
$$

the pull-back of f by $\Phi \in \widehat{\text { Diff }}$, where

$$
\phi_{1}=\Phi\left(x_{1}\right), \ldots, \phi_{n}=\Phi\left(x_{n}\right) .
$$

The Jacobian matrix (or the linear part) of Φ in the basis $\left(x_{1}, \ldots, x_{n}\right)$ is the $\operatorname{matrix}\left(\frac{\partial \phi_{i}}{\partial x_{j}}(0, \ldots, 0)\right)_{i, j}$.

The order $\operatorname{ord}(f)($ resp . ord (X), resp. ord $(\Phi))$ of a non-zero formal power series $f \in \mathbb{C} \llbracket \mathbf{x} \rrbracket$ (resp. vector field $X \in \mathcal{D}$, resp. diffeomorphism $\Phi \in \widehat{\text { Diff }}$) is the maximal integer $k \geq 0$ such that $f \in \mathfrak{m}^{k}$ (resp. $\mathcal{L}_{X}(\mathfrak{m}) \subset \mathfrak{m}^{k}$, resp. $\left.\Phi^{*}(\mathfrak{m}) \subset \mathfrak{m}^{k}\right)$. The notion of order allows to define the classical Krull topology on $\mathbb{C} \llbracket \mathbf{x} \rrbracket, \mathcal{D}$ and $\widehat{\text { Difff. The set of formal vector field of order at least } k \text { is }}$ a submodule denoted by $\mathcal{D}^{(k)} \subset \mathcal{D}$. In particular, $\mathcal{D}^{(1)}$ is the submodule of singular formal vector fields. We denote by $\mathcal{A}^{(k)} \subset \widehat{\text { Diff }}$ the normal subgroup formed by those automorphisms Φ such that

$$
\Phi\left(x_{i}\right)-x_{i} \in \mathfrak{m}^{k+1}
$$

for each $i=1, \ldots, n$. Each element of $\mathcal{A}^{(k)}$ will be called a formal diffeomorphism tangent to the identity up to order k.

Given a subgroup $\mathcal{G} \subset \widehat{\text { Diff }}$, we say that two vector fields Y_{1}, Y_{2} in \mathcal{D} are \mathcal{G}-conjugate if there exits a $\Phi \in \mathcal{G}$ such that:

$$
\mathcal{L}_{Y_{1}} \circ \Phi=\Phi \circ \mathcal{L}_{Y_{2}} .
$$

The following two lemmas will be important in the proof of Theorem 1.3.
Lemma 2.1. Let $X, Y \in \mathcal{D}^{(1)}$ be two singular formal vector fields. Then:

$$
\operatorname{ord}([X, Y]) \geq \quad \operatorname{ord}(X)+\operatorname{ord}(Y)-1 .
$$

Lemma 2.2. Let $\left(d_{n}\right)_{n \geq 0} \subset \mathbb{N}_{>0}$ be a strictly increasing sequence of positive integers, and $\left(\Phi_{n}\right)_{n \geq 0}$ a sequence of formal diffeomorphisms. Assume that for all $n \geq 0$,

$$
\Phi_{n}(\mathbf{x})=\mathbf{x}+P_{d_{n}}(\mathbf{x})\left(\bmod \mathfrak{m}^{d_{n}+1}\right)
$$

where $P_{d_{n}}(\mathbf{x})$ is a vector homogenous polynomial of degree d_{n}. Then the sequence $\left(\Phi^{[n]}\right)_{n \geq 0}$, defined by $\Phi^{[n]}=\Phi_{n} \circ \cdots \circ \Phi_{0}$, for all $n \geq 0$, is convergent, of limit $\Phi \in \widehat{\text { Diff }}$.

Moreover, if each Φ_{n} is fibered then Φ is fibered too.
Proof. It suffices to prove by induction that for all $n \geq 0$:

$$
\Phi_{n} \circ \cdots \circ \Phi_{0}(\mathbf{x})=\mathbf{x}+P_{d_{0}}(\mathbf{x})+\cdots+P_{d_{n}}(\mathbf{x})\left(\bmod \mathfrak{m}^{d_{n}+1}\right)
$$

because the sequence $\left(d_{n}\right)_{n \geq 0} \subset \mathbb{N}_{>0}$ is strictly increasing.

2.2 Exponential map and logarithm

Given formal vector field $X \in \mathcal{D}^{(1)}$ and a formal power series $f \in \mathbb{C} \llbracket \mathbf{x} \rrbracket$ and we set

$$
\left\{\begin{array}{l}
\mathcal{L}_{X}^{\circ 0}(f)=f \\
\mathcal{L}_{X}^{\circ(k+1)}(f):=\mathcal{L}_{X}\left(\mathcal{L}_{X}^{\circ k}(f)\right) \quad, \text { for all } k \geq 0
\end{array}\right.
$$

so that we can consider the algebra homomorphism given by:

$$
\begin{equation*}
\exp (X)^{*}: f \mapsto \sum_{k \geq 0} \frac{1}{k!} \mathcal{L}_{X}^{\circ k}(f) \tag{2.4}
\end{equation*}
$$

This series is convergent in the Krull topology and defines in fact a formal diffeomorphism, which is called the time 1 formal flow of $X \in \mathcal{D}^{(1)}$ or the exponential of X. (see e.g. section 3 in [8]).

For any vector field $X \in \mathcal{D}^{(1)}$, we consider also the adjoint map

$$
\begin{aligned}
\operatorname{ad}_{X}: \mathcal{D}^{(1)} & \rightarrow \mathcal{D}^{(1)} \\
Y & \mapsto[X, Y]
\end{aligned}
$$

and define

$$
\left\{\begin{array}{l}
\left(\operatorname{ad}_{X}\right)^{\circ 0}:=\mathrm{Id} \\
\left(\operatorname{ad}_{X}\right)^{\circ(k+1)}:=\operatorname{ad}_{X} \circ\left(\operatorname{ad}_{X}\right)^{\circ k} \quad, \forall k \in \mathbb{N}
\end{array}\right.
$$

We will need the following classical formula (see [14]).
Proposition 2.3. Given $X, Y \in \mathcal{D}^{(1)}$:

$$
\exp (X)_{*}(Y)=\exp \left(\operatorname{ad}_{X}\right)(Y)
$$

where

$$
\exp \left(\operatorname{ad}_{X}\right)(Y)=\sum_{k \geq 0} \frac{1}{k!}\left(\operatorname{ad}_{X}\right)^{\circ k}(Y)=Y+\frac{1}{1!}[X, Y]+\frac{1}{2!}[X,[X, Y]]+\ldots
$$

We also recall the existence of a logarithm for all formal diffeomorphisms tangent to the identity (see [8], section 3).

Proposition 2.4. For any formal diffeomorphism $\Phi \in \widehat{\text { Diff }}$, there exists a unique vector field $F \in \mathcal{D}^{(2)}$ such that $\Phi=\varphi \circ \exp (F)$, where $\varphi \in \widehat{\text { Diff }}$ is the linear change of coordinate given by $D_{0} \Phi$. Moreover, for each $k \geq 2$, the exponential map defines a bijection between $\mathcal{D}^{(k)}$ and $\mathcal{A}^{(k-1)}$.

2.3 Jordan decomposition and Dulac-Poincaré normal forms

According to [14], any singular formal vector field $X \in \mathcal{D}^{(1)}$ admits a unique Jordan decomposition:

$$
\begin{equation*}
X=X_{S}+X_{N}, \text { with } X_{S}, X_{N} \in \mathcal{D}^{(1)} \text { and }\left[X_{S}, X_{N}\right]=0 \tag{2.5}
\end{equation*}
$$

where the restriction of $X_{S}\left(\operatorname{resp} . X_{N}\right)$ to each k-jet vector space $\mathrm{J}_{k}=\mathfrak{m} / \mathfrak{m}^{k}$ (which is finite dimensional), $k \geq 0$, is semi-simple (resp. nilpotent). This decomposition is compatible with truncation and invariant by conjugacy: if $X=X_{S}+X_{N}$ is the Jordan decomposition of X then

1. for all $k \geq 0, \mathrm{j}_{k}(X)=\mathrm{j}_{k}\left(X_{S}\right)+\mathrm{j}_{k}\left(X_{N}\right)$ is the Jordan decomposition of $\mathrm{j}_{k}(X)$ (here, for any singular vector field $Y \in \mathcal{D}^{(1)}, \mathrm{j}_{k}(Y)$ is the endomorphism $\mathrm{J}_{k} \rightarrow \mathrm{~J}_{k}$ induced by \mathcal{L}_{Y};
2. for any formal diffeomorphism $\varphi \in \widehat{\text { Diff }}, \varphi_{*}(X)=\varphi_{*}\left(X_{S}\right)+\varphi_{*}\left(X_{N}\right)$ is the Jordan decomposition of $\varphi_{*}(X)$.

Definition 2.5. We say that $X \in \mathcal{D}^{(1)}$ is in Poincaré-Dulac normal form if its Jordan decomposition $X=X_{S}+X_{N}$ is such that X_{S} is in diagonal form, i.e. $X_{S}=S(\lambda)$, where $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$ and

$$
\begin{equation*}
S(\lambda):=\lambda_{1} x_{1} \frac{\partial}{\partial x_{1}}+\cdots+\lambda_{n} x_{n} \frac{\partial}{\partial x_{n}} . \tag{2.6}
\end{equation*}
$$

As mentioned in the introduction, according to Poincaré-Dulac Theorem, any singular vector field is conjugate to a Poincaré-Dulac normal form, but this normal form is far from being unique: every vector field is conjugate to many distinct Poincaré-Dulac normal forms.

Definition 2.6. A monomial vector field is a vector field in \mathcal{D} of the form $\mathbf{x}^{\mathbf{k}} S(\mu)$ for some $\mathbf{k} \in \mathcal{I}$, where \mathcal{I} is the index set

$$
\mathcal{I}:=\left\{\mathbf{k}=\left(k_{1}, \ldots k_{n}\right) \in\left(\mathbb{Z}_{\geq-1}\right)^{n} \mid \text { at most one of the } k_{j} \text { 's is }-1\right\}
$$ and some $\mu \in \mathbb{C}^{n}$ with the condition that $\mu=\left(0, \ldots, 0, \mu_{j}, 0, \ldots 0\right)$ if $k_{j}=-1$.

\uparrow
j
Fixing $\lambda \in \mathbb{C}^{n}$, each monomial vector field $\mathbf{x}^{\mathbf{k}} S(\mu)$ is an eigenvector for $\operatorname{ad}_{S(\lambda)}$ with eigenvalue

$$
\langle\lambda, \mathbf{k}\rangle:=\lambda_{1} k_{1}+\cdots+\lambda_{n} k_{n} .
$$

This is a consequence of the following elementary lemma.
Lemma 2.7. For all $\lambda, \mu \in \mathbb{C}^{n}$, and for all $\mathbf{l}, \mathbf{m} \in \mathbb{Z}^{n}$:

$$
\left[\mathbf{x}^{\mathbf{l}} S(\lambda), \mathbf{x}^{\mathbf{m}} S(\mu)\right]=\mathbf{x}^{\mathbf{1}+\mathbf{m}}(\langle\lambda, \mathbf{m}\rangle S(\mu)-\langle\mu, \mathbf{l}\rangle S(\lambda)) .
$$

Remark 2.8. Notice that each $X \in \mathcal{D}$ can be uniquely written as an infinite sum of monomial vector fields of the form

$$
X=\sum_{\mathbf{k} \in \mathcal{I}} \mathbf{x}^{\mathbf{k}} S\left(\mu_{\mathbf{k}}\right)
$$

which is a Krull-convergent series in \mathcal{D}. We will call this expression the monomial expansion of X.

Assume now that $X=S(\lambda)+X_{N}$ is in Poincaré-Dulac normal form and let us consider the monomial expansion of X_{N} :

$$
X_{N}=\sum_{\mathbf{k} \in \mathcal{I}} \mathbf{x}^{\mathbf{k}} S\left(\mu_{\mathbf{k}}\right)
$$

The condition $\left[X_{S}, X_{N}\right]=0$ is equivalent to require

$$
\forall \mathbf{k} \in \mathcal{I},\langle\lambda, \mathbf{k}\rangle \neq 0 \Longrightarrow \mu_{\mathbf{k}}=0
$$

in other words, each $\mathbf{x}^{\mathbf{k}}$ in the monomial expansion of X_{N} is a so-called resonant monomial.

Proposition 2.9. Let $X, Y \in \mathcal{D}^{(1)}$ be two vector fields in Poincaré-Dulac normal form with the same semi-simple part $S(\mu)$ for some $\mu \in \mathbb{C}^{n}$, and with nilpotent parts in $\mathcal{D}^{(2)}$:

$$
\begin{cases}X=S(\mu)+X_{N} & , \text { with } X_{N} \in \mathcal{D}^{(2)}, \text { nilpotent, and }\left[S(\mu), X_{N}\right]=0 \\ Y=S(\mu)+Y_{N} & , \text { with } Y_{N} \in \mathcal{D}^{(2)}, \text { nilpotent, and }\left[S(\mu), Y_{N}\right]=0\end{cases}
$$

Assume X and Y are conjugate by a formal diffeomorphism Φ such that $D_{0} \Phi=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ for some $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}^{*}$. If we write $\Phi=\varphi \circ \exp (F)$ for some vector field $F \in \mathcal{D}^{(2)}$, where $\varphi \in \widehat{\text { Diff }}$ is the linear diffeomorphism associated to $D_{0} \Phi=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then necessarily $[S(\mu), F]=0$.

Remark 2.10. Recall that the condition $[S(\mu), F]=0$ means that if we write $F=\sum_{\mathbf{k} \in \mathcal{I}} \mathbf{x}^{\mathbf{k}} S\left(\lambda_{\mathbf{k}}\right)$, then $\langle\mu, \mathbf{k}\rangle \neq 0 \Longrightarrow \lambda_{\mathbf{k}}=0$.

Proof. We can assume without loss of generality that Φ is tangent to the identity. Indeed by setting $P:=\left(\mathrm{D}_{0} \Phi\right)^{-1}$, we obtain that $P \circ \Phi$ is tangent to the identity and conjugates X to $\tilde{Y}=\mathrm{D} P \cdot\left(Y \circ P^{-1}\right)$. Since $\mathrm{D} P$ is diagonal, the assumptions made on Y are also met by \tilde{Y}. Moreover, it is clear that the property we have to prove is true for Φ if and only if it is true for $P \circ \Phi$. Therefore we may suppose that Φ is tangent to the identity. According to Proposition 2.4, there exists $F \in \mathcal{D}^{(2)}$ such that $\exp (F)=\Phi$, while according to Proposition 2.3 we have:

$$
\begin{equation*}
\exp (F)_{*}(S(\mu))=S(\mu)+[F, S(\mu)]+\frac{1}{2!}[F,[F, S(\mu)]]+\ldots \tag{2.7}
\end{equation*}
$$

Since $\exp (F)_{*}(S(\mu))=S(\mu)$ by uniqueness of the Jordan decomposition, we have

$$
\begin{equation*}
[F, S(\mu)]+\frac{1}{2!}[F,[F, S(\mu)]]+\ldots=0 \tag{2.8}
\end{equation*}
$$

This implies that $[F, S(\mu)]=0$, using Lemma 2.1 and the fact that ord $(F) \geq$ 2.

Remark 2.11. The assumption that $\mathrm{D}_{0} \Phi$ is in diagonal form necessarily holds if $\mu_{i} \neq \mu_{j}$, for all $i \neq j$.

2.4 Formal differential forms

Definition 2.12. We denote by $\widehat{\Omega^{1}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$ (or just $\widehat{\Omega^{1}}$ for simplicity) the set of formal 1-forms in \mathbb{C}^{n}. It is the dual of $\operatorname{Der}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$ as $\mathbb{C} \llbracket \mathbf{x} \rrbracket$-module.

Fixing the dual basis $\left(\mathrm{d} x_{1}, \ldots \mathrm{~d} x_{n}\right)$ of $\left(\mathbb{C}^{n}\right)^{*}, \widehat{\Omega^{1}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$ is a free $\mathbb{C} \llbracket \mathbf{x} \rrbracket$ module of rank n, generated by $\mathrm{d} x_{1}, \ldots, \mathrm{~d} x_{n}$.

Definition 2.13. For any $p \in \mathbb{N}$, we denote the p-exterior product of $\widehat{\Omega^{1}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$ by

$$
\widehat{\Omega^{p}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket):=\bigwedge^{p} \widehat{\Omega^{1}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)
$$

(or just $\widehat{\Omega^{p}}$). Its elements will be called formal p-forms.
The set of 0-forms is the set of formal series: $\widehat{\Omega^{0}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket):=\mathbb{C} \llbracket \mathbf{x} \rrbracket$.
Definition 2.14. We denote by

$$
\widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket):=\underset{p=0}{+\infty} \widehat{\Omega^{p}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)
$$

(or just $\widehat{\Omega}$ for simplicity) the exterior algebra of the formal forms in \mathbb{C}^{n}, and by d the exterior derivative on it.

One can also extend the Krull topology to $\widehat{\Omega}$.
We can define the action of $\widehat{\text { Diff }}$ by pull-back on $\widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$ thanks to the following properties:

1. \mathbb{C}-linearity
2. for all $f \in \mathbb{C} \llbracket \mathbf{x} \rrbracket$, $\Phi^{*}(f)$ is defined as in (2.3)
3. $\forall \alpha, \beta \in \widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket), \forall \Phi \in \widehat{\mathrm{Diff}}, \Phi^{*}(\alpha \wedge \beta)=\Phi^{*}(\alpha) \wedge \Phi^{*}(\beta)$
4. $\forall \Phi \in \widehat{\mathrm{Diff}}, \Phi^{*} \circ \mathrm{~d}=\mathrm{d} \circ \Phi^{*}$.

For any $X \in \mathcal{D}^{(1)}$ and $\alpha \in \widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$, we denote by $\mathcal{L}_{X}(\alpha)$ the Lie derivative of α with respect to X. We recall that \mathcal{L}_{X} is uniquely determined by the following properties:

1. for all $k \geq 0, \mathcal{L}_{X}: \widehat{\Omega^{k}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket) \longrightarrow \widehat{\Omega^{k}}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$ is linear
2. for all $f \in \mathbb{C} \llbracket \mathbf{x} \rrbracket$ (i.e. f is a 0 -form), $\mathcal{L}_{X}(f)$ is as in Definition (2.2)
3. \mathcal{L}_{X} is a derivation of $\widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$, i.e. for all $\alpha, \beta \in \widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$:

$$
\mathcal{L}_{X}(\alpha \wedge \beta)=\mathcal{L}_{X}(\alpha) \wedge \beta+\alpha \wedge \mathcal{L}_{X}(\beta)
$$

(Leibniz rule)
4. $\mathcal{L}_{X} \circ \mathrm{~d}=\mathrm{d} \circ \mathcal{L}_{X}$.

We will need the following classical formula, which extends (2.4).
Proposition 2.15. $\forall \alpha \in \widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket), X \in \mathcal{D}^{(1)}$:

$$
\exp (X)^{*}(\alpha)=\exp \left(\mathcal{L}_{X}\right)(\alpha)=\sum_{k \geq 0} \frac{1}{k!} \mathcal{L}_{X}^{\circ k}(\alpha)
$$

Proof. (Sketch)
This formula is true for 0 -forms, and we just has to prove it for 1 -forms, because we can then it extend to any p-form using the exterior product and the Leibniz formula. In order to prove the result for 1 -forms, one has to use the fact that $\mathcal{L}_{X} \circ \mathrm{~d}=\mathrm{d} \circ \mathcal{L}_{X}$.

With the same arguments, and using formulas $\Phi^{*} \circ \mathrm{~d}=\operatorname{do} \Phi^{*}$ and $\Phi^{*}(\alpha \wedge \beta)=$ $\Phi^{*}(\alpha) \wedge \Phi^{*}(\beta)$, we can prove the following Proposition.

Proposition 2.16. For all $\Phi \in \widehat{\text { Diff }}, X \in \mathcal{D}^{(1)}$ and $\theta \in \widehat{\Omega}(\mathbb{C} \llbracket \mathbf{x} \rrbracket)$, we have;

$$
\Phi^{*}\left(\mathcal{L}_{\Phi_{*}(X)}(\omega)\right)=\mathcal{L}_{X}\left(\Phi^{*}(\omega)\right)
$$

In other words, the following diagram is commutative for all $p \geq 0$:

From now on, we set $n=3$, we denote by $\mathbf{x}=(x, \mathbf{y})=\left(x, y_{1}, y_{2}\right)$ the coordinates in \mathbb{C}^{3}.
Definition 2.17. We denote by $\langle\mathrm{d} x\rangle$ the ideal generated by $\mathrm{d} x$ in $\widehat{\Omega}=\widehat{\Omega}(\mathbb{C} \llbracket x, \mathbf{y} \rrbracket)$: it is the set of forms $\theta \in \widehat{\Omega}$ such that $\theta=\mathrm{d} x \wedge \eta$, for some $\eta \in \widehat{\Omega}$.

Proposition 2.18. Let $\theta \in \widehat{\Omega}, X \in \mathcal{D}^{(1)}$ and set $\Phi:=\exp (X) \in \widehat{\text { Diff. }}$. Then the following assertions are equivalent:

1. $\mathcal{L}_{X}(x)=0$ and $\mathcal{L}_{X}(\theta) \in\langle d x\rangle$
2. $\Phi^{*}(x)=x$ and $\Phi^{*}(\theta) \in \theta+\langle d x\rangle$.

Proof. It is just a consequence of Propositions 2.15 and 2.3.
The next Lemma is proved by induction, as Lemma 2.2
Lemma 2.19. In the situation described in Lemma 2.2, if we further assume that there exists a form $\theta \in \widehat{\Omega}$ such that $\Phi_{n}^{*}(\theta) \in \theta+\langle d x\rangle$, for all $n \geq 0$, then $\Phi^{*}(\theta) \in \theta+\langle d x\rangle$.

2.5 Transversal Hamiltonian vector fields and transversal symplectomorphisms

We will need in fact to deal with forms with rational coefficients, and more precisely with

$$
\omega:=\frac{\mathrm{d} y_{1} \wedge \mathrm{~d} y_{2}}{x}
$$

Given a formal vector field X such that $\mathcal{L}_{X}(x) \in\langle x\rangle$ we can easily extend its Lie derivative action to the set $x^{-1} \widehat{\Omega}(\mathbb{C} \llbracket x, \mathbf{y} \rrbracket)$ by setting:

$$
\begin{aligned}
\mathcal{L}_{X}\left(\frac{1}{x} \theta\right) & :=-\frac{\mathcal{L}_{X}(x)}{x^{2}} \theta+\frac{1}{x} \mathcal{L}_{X}(\theta), \theta \in \widehat{\Omega}(\mathbb{C} \llbracket x, \mathbf{y} \rrbracket) \\
& \in x^{-1} \widehat{\Omega}(\mathbb{C} \llbracket x, \mathbf{y} \rrbracket), \text { because } \mathcal{L}_{X}(x) \in\langle x\rangle
\end{aligned}
$$

In particular we have

$$
x \mathcal{L}_{X}\left(\frac{1}{x} \theta\right) \in \widehat{\Omega}(\mathbb{C} \llbracket x, \mathbf{y} \rrbracket)
$$

Notice that if a vector field X satisfy $\mathcal{L}_{X}(\mathrm{~d} x) \in\langle\mathrm{d} x\rangle$, then $\mathcal{L}_{X}(x) \in\langle x\rangle$. Similarly, we naturally extend the action of fibered diffeomorphisms by pullback on rational forms in $x^{-1} \widehat{\Omega}(\mathbb{C} \llbracket x, \mathbf{y} \rrbracket)$ by:

$$
\Phi^{*}\left(\frac{1}{x} \theta\right)=\frac{1}{x} \Phi^{*}(\theta), \text { for }(\Phi, \theta) \in \widehat{\operatorname{Diff}}_{\mathrm{fib}} \times \widehat{\Omega}(\mathbb{C} \llbracket x, \mathbf{y} \rrbracket)
$$

so that

$$
x \Phi^{*}\left(\frac{1}{x} \theta\right)=\Phi^{*}(\theta)
$$

Recalling Definition 1.9, we can now state a result analogous to Proposition 2.18.

Proposition 2.20. Let $F \in \mathcal{D}^{(1)}$ be a singular vector field. The following two statements are equivalent:

1. $\exp (F)$ is a transversally symplectic diffeomorphisms,
2. $\mathcal{L}_{F}(x)=0$ and F is transversally Hamiltonian.

Proof. It is just a consequence of Proposition 2.18.
Lemma 2.21. Let $\Phi \in \widehat{\operatorname{Diff}}_{\omega}$ and $X \in \mathcal{D}_{\omega}$. Then, $\Phi_{*}(X) \in \mathcal{D}_{\omega}$.
Proof. This comes from Proposition 2.16: $\Phi^{*}\left(\mathcal{L}_{\Phi_{*}(X)}(\omega)\right)=\mathcal{L}_{X}\left(\Phi^{*}(\omega)\right)$, and from the fact that $\widehat{\operatorname{Diff}}_{\omega}$ is a group, so $\Phi^{-1} \in \widehat{\operatorname{Diff}}_{\omega}$. Consequently we have:

$$
\begin{aligned}
x \mathcal{L}_{\Phi_{*}(X)}(\omega) & =x\left(\Phi^{-1}\right)^{*} \mathcal{L}_{X}\left(\Phi^{*}(\omega)\right) \\
& =x\left(\Phi^{-1}\right)^{*} \mathcal{L}_{X}(\omega+\langle\mathrm{d} x\rangle) \\
& =x\left(\Phi^{-1}\right)^{*}\left(\mathcal{L}_{X}(\omega)\right)+x\left(\Phi^{-1}\right)^{*}\left(\mathcal{L}_{X}(\langle\mathrm{~d} x\rangle)\right) \\
& =x\left(\Phi^{-1}\right)^{*}(\langle\mathrm{~d} x\rangle)+x\left(\Phi^{-1}\right)^{*}(\langle\mathrm{~d} x\rangle) \\
& \in\langle\mathrm{d} x\rangle .
\end{aligned}
$$

Remark 2.22. In other words, we have an action of the group $\widehat{\operatorname{Diff}}_{\omega}$ on \mathcal{D}_{ω}, and then on $\widehat{\mathcal{S N}}_{\omega}$.

We would like now to give a characterization of transversally Hamiltonian vector fields in terms of its monomial expansion (see Remark 2.8). Consider a monomial vector field

$$
X=x^{k_{0}} y_{1}^{k_{1}} y_{2}^{k_{2}} S(\mu)
$$

with $\mu=\left(\mu_{0}, \mu_{1}, \mu_{2}\right) \in \mathbb{C}^{3} \backslash\{0\}$, such that $\mathcal{L}_{X}(x) \in\langle x\rangle$. We necessarily have either $\mu_{0}=0$ or $k_{0} \geq 0$. Let us compute its Lie derivative applied to ω :

$$
\begin{aligned}
\mathcal{L}_{X}(\omega)= & -\frac{\mathcal{L}_{X}(x)}{x^{2}} \mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}+\frac{1}{x} \mathrm{~d}\left(\mathcal{L}_{X}\left(y_{1}\right)\right) \wedge \mathrm{d} y_{2}+\frac{1}{x} \mathrm{~d} y_{1} \wedge \mathrm{~d}\left(\mathcal{L}_{X}\left(y_{2}\right)\right) \\
= & -\mu_{0} x^{k_{0}-1} y_{1}^{k_{1}} y_{2}^{k_{2}} \mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}+\frac{\mu_{1}}{x} \mathrm{~d}\left(x^{k_{0}} y_{1}^{k_{1}+1} y_{2}^{k_{2}}\right) \wedge \mathrm{d} y_{2} \\
& +\frac{\mu_{2}}{x} \mathrm{~d} y_{1} \wedge \mathrm{~d}\left(x^{k_{0}} y_{1}^{k_{1}} y_{2}^{k_{2}+1}\right) \\
= & \left(\mu_{1}\left(k_{1}+1\right)+\mu_{2}\left(k_{2}+1\right)-\mu_{0}\right) x^{k_{0}-1} y_{1}^{k_{1}} y_{2}^{k_{2}} \mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}+\langle\mathrm{d} x\rangle .
\end{aligned}
$$

Moreover:

$$
\begin{aligned}
\mathcal{L}_{X}(\mathrm{~d} x) & =\mathrm{d}\left(\mathcal{L}_{X}(x)\right) \\
& =\mathrm{d}\left(\mu_{0} x^{k_{0}+1} y_{1}^{k_{1}} y_{2}^{k_{2}}\right) \\
& =\mu_{0}\left(\left(k_{0}+1\right) x^{k_{0}} y_{1}^{k_{1}} y_{2}^{k_{2}} \mathrm{~d} x+k_{1} x^{k_{0}+1} y_{1}^{k_{1}-1} y_{2}^{k_{2}} \mathrm{~d} y_{1}+k_{2} x^{k_{0}+1} y_{1}^{k_{1}} y_{2}^{k_{2}-1} \mathrm{~d} y_{2}\right)
\end{aligned}
$$

Thus, we see that X is transversally Hamiltonian if and only if the following two conditions hold:

1. $\mu_{1}\left(k_{1}+1\right)+\mu_{2}\left(k_{2}+1\right)=\mu_{0}$
2. either $\mu_{0}=0$ or $k_{1}=k_{2}=0$.

So we have the following:
Proposition 2.23. Let $X \in \mathcal{D}^{(1)}$ be a singular vector field and let

$$
X=\sum_{\mathbf{k} \in \mathcal{I}} \mathbf{x}^{\mathbf{k}} S\left(\mu_{\mathbf{k}}\right)
$$

be its monomial expansion. X is transversally Hamiltonian if and only if for all $\mathbf{k} \in \mathcal{I}, \mathbf{x}^{\mathbf{k}} S\left(\mu_{\mathbf{k}}\right)$ is transversally Hamiltonian.

Proof. Clearly if $\mathbf{x}^{\mathbf{k}} S\left(\mu_{\mathbf{k}}\right)$ is transversally Hamiltonian for all $\mathbf{k} \in \mathcal{I}$, then X is transversally Hamiltonian is obvious, by convergence of the above series in the Krull topology. Assume conversely that X is transversally Hamiltonian. First of all, notice that we necessarily have, for all $\mathbf{k} \in \mathcal{I}, \mathcal{L}_{\mathbf{x}^{\mathbf{k}} S\left(\mu_{\mathbf{k}}\right)}(\mathrm{d} x) \in\langle\mathrm{d} x\rangle$. Indeed, if it were not the case, consider \mathbf{k} with $|\mathbf{k}|$ minimum among the set of multi-index \mathbf{l} satisfying

$$
\mathcal{L}_{x^{l} S\left(\mu_{1}\right)}(\mathrm{d} x) \notin\langle\mathrm{d} x\rangle
$$

to obtain a contradiction, by looking at the terms of higher order. Similarly, according to the computation above, for each $\mathbf{k} \in \mathcal{I}$:
$\mathcal{L}_{\mathbf{x}^{\mathbf{k}} S\left(\mu_{\mathbf{k}}\right)}(\omega)=\left(\mu_{1}\left(k_{1}+1\right)+\mu_{2}\left(k_{2}+1\right)-\mu_{0}\right) x^{k_{0}-1} y_{1}^{k_{1}} y_{2}^{k_{2}} \mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}+\langle\mathrm{d} x\rangle$
If one of the two conditions 1 . or 2 . above were not satisfied by a couple ($\mathbf{k}, \mu_{\mathbf{k}}$) with $|\mathbf{k}|$ minimal, then we could not have $x \mathcal{L}_{X}(\omega) \in\langle\mathrm{d} x\rangle$ (just consider the terms of higher order).

3 Formal classification under fibered transformations

3.1 Invariance of the residue by fibered conjugacy

We start this section by proving that the non-degenerate condition defined in the introduction only depends on the conjugacy class of the vector field under the action of fibered diffeomorphisms. More precisely, the following proposition states that the residue is an invariant of a doubly-resonant saddle-node under the action of $\widehat{\text { Diff }}_{\text {fib }}$.
Proposition 3.1. Let $X, Y \in \widehat{\mathcal{S N}}$. If X and Y are $\widehat{\text { Diff }}_{\text {fib }}$-conjugate, then $\operatorname{res}(X)=\operatorname{res}(Y)$.
Proof. Consider the system

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d} \mathbf{y}}{\mathrm{~d} x}=\alpha(x)+\mathbf{A}(x) \mathbf{y}(x)+\mathbf{f}(x, \mathbf{y}(x)) \tag{3.1}
\end{equation*}
$$

with $\mathbf{y}=\left(y_{1}, y_{2}\right)$ and where the following conditions hold:

- $\alpha(x)=\binom{\alpha_{1}(x)}{\alpha_{2}(x)}$, with $\alpha_{1}, \alpha_{2} \in\langle x\rangle^{2} \subset \mathbb{C} \llbracket x \rrbracket$
- $\mathbf{A}(x) \in \operatorname{Mat}_{2,2}(\mathbb{C} \llbracket x \rrbracket)$ with $\mathbf{A}(0)=\operatorname{Diag}(-\lambda, \lambda), \lambda \in \mathbb{C}^{*}$
- $\mathbf{f}(x, \mathbf{y})=\binom{f_{1}(x, \mathbf{y})}{f_{2}(x, \mathbf{y})}$, with $f_{1}, f_{2} \in\left\langle y_{1}, y_{2}\right\rangle^{2} \subset \mathbb{C} \llbracket x, \mathbf{y} \rrbracket$.

Perform the change of coordinates given by $\mathbf{y}=\beta(x)+\mathbf{P}(x) \mathbf{z}+\mathbf{h}(x, \mathbf{z})$, with $\mathbf{z}=\left(z_{1}, z_{2}\right)$ and where:

- $\beta(x)=\binom{\beta_{1}(x)}{\beta_{2}(x)}$, with $\beta_{1}, \beta_{2} \in\langle x\rangle \subset \mathbb{C} \llbracket x \rrbracket$
- $\mathbf{P}(x) \in \operatorname{Mat}_{2,2}(\mathbb{C} \llbracket x \rrbracket)$ such that $\mathbf{P}(0) \in \mathrm{GL}_{2}(\mathbb{C})$
- $\mathbf{h}(x, \mathbf{y})=\binom{h_{1}(x, \mathbf{y})}{h_{2}(x, \mathbf{y})}$, with $h_{1}, h_{2} \in\left\langle z_{1}, z_{2}\right\rangle^{2} \subset \mathbb{C} \llbracket x, \mathbf{z} \rrbracket$.

Then one obtain the following system satisfied by $\mathbf{z}(x)$:

$$
\begin{aligned}
x^{2} \frac{\mathrm{~d} \mathbf{z}}{\mathrm{~d} x}= & \mathbf{P}(x)^{-1}\left(\alpha(x)+\mathbf{A}(x) \beta(x)+\mathbf{f}(x, \beta(x))-x^{2} \frac{\mathrm{~d} \beta}{\mathrm{~d} x}(x)\right) \\
& +\mathbf{P}(x)^{-1}\left(\mathbf{A}(x) \mathbf{P}(x)-x^{2} \frac{\mathrm{~d} \mathbf{P}}{\mathrm{~d} x}(x)+\frac{\partial \mathbf{f}}{\partial \mathbf{y}}(x, \beta(x)) \mathbf{P}(x)\right) \mathbf{z}+\left\langle z_{1}, z_{2}\right\rangle^{2}
\end{aligned}
$$

Since $\mathbf{A}(0) \in \mathrm{GL}_{2}(\mathbb{C}), \mathbf{f}(x, \mathbf{y}) \in\left\langle y_{1}, y_{2}\right\rangle^{2}$ and ord $(\beta) \geq 1$, the order of

$$
\mathbf{P}(x)^{-1}\left(\alpha(x)+\mathbf{A}(x) \beta(x)+\mathbf{f}(x, \beta(x))-x^{2} \frac{\mathrm{~d} \beta}{\mathrm{~d} x}(x)\right)
$$

is at least 2 if and only if ord $(\beta) \geq 2$. Then:
$\operatorname{Tr}\left(\mathbf{P}(x)^{-1}\left(\mathbf{A}(x) \mathbf{P}(x)-x^{2} \frac{\mathrm{~d} \mathbf{P}}{\mathrm{~d} x}(x)+\frac{\partial \mathbf{f}}{\partial \mathbf{y}}(x, \beta(x)) \mathbf{P}(x)\right)\right) \in \operatorname{Tr}(\mathbf{A}(x))+\langle x\rangle^{2}$.
So $\left(\frac{\operatorname{Tr}(\mathbf{A}(x))}{x}\right)_{\mid x=0}$ is invariant by fibered change of coordinates on system of the form (3.1) with ord $(\alpha) \geq 2$.

3.2 Proof of Theorems 1.3 and 1.12

We will use the tools described in Section 2.
Proof. Let $Y \in \widehat{\mathcal{S N}}_{\text {nd }}$ (resp. in $\widehat{\mathcal{S N}}_{\omega}$) be a non-degenerate (resp. transversally Hamiltonian) doubly-resonant saddle-node:

$$
Y=x^{2} \frac{\partial}{\partial x}+\left(-\lambda y_{1}+F_{1}\left(x, y_{1}, y_{2}\right)\right) \frac{\partial}{\partial y_{1}}+\left(\lambda y_{2}+F_{2}\left(x, y_{1}, y_{2}\right)\right) \frac{\partial}{\partial y_{1}},
$$

with $\lambda \in \mathbb{C}^{*}$, and $F_{\nu}(x, \mathbf{y}) \in \mathfrak{m}^{2}$, for $\nu=1,2$. As seen in the previous subsection, we can assume that $F_{1}(x, 0,0)=F_{2}(x, 0,0)=0$.

The general idea is to apply successive (infinitely many) diffeomorphisms of the form

$$
\exp \left(x^{j_{0}} y_{1}^{j_{1}} y_{2}^{j_{2}} S\left(0, \mu_{1, \mathbf{j}}, \mu_{2, \mathbf{j}}\right)\right)
$$

for convenient choices of $\mathbf{j}, \mu_{1, \mathbf{j}}, \mu_{2, \mathbf{j}}$, in order to remove all the terms we want to. Let us consider the monomial expansion of Y :

$$
\begin{equation*}
Y=\lambda S(0,-1,1)+x S(1,0,0)+\sum_{\mathbf{k} \in \mathcal{I},|\mathbf{k}| \geq 1} x^{k_{0}} y_{1}^{k_{1}} y_{2}^{k_{2}} S\left(0, \mu_{1, \mathbf{k}}, \mu_{2, \mathbf{k}}\right) \tag{3.2}
\end{equation*}
$$

Since Y in non-degenerate we necessarily have

$$
\mu_{1,(1,00)}+\mu_{2,(1,0,0)}=\operatorname{res}(Y) \in \mathbb{C} \backslash \mathbb{Q}_{\leq 0}
$$

In the transversally Hamiltonian case, each term in the sum

$$
\sum_{\mathbf{k} \in \mathcal{I},|\mathbf{k}| \geq 1} x^{k_{0}} y_{1}^{k_{1}} y_{2}^{k_{2}} S\left(0, \mu_{1, \mathbf{k}}, \mu_{2, \mathbf{k}}\right)
$$

must satisfy

$$
\mu_{1, \mathbf{k}}\left(k_{1}+1\right)+\mu_{2, \mathbf{k}}\left(k_{2}+1\right)=0
$$

if $\mathbf{k} \neq(1,0,0)$ and $\mu_{1,(1,0,0)}+\mu_{2,(1,0,0)}=1$.
The normalizing conjugacy Φ is constructed in two steps.

1. The first step is aimed at removing all non-resonant monomial terms, i.e. those of the form

$$
x^{k_{0}} y_{1}^{k_{1}} y_{2}^{k_{2}} S\left(0, \mu_{1, \mathbf{k}}, \mu_{2, \mathbf{k}}\right), \text { with } \mathbf{k} \in \mathcal{I},|\mathbf{k}| \geq 1 \text { and } k_{1} \neq k_{2}
$$

2. The second step is aimed at removing certain resonant monomial terms, and more precisely those of the form

$$
x^{k_{0}}\left(y_{1} y_{2}\right)^{k} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right), \text { except for }\left(k_{0}, k\right)=(1,0) \text { and } k_{0}=0
$$

We will see that each one of these steps allows us to define a fibered diffeomorphism Φ_{j} (transversally symplectic in the transversally Hamiltonian case), for $j=1,2$. Finally we define $\Phi:=\Phi_{2} \circ \Phi_{1}$. The main tool used at each step is Proposition 2.15. Moreover, each Φ_{j} will be constructed using Corollary 2.2. The fact that each Φ_{j} is a fibered diffeomorphism (transversally symplectic in the transversally Hamiltonian case) will again come from Lemma 2.2 (and Lemma 2.19 in the transversally symplectic case, and each $Y_{j}=\left(\Phi_{j}\right)_{*}\left(Y_{j-1}\right)$, $j=1,2$ with $Y_{0}:=Y$, will be transversally Hamiltonian according to Lemma 2.21).

1. First step: we remove all non-resonant monomial terms, using diffeomorphisms of the form

$$
\exp \left(x^{i_{0}} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right)\right)
$$

with $\mathbf{i} \in \mathcal{I},|\mathbf{i}| \geq 1, i_{1} \neq i_{2}$ and $\eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}$ to be determined. We have, thanks to Proposition 2.15:

$$
\left(\exp \left(x^{i_{0}} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right)\right)\right)_{*}\left(Y_{0}\right)=Y_{0}+\frac{1}{1!}\left[x^{i_{0}} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right), Y_{0}\right]+\ldots,
$$

where (...) are terms computed via successive nested brackets, and they are all of order at least $|\mathbf{i}|+1$. Let us compute the first bracket:

$$
\begin{aligned}
& {\left[x^{i_{0}} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right), Y_{0}\right] } \\
= & \lambda\left(i_{1}-i_{2}\right) x_{0}^{i_{0}} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right) \\
& -i_{0} x^{i_{0}+1} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right) \\
& +\sum_{\mathbf{k} \in \mathcal{I},|\mathbf{k}| \geq 1} x^{i_{0}+k_{0}} y_{1}^{i_{1}+k_{1}} y_{2}^{i_{2}+k_{2}}\left(k_{1} \eta_{1, i_{0}}+k_{2} \eta_{2, i_{2}}\right) S\left(0, \mu_{1, \mathbf{k}}, \mu_{2, \mathbf{k}}\right) \\
& -\sum_{\mathbf{k} \in \mathcal{I},|\mathbf{k}| \geq 1} x^{i_{0}+k_{0}} y_{1}^{i_{1}+k_{1}} y_{2}^{i_{2}+k_{2}}\left(i_{1} \mu_{1, \mathbf{k}}+i_{2} \mu_{2, \mathbf{k}}\right) S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right) .
\end{aligned}
$$

Then one can remove all terms of the form $x^{i_{0}} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \mu_{1, \mathbf{i}}, \mu_{2, \mathbf{i}}\right)$ with $|\mathbf{i}| \geq 1$ and $i_{1} \neq i_{2}$ by induction on $|\mathbf{i}| \geq 1$. We then define (using Lemma 2.2) a fibered diffeomorphism Φ_{1}, such that $Y_{1}:=\left(\Phi_{1}\right)_{*}\left(Y_{0}\right)$ is still of the form (3.2), but without non-resonant terms:

$$
\begin{aligned}
Y_{1}= & \lambda S(0,-1,1)+x S\left(1, a_{1}, a_{2}\right) \\
& +\sum_{\substack{k_{0}+k \geq 1 \\
\left(k_{0}, k\right) \neq(1,0)}} x^{k_{0}} y_{1}^{k} y_{2}^{k} S\left(0, \mu_{1, \mathbf{k}}, \mu_{2, \mathbf{k}}\right)
\end{aligned}
$$

for maybe different $\mu_{j, \mathbf{k}}$. Notice that a_{1}, a_{2} here are necessarily such that $a_{1}+a_{2} \notin \mathbb{Q} \leq 0$ since the vector field is supposed to be non-degenerate, and this condition is invariant under fibered change of coordinates.
Remark. In the transversally Hamiltonian case, the terms $x^{i_{0}} y_{1}^{i_{1}} y_{2}^{i_{2}} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right)$ to be removed at this stage satisfy $\eta_{1, \mathbf{i}}\left(i_{1}+1\right)+\eta_{2, \mathbf{i}}\left(i_{2}+1\right)=0$, so that Φ_{1} is transversally symplectic according to Proposition 2.20 and Lemma 2.19. Moreover, in this case, we necessarily have $a_{1}+a_{2}=1$.
2. Second step: we finally remove all the terms of the form

$$
x^{i_{0}}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right), \text { except for }\left(i_{0}, i\right)=(1,0) \text { and } i_{0}=0
$$

using diffeomorphisms of the form

$$
\exp \left(x^{i_{0}}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right)\right)
$$

with $i_{0}+i \geq 1$, and $\eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}$ to be determined. We have, thanks to Proposition 2.15:

$$
\left(\exp \left(x^{i_{0}}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right)\right)\right)_{*}\left(Y_{1}\right)=Y_{1}+\frac{1}{1!}\left[x^{i_{0}}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right), Y_{1}\right]+\ldots
$$

where (...) are terms computed via successive nested brackets, and they are all of order strictly greater than the order of the first bracket. Let us compute the first bracket:

$$
\begin{aligned}
& {\left[x^{i_{0}}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right), Y_{3}\right] } \\
= & -\left(i_{0}+i\left(a_{1}+a_{2}\right)\right) x^{i_{0}+1}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right) \\
& +\sum_{\substack{k_{0}+2 k>1 \\
\left(k_{0}, k\right) \neq(1,0)}} x^{i_{0}+k_{0}}\left(y_{1} y_{2}\right)^{i+k} k\left(\eta_{1, i_{0}}+\eta_{2, i_{2}}\right) S\left(0, \mu_{1, \mathbf{k}}, \mu_{2, \mathbf{k}}\right) \\
& -\sum_{\substack{k_{0}+2 k>1 \\
\left(k_{0}, k\right) \neq(1,0)}} x^{i_{0}+k_{0}}\left(y_{1} y_{2}\right)^{i+k} i\left(\mu_{1, \mathbf{k}}+\mu_{2, \mathbf{k}}\right) S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right) .
\end{aligned}
$$

Then we see that one can remove all terms of the form $x^{i_{0}}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right)$ except for $\left(i_{0}, i\right)=(1,0)$ and for $i_{0}=0$, without creating non-resonant terms, since $\left(a_{1}+a_{2}\right) \notin \mathbb{Q} \leq 0$. We do this by induction on $I:=i_{0}+i \geq 1$, and for fixed $I \geq 1$, we remove the terms with i increasing and i_{0} decreasing. Notice that at each step we do not create terms already removed earlier in the process.
We then define (using Lemma 2.2) a fibered diffeomorphism Φ_{2}, such that $Y_{2}:=\left(\Phi_{2}\right)_{*}\left(Y_{1}\right)$ is of the form

$$
Y_{2}=\lambda S(0,-1,1)+x S\left(1, a_{1}, a_{2}\right)+\sum_{k \geq 1}\left(y_{1} y_{2}\right)^{k} S\left(0, \mu_{1, \mathbf{k}}, \mu_{2, \mathbf{k}}\right)
$$

Remark. In the transversally Hamiltonian case, the terms $x^{i_{0}}\left(y_{1} y_{2}\right)^{i} S\left(0, \eta_{1, \mathbf{i}}, \eta_{2, \mathbf{i}}\right)$ to be removed at this stage satisfy $\left(\eta_{1, \mathbf{i}}+\eta_{2, \mathbf{i}}\right)=0$, so that Φ_{2} is transversally symplectic, according to Proposition 2.20 and and Lemma 2.19.

Finally, we define $\Phi:=\Phi_{2} \circ \Phi_{1}$, so that $\Phi_{*}(Y)=Y_{2}$ and Φ is a fibered diffeomorphism (transversally symplectic in the Hamiltonian case).

3.3 Uniqueness: proof of Theorem 1.6

We now prove Theorem 1.6.
Proof. Let

$$
\begin{aligned}
Z & =x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x+c_{1}(v)\right) z_{1} \frac{\partial}{\partial z_{1}}+\left(\lambda+a_{2} x+c_{2}(v)\right) z_{2} \frac{\partial}{\partial z_{2}} \\
Z^{\prime} & =x^{2} \frac{\partial}{\partial x}+\left(-\lambda^{\prime}+a_{1}^{\prime} x+c_{1}^{\prime}(v)\right) z_{1} \frac{\partial}{\partial z_{1}}+\left(\lambda^{\prime}+a_{2}^{\prime} x+c_{2}^{\prime}(v)\right) z_{2} \frac{\partial}{\partial z_{2}}
\end{aligned}
$$

where $\left(\lambda, \lambda^{\prime}, a_{1}, a_{2}, a_{1}^{\prime}, a_{2}^{\prime}\right) \in\left(\mathbb{C}^{*}\right)^{2} \times \mathbb{C}^{4},\left(a_{1}+a_{2}, a_{1}^{\prime}+a_{2}^{\prime}\right) \in\left(\mathbb{C} \backslash \mathbb{Q}_{\leq 0}\right)^{2}$ and $\left(c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}\right) \in(v \mathbb{C} \llbracket v \rrbracket)^{4}$ are formal power series in $v=z_{1} z_{2}$ of order at least one.

- It is clear that if there exists $\varphi: v \mapsto \theta v$ with $\theta \in \mathbb{C}^{*}$ such that

$$
\begin{aligned}
\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) & =\left(\lambda^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, c_{1}^{\prime} \circ \varphi, c_{2}^{\prime} \circ \varphi\right) \\
\left(\text { resp. }\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right)\right. & \left.=\left(-\lambda^{\prime}, a_{2}^{\prime}, a_{1}^{\prime}, c_{2}^{\prime} \circ \varphi, c_{1}^{\prime} \circ \varphi\right)\right)
\end{aligned}
$$

then Z is $\widehat{\text { Diff }}_{\text {fib-conjugate to }} Z^{\prime}$.

- Now assume that Z is $\widehat{\text { Difff }}_{\text {fib }}$-conjugate to Z^{\prime}. First of all, studying the terms of degree 1 with respect to \mathbf{z}, we see that we either have $\left(\lambda, a_{1}, a_{2}\right)=$ $\left(\lambda^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}\right)$ or $\left(\lambda, a_{1}, a_{2}\right)=\left(-\lambda^{\prime}, a_{2}^{\prime}, a_{1}^{\prime}\right)$. Up to perform a linear change of coordinates beforehand, let us assume that $\left(\lambda, a_{1}, a_{2}\right)=\left(\lambda^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}\right)$. In the following, and for convenience, we will use the notations:
$\left\{\begin{array}{l}Z=Z_{(c, r)}:=x S\left(1, a_{1}, a_{2}\right)+(\lambda+c(v)) S(0,-1,1)+r(v) S\left(0, a_{1}, a_{2}\right) \\ Z^{\prime}=Z_{\left(c^{\prime}, r^{\prime}\right)}:=x S\left(1, a_{1}, a_{2}\right)+\left(\lambda+c^{\prime}(v)\right) S(0,-1,1)+r^{\prime}(v) S\left(0, a_{1}, a_{2}\right),\end{array}\right.$
where:

$$
\begin{cases}c_{1}=-c+r & , c_{2}=c+r \\ c_{1}^{\prime}=-c^{\prime}+r^{\prime} & , c_{2}^{\prime}=c^{\prime}+r^{\prime}\end{cases}
$$

so that $\operatorname{ord}(c) \geq 1$, ord $(r) \geq 1$.
Now we have to prove that if $Z_{(c, r)}$ is $\widehat{\text { Diff }}_{\mathrm{fib}}$-conjugate to $Z_{\left(c^{\prime}, r^{\prime}\right)}$, then $(c, r)=\left(c^{\prime}, r^{\prime}\right)$. By assumption, there exists $\Phi \in \widehat{\text { Diff }}_{\text {fib }}$ such that

$$
\Phi_{*}\left(Z_{(c, r)}\right)=Z_{\left(c^{\prime}, r^{\prime}\right)} .
$$

By Remark 2.11, $\mathrm{D}_{0} \Phi=\operatorname{diag}\left(1, \theta_{1}, \theta_{2}\right)$ is diagonal. Now, set $\Psi:=$ $\left(\mathrm{D}_{0} \Phi\right)^{-1} \circ \Phi, \varphi: v \mapsto\left(\theta_{1} \theta_{2}\right) v$, and $(\bar{c}, \bar{r}):=\left(c^{\prime} \circ \varphi, r^{\prime} \circ \varphi\right)$, so that:

$$
\Psi_{*}\left(Z_{(c, r)}\right)=Z_{(\bar{c}, \bar{r})}
$$

We are going to prove that $\Psi=\mathrm{Id}$. By Proposition 2.9, there exists $G \in \mathcal{D}^{(1)}$ such that $\Psi=\exp (G)$ and:

$$
G=g_{0}(x, v) \frac{\partial}{\partial x}+g_{1}(x, v) z_{1} \frac{\partial}{\partial z_{1}}+g_{2}(x, v) z_{2} \frac{\partial}{\partial z_{2}},
$$

where $g_{i} \in \mathfrak{m} \subset \mathbb{C} \llbracket x, v \rrbracket$ for $i=1,2$ and $g_{0} \in \mathfrak{m}^{2} \subset \mathbb{C} \llbracket x, v \rrbracket$ is of order at least two. Since Ψ is fibered in x we deduce that $g_{0}=0$. Therefore, using the notation (2.6), we can write:

$$
G=A(x, v) S(0,-1,1)+B(x, v) S\left(0, a_{1}, a_{2}\right)
$$

where

$$
\left\{\begin{array}{l}
A=A_{i, j} x^{i} v^{j} \\
B=\sum_{\substack{i, j \geq 0 \\
i+j \geq 1}} B_{i, j} x^{i} v^{j}
\end{array}\right.
$$

Let us prove that $A=B=0$ (hence $G=0$) so that $\Psi=\mathrm{Id}$. We consider the Jordan decompositions of $Z:=Z_{(c, r)}$ and $\bar{Z}:=Z_{(\bar{c}, \bar{r})}$:

$$
\begin{cases}Z=Z_{S}+Z_{N} & , Z_{S} \text { semi-simple, } Z_{N} \text { nilpotent, }\left[Z_{S}, Z_{N}\right]=0 \\ \bar{Z}=\bar{Z}_{S}+\bar{Z}_{N} & , \bar{Z}_{S} \text { semi-simple, } \bar{Z}_{N} \text { nilpotent, }\left[\bar{Z}_{S}, \bar{Z}_{N}\right]=0\end{cases}
$$

By uniqueness of this decomposition we clearly have:

$$
\left\{\begin{array}{l}
Z_{S}=\bar{Z}_{S}=S(0,-\lambda, \lambda) \\
Z_{N}=x S\left(1, a_{1}, a_{2}\right)+c(v) S(0,-1,1)+r(v) S\left(0, a_{1}, a_{2}\right) \\
\bar{Z}_{N}=x S\left(1, a_{1}, a_{2}\right)+\bar{c}(v) S(0,-1,1)+\bar{r}(v) S\left(0, a_{1}, a_{2}\right)
\end{array}\right.
$$

and we also know that:

$$
\Psi_{*}(Z)=\bar{Z} \Rightarrow\left\{\begin{array}{l}
\Psi_{*}\left(Z_{S}\right)=\bar{Z}_{S} \\
\Psi_{*}\left(Z_{N}\right)=\bar{Z}_{N}
\end{array}\right.
$$

Let us now consider the associated two-dimensional vector fields in the variables (x, v). In the "chart" (x, v) the vector field G is given by $F=$ $B . S(0, a)$, with $a=a_{1}+a_{2} . Z$ and \bar{Z} correspond respectively to:

$$
\begin{aligned}
Y & :=x S(1, a)+r(v) S(0, a) \\
\bar{Y} & :=x S(1, a)+\bar{r}(v) S(0, a)
\end{aligned}
$$

Thus we have $\exp (F)_{*}(Y)=\bar{Y}$. By Proposition 2.3 we derive

$$
\exp (F)_{*}(Y)=Y+[F, Y]+\frac{1}{2!}[F,[F, Y]]+\ldots
$$

and

$$
\begin{equation*}
r(v) S(0, a)+[F, Y]+\frac{1}{2!}[F,[F, Y]]+\ldots=\bar{r}(v) S(0, a) \tag{3.3}
\end{equation*}
$$

We compute next

$$
[F, Y]=\left\{-x\left(\mathcal{L}_{S(1, a)}(B)\right)+B\left(\mathcal{L}_{S(0, a)}(r)\right)-r\left(\mathcal{L}_{S(0, a)}(B)\right)\right\} S(0, a)
$$

and, setting

$$
\begin{align*}
C^{(1)}(x, v):= & -x\left(\mathcal{L}_{S(1, a)}(B)\right)+B\left(\mathcal{L}_{S(0, a)}(r)\right) \tag{3.4}\\
& -r\left(\mathcal{L}_{S(0, a)}(B)\right),
\end{align*}
$$

we obtain

$$
[F, Y]=C^{(1)}(x, v) S(0, a)
$$

Now, it is easy to see that for all $l \in \mathbb{N}, \operatorname{ad}_{F}^{\circ l}(Y)$ ca be written

$$
\operatorname{ad}_{F}^{\circ l}(Y)=C^{(l)}(x, v) S(0, a)
$$

where $C^{(l)}$ is determined by the recursive relation:

$$
C^{(l+1)}(x, v)=B(x, v)\left(\mathcal{L}_{S(0, a)}\left(C^{(l)}\right)\right)-C^{(l)}(x, v)\left(\mathcal{L}_{S(0, a)}(B)\right)
$$

In particular, we see that for all $l \geq 2, C^{(l)}(x, 0)=0$. Equation (3.3) can now be rewritten:

$$
\begin{equation*}
r(v)+C^{(1)}(x, v)+\sum_{l \geq 2} C^{(l)}(x, v)=\bar{r}(v) \tag{3.5}
\end{equation*}
$$

Let us set $r(v)=\sum_{k \geq 1} r_{k} v^{k}$ and $\bar{r}(v)=\sum_{k \geq 1} \bar{r}_{k} v^{k}$. Looking at terms independent of v in (3.5) (i.e. by taking $v=0$), we see that $C^{(1)}(x, 0)=0$. Taking (3.4) into account we obtain that $\frac{\partial B(x, 0)}{\partial x}=0$. Since $\operatorname{ord}(B) \geq 1$ (by assumption) this means that $B(x, 0)=0$. Let us prove the properties $B_{i, k}=0$ and $r_{k}=\bar{r}_{k}$ for all $i, j \in \mathbb{N}$ and $k \leq j$ by induction on $j \geq 0$.
$-j=0$. This corresponds to the case described above: for all $i \geq 0$, $B_{i, 0}=0\left(\right.$ and $\left.r_{0}=\bar{r}_{0}\right)$.

- If the property holds at a rank $j \geq 0$, if we consider for all $i \geq 0$ terms of homogenous degree $(i+1, j+1)$ in (3.5), we obtain:

$$
(i+a(j+1)) B_{i, j+1}=0
$$

by induction, and because for all $l \geq 2$ the relation $C^{(l)}(x, 0)=0$ also holds. Since $a \notin \mathbb{Q}_{\leq 0}$ we have $B_{i, j+1}=0$. On the other hand, if we look at terms of homogeneous degree $(0, j+1)$, we obtain: $r_{j+1}=$ \bar{r}_{j+1}.

We conclude that $B=0$, so that $F=0$ and $r=\bar{r}$.
Finally, we have $G=A \mathcal{L}(0,-1,1)$. Taking the relation $\exp (G)_{*}\left(Z_{N}\right)=\bar{Z}_{N}$ into account, we have:

$$
Z_{N}+\left[G, Z_{N}\right]+\frac{1}{2!}\left[G,\left[G, Z_{N}\right]\right]+\ldots=\bar{Z}_{N}
$$

if and only if

$$
c(v) S(0,-1,1)+\left[G, Z_{N}\right]+\frac{1}{2!}\left[G,\left[G, Z_{N}\right]\right]+\ldots=\bar{c}(v) S(0,-1,1)
$$

Let us compute $\left[G, Z_{N}\right]$:

$$
\left[G, Z_{N}\right]=-\left\{x \mathcal{L}_{S\left(1, a_{1}, a_{2}\right)}(A)+r(v) \mathcal{L}_{S\left(0, a_{1}, a_{2}\right)}(A)\right\} S(0,-1,1)
$$

All other Lie brackets vanish. There only remains

$$
c(v)-x \mathcal{L}_{S\left(1, a_{1}, a_{2}\right)}(A)-r(v) \mathcal{L}_{S\left(0, a_{1}, a_{2}\right)}(A)=\bar{c}(v)
$$

which becomes a system of identities between terms of same degree:

$$
\begin{cases}c_{j}-\sum_{k=0}^{j-k_{1}} a k A_{0, k} r_{j-k}=\bar{c}_{j} & , j \geq 0 \\ (i+a j) A_{i, j}+\sum_{k=0}^{j-k_{1}} a k A_{i+1, k} r_{j-k}=0 & , i \geq 0, j \geq 0\end{cases}
$$

Once again, we prove by induction on $j \geq 0$ that for all $i \geq 0$ and all $0 \leq k \leq j$ the relations $A_{i, k}=0$ and $c_{k}=\bar{c}_{k}$ hold. Thus $A=0$ and $c=\bar{c}$.

As a conclusion $\Psi=\operatorname{Id}$ and $(c, r)=(\bar{c}, \bar{r})$, so that $\Phi=\mathrm{D}_{0} \Phi=\operatorname{diag}\left(1, \theta_{1}, \theta_{2}\right)$ and $(c, r):=\left(c^{\prime} \circ \varphi, r^{\prime} \circ \varphi\right)$ where $\varphi: v \mapsto\left(\theta_{1} \theta_{2}\right) v$.

3.4 Fibered isotropies of the formal normal form

Looking back at the uniqueness proof in the previous paragraph, we immediately obtain all formal fibered isotropies of the normal form given by Theorems 1.3 and 1.12. We recall that an isotropy of a vector field is a self-conjugacy. For a vector field $X \in \mathcal{D}^{(1)}$, we set:

$$
\widehat{\operatorname{Isot}}_{\mathrm{fib}}(X):=\left\{\Phi \in \widehat{\operatorname{Diff}}_{\mathrm{fib}} \mid \Phi_{*}(X)=X\right\}
$$

Proposition 3.2. Consider a normal form of $\widehat{\mathcal{S N}}_{\text {nd }}$

$$
Z=x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x+c_{1}\left(y_{1} y_{2}\right)\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+a_{2} x+c_{2}\left(y_{1} y_{2}\right)\right) y_{2} \frac{\partial}{\partial y_{2}}
$$

with parameters $\left(\lambda, a_{1}, a_{2}, c_{1}, c_{2}\right) \in \mathcal{P}$. Then:
$\widehat{\operatorname{Isot}}_{\text {fib }}(Z)=\left\{\operatorname{diag}\left(1, \theta_{1}, \theta_{2}\right),\left(\theta_{1}, \theta_{2}\right) \in\left(\mathbb{C}^{*}\right)^{2} \mid\left(c_{1}, c_{2}\right)\left(\theta_{1} \theta_{2} v\right)=\left(c_{1}, c_{2}\right)(v)\right\}$.
Remark 3.3. If $\left(c_{1}, c_{2}\right) \neq(0,0)$ the condition $c_{i}\left(\theta_{1} \theta_{2} v\right)=c_{i}(v)$ for each $i \in$ $\{1,2\}$ is equivalent to requiring that each c_{i} lie in $\mathbb{C} \llbracket v^{q} \rrbracket$, for some $q \in \mathbb{N}_{>0}$, and that $\theta_{1} \theta_{2}$ be a $q^{\text {th }}$ root of unity.

This proposition has for immediate consequence the (almost) uniqueness of the normalizing conjugacy $\Phi \in \widehat{\text { Diff }}$ in Theorem 1.3. More precisely:

Corollary 3.4. Let $Y \in \widehat{\mathcal{S N}}_{\text {nd }}$ be a non-degenerate doubly-resonant saddlenode such that $\mathrm{D}_{0} Y=\operatorname{diag}(0,-\lambda, \lambda)$, with $\lambda \neq 0$. Then there exists a unique fibered diffeomorphism $\Phi \in{\widehat{\mathrm{Diff}_{\mathrm{fib}}}}^{\text {fangent to the identity such that: }}$

$$
\begin{align*}
\Phi_{*}(Y)= & x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x+c_{1}(v)\right) y_{1} \frac{\partial}{\partial y_{1}} \\
& +\left(\lambda+a_{2} x+c_{2}(v)\right) y_{2} \frac{\partial}{\partial y_{2}} \tag{3.6}
\end{align*}
$$

where we put $v:=y_{1} y_{2}$. Here, c_{1}, c_{2} belong to $\langle v\rangle=v \mathbb{C} \llbracket v \rrbracket$ and $a_{1}, a_{2} \in \mathbb{C}$ are such that $a_{1}+a_{2}=\operatorname{res}(Y)$.
Definition 3.5. Let $Z \in \widehat{\mathcal{S N}}_{\omega}$. We denote by $\widehat{\operatorname{Isot}}_{\omega}(Z)$ the subgroup of elements $\Phi \in \widehat{\operatorname{Diff}}_{\omega}$ such that $\Phi_{*}(Z)=Z$.
Proposition 3.6. Let $\left(\lambda, a_{1}, a_{2}\right) \in \mathbb{C}^{*} \times \mathbb{C}^{2}$ such that $a_{1}+a_{2}=1$, and $c \in v \mathbb{C} \llbracket v \rrbracket$ with $v=y_{1} y_{2}$. Consider

$$
Z=x^{2} \frac{\partial}{\partial x}+\left(-(\lambda+c(v))+a_{1} x\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+c(v)+a_{2} x\right) y_{2} \frac{\partial}{\partial y_{2}}
$$

Then:

$$
\widehat{\operatorname{Isot}}_{\omega}(Z)=\left\{\operatorname{diag}\left(1, \alpha, \frac{1}{\alpha}\right), \alpha \in \mathbb{C} \backslash\{0\}\right\} \simeq \mathbb{C} \backslash\{0\}
$$

4 Applications to Painlevé equations

In this section we investigate the study of the irregular singularity at infinity in the first Painlevé equation

$$
\left(P_{I}\right) \quad \frac{\mathrm{d}^{2} z_{1}}{\mathrm{~d} t^{2}}=6 z_{1}^{2}+t
$$

in terms of Theorem 1.12. More precisely, we are going to explain that the formal invariant $c \in \mathbb{C} \llbracket v \rrbracket$ of a doubly-resonant, transversally symplectic saddle-node $Y \in \widehat{\mathcal{S N}}_{\omega}$ is in fact a germ of an analytic function at the origin, whenever Y is analytic at the origin (and not merely a formal vector field). Moreover, we show how to compute recursively this invariant in some specific cases, including Painlevé equations.

4.1 Asymptotically Hamiltonian vector fields

We deal here with the case of asymptotically Hamiltonian vector fields.

Definition 4.1.

- We say that a formal vector field X in $\left(\mathbb{C}^{2}, 0\right)$ is orbitally linear if

$$
X=U(\mathbf{y})\left(\lambda_{1} y_{1} \frac{\partial}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial}{\partial y_{2}}\right)
$$

for some unity $U(\mathbf{y}) \in \mathbb{C} \llbracket \mathbf{y} \rrbracket^{\times}$(i.e. $\left.U(0,0) \neq 0\right)$ and $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$.

- We say that a formal (resp. germ of an analytic) vector field X in $\left(\mathbb{C}^{2}, 0\right)$ is formally (resp. analytically) orbitally linearizable if X is formally (resp. analytically) conjugate to an orbitally linear vector field.
- We say that a doubly-resonant saddle-node $Y \in \widehat{\mathcal{S N}}$ is formally/analytically asymptotically orbitally linearizable if the formal/analytic vector field $Y_{\mid\{x=0\}}$ in $\left(\mathbb{C}^{2}, 0\right)$ is formally/analytically orbitally linearizable.

Remark 4.2.

1. If a vector field X is analytic at the origin of \mathbb{C}^{2} and has two opposite eigenvalues, it follows from a classical result of Brjuno (see [14]), that X is analytically orbitally linearizable if and only if it is formally orbitally linearizable.
2. The fact of being orbitally linearizable is naturally invariant under orbital equivalence, and then, by (almost) uniqueness of c_{1}, c_{2} in Theorem 1.6, if $Y \in \widehat{\mathcal{S N}}_{\text {nd }}$ is asymptotically linearizable, then its formal invariants c_{1}, c_{2} satisfy $c_{1}+c_{2}=0$. In this case, we write $c:=c_{2}=-c_{1}$.

The two remarks above imply the following corollary.
Corollary 4.3. Let $Y \in \widehat{\mathcal{S N}}_{\text {nd }}$ be a doubly-resonant saddle-node asymptotically orbitally linearizable such that $Y_{0}:=Y_{\mid\{x=0\}}$ be a germ of an analytic vector field in $\left(\mathbb{C}^{2}, 0\right)$. Then, there exists $\Phi \in \widehat{\mathrm{Diff}}_{\mathrm{fib}}$ such that $\Phi_{\mid\{x=0\}}$ be a germ an analytic diffeomorphism in $\left(\mathbb{C}^{2}, 0\right)$ and:

$$
\Phi_{*}(Y)=x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x-c(v)\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+a_{2} x+c(v)\right) y_{2} \frac{\partial}{\partial y_{2}}
$$

where we put $v:=y_{1} y_{2}$. Here, $c(v) \in v \mathbb{C}\{v\}$ is a germ of an analytic function vanishing at the origin, and $a_{1}, a_{2} \in \mathbb{C}$ are such that $a_{1}+a_{2}=\operatorname{res}(Y)$. Moreover, Φ is unique up to linear transformations.

It is important to notice that the following property holds.
Proposition 4.4. If $Y \in \widehat{\mathcal{S N}}_{\omega}$ is doubly-resonant transversally Hamiltonian saddle-node, then Y is asymptotically orbitally linearizable.

Proof. The facts that $\mathcal{L}_{Y}(\omega) \in\langle\mathrm{d} x\rangle$ and $\mathcal{L}_{Y}(x)=x^{2}$ imply that $a_{1}+a_{2}=1$ and then:

$$
\mathcal{L}_{Y}\left(\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}\right)=x\left(\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}\right)+\langle\mathrm{d} x\rangle .
$$

Consequently, if we denote $Y_{0}:=Y_{\mid x=0}$ the restriction of Y to the invariant hypersurface $\{x=0\}$, we have:

$$
\mathcal{L}_{Y_{0}}\left(\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}\right)=0
$$

This means that Y_{0} is a Hamiltonian vector field, i.e. there exists $H(\mathbf{y}) \in \mathbb{C} \llbracket \mathbf{y} \rrbracket$ such that:

$$
Y_{0}\left(y_{1}, y_{2}\right)=-\frac{\partial H}{\partial y_{2}}\left(y_{1}, y_{2}\right) \frac{\partial}{\partial y_{1}}+\frac{\partial H}{\partial y_{1}}\left(y_{1}, y_{2}\right) \frac{\partial}{\partial y_{2}} .
$$

Possibly by performing a linear change of coordinate, we can assume that $H(\mathbf{y}) \in \lambda y_{1} y_{2}+\mathfrak{m}^{3}$, therefore we can write:

$$
Y=x^{2} \frac{\partial}{\partial x}+\left(-\frac{\partial H}{\partial y_{2}}+x F_{1}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{1}}+\left(\frac{\partial H}{\partial y_{1}}+x F_{2}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{2}}
$$

where $F_{1}, F_{2} \in \mathbb{C} \llbracket x, y \rrbracket$ vanish at the origin. If we define $J:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in M_{2}(\mathbb{C})$ and $\nabla H:={ }^{t}(\mathrm{D} H)$, then $Y_{\mid\{x=0\}}=J \nabla H$. According to the Morse lemma for holomorphic functions, there exists an analytic change of coordinates $\varphi \in \widehat{\text { Diff }}$ in $\left(\mathbb{C}^{2}, 0\right)$ tangent to the identity such that $\widetilde{H}(\mathbf{y}):=H\left(\varphi^{-1}(\mathbf{y})\right)=y_{1} y_{2}$. Let us now recall a trivial result from linear algebra.
Fact. Let $J:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in M_{2}(\mathbb{C})$, and $P \in M_{2}(\mathbb{C})$. Then, $P J P^{\mathrm{t}}=\operatorname{det}(P) J$.
We deduce the next result.
Lemma. Let $H \in \mathfrak{m}^{2} \subset \mathbb{C} \llbracket \mathbf{y} \rrbracket, Y_{0}:=J \nabla H$ the associated Hamiltonian vector field in \mathbb{C}^{2} (for the standard symplectic form $d y_{1} \wedge d y_{2}$), and an analytic diffeomorphism near the origin denoted by φ. Then:

$$
\varphi_{*}\left(Y_{0}\right):=\left(\mathrm{D} \varphi \circ \varphi^{-1}\right) \cdot\left(Y_{0} \circ \varphi^{-1}\right)=\operatorname{det}\left(\mathrm{D} \varphi \circ \varphi^{-1}\right) J \nabla \widetilde{H}
$$

where $\widetilde{H}:=H \circ \varphi^{-1}$.
As a conclusion, the previous lemma shows that Y is asymptotically orbitally linearizable.

The next property is a straightforward consequence of Corollary 4.3, Proposition 4.4 and Theorem 1.12.
Corollary 4.5. Let $Y \in \widehat{\mathcal{S N}}_{\omega}$ be a transversally Hamiltonian doubly-resonant saddle-node. Then, there exists a transversally symplectic diffeomorphism $\Phi \in$ $\widehat{\text { Diff }}_{\omega}$ such that $\Phi_{\mid\{x=0\}}$ be a germ an analytic diffeomorphism in $\left(\mathbb{C}^{2}, 0\right)$ and:

$$
\begin{equation*}
\Phi_{*}(Y)=x^{2} \frac{\partial}{\partial x}+\left(-\lambda+a_{1} x-c(v)\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+a_{2} x+c(v)\right) y_{2} \frac{\partial}{\partial y_{2}} . \tag{4.1}
\end{equation*}
$$

where we put $v:=y_{1} y_{2}$. Here, $c(v) \in v \mathbb{C}\{v\}$ is a germ of an analytic function vanishing at the origin, and $a_{1}, a_{2} \in \mathbb{C}$ are such that $a_{1}+a_{2}=\operatorname{res}(Y)=1$. Moreover, Φ is unique up to linear symplectic transformations, and:

$$
\left(\Phi_{\mid\{x=0\}}\right)^{*}\left(d y_{1} \wedge d y_{2}\right)=d y_{1} \wedge d y_{2}
$$

4.2 Periods of the Hamiltonian on $\{x=0\}$

From now on, we consider a vector field

$$
Y=x^{2} \frac{\partial}{\partial x}+\left(\left(-\frac{\partial H}{\partial y_{2}}+x F_{1}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{1}}+\left(\frac{\partial H}{\partial y_{1}}+x F_{2}(x, \mathbf{y})\right) \frac{\partial}{\partial y_{2}}\right)
$$

with $H(\mathbf{y})=\lambda y_{1} y_{2}+\underset{\mathbf{y} \rightarrow 0}{O}\left(\|\mathbf{y}\|^{3}\right)$ analytic at the origin of \mathbb{C}^{2}, and $F_{1}, F_{2} \in$ $\mathbb{C} \llbracket x, y \rrbracket$ vanishing at the origin. Let us consider the restriction $Y_{0}:=Y_{\mid\{x=0\}}$: it is an analytic Hamiltonian vector field in $\left(\mathbb{C}^{2}, 0\right)$:

$$
Y_{0}=-\frac{\partial H}{\partial y_{2}} \frac{\partial}{\partial y_{1}}+\frac{\partial H}{\partial y_{1}} \frac{\partial}{\partial y_{2}} .
$$

We fix a small polydisc $\mathbf{D}(0, \mathbf{r}) \subset \mathbb{C}^{2}$ on which H is analytic with $\mathbf{r}=\left(r_{1}, r_{2}\right)$. The leaves of the foliation defined by Y_{0} in $\mathbf{D}(0, \mathbf{r})$ are given by the level curves $L_{a}:=\{H=a\} \cap \mathbf{D}(0, \mathbf{r}), a \in \mathrm{D}(0, r)$, with $r>0$ small enough. The Morse Lemma for holomorphic functions tells us that L_{a} is topologically a cylinder for $a \neq 0$, and r, r_{1}, r_{2} small enough. Thus we can consider a generator γ_{a} of the first homology group of L_{a}. We also consider a time-form for Y_{0}, which is a meromorphic 1-form $\tau_{Y_{0}}$ in $\mathbf{D}(0, \mathbf{r})$ with a unique pole at the origin and such that $\tau_{Y_{0}} \cdot\left(Y_{0}\right)=1$. For instance, take $\tau_{Y_{0}}=-\frac{\mathrm{d} y_{1}}{\frac{\partial H}{\partial y_{2}}}$.

Now we define the associated period map:

$$
\begin{aligned}
T_{H}: \mathrm{D}(0, r) \backslash\{0\} & \longrightarrow \mathbb{C} \\
a & \longmapsto T_{H}(a):=\frac{1}{2 i \pi} \oint_{\gamma_{a}} \tau_{Y_{0}} .
\end{aligned}
$$

This mapping is a well-defined meromorphic function of $a \in \mathrm{D}(0, r)$.
Proposition 4.6. For $r>0$ small enough, and $a \in D(0, r) \backslash\{0\}, T_{Y_{0}}(a)$ only depends on the class of γ_{a} in $H_{1}\left(L_{a}, \mathbb{Z}\right)$. In other words, if $\tau_{Y_{0}}^{\prime}$ is another time-form of Y_{0} and γ_{a}^{\prime} is any loop in L_{a} homologous to γ_{a}, then

$$
\oint_{\gamma_{a}} \tau_{Y_{0}}=\oint_{\gamma_{a}^{\prime}} \tau_{Y_{0}}^{\prime} .
$$

Proof. The fact that this quantity does not depend on a specific choice of a representative of γ_{a} in its homology class comes from Stokes Theorem. The fact that it does not depend on the choice of a specific time-form comes from the fact that γ_{a} lies in a leaf of the foliation generated by Y_{0}. If

$$
\begin{aligned}
\gamma_{a}:[0,1] & \rightarrow L_{a} \\
t & \mapsto\left(\gamma_{a, 1}(t), \gamma_{a, 2}(t)\right),
\end{aligned}
$$

then $\frac{\mathrm{d}}{\mathrm{d} t}\left(\gamma_{a}\right)(t)=v_{a}(t) Y_{0}\left(\gamma_{a}(t)\right)$, where

$$
v_{a}(t)=\frac{1}{\left(-\frac{\partial H}{\partial y_{2}}\left(\gamma_{a}(t)\right)\right)} \frac{\mathrm{d} \gamma_{a, 1}(t)}{\mathrm{d} t}=\frac{1}{\left(\frac{\partial H}{\partial y_{1}}\left(\gamma_{a}(t)\right)\right)} \frac{\mathrm{d} \gamma_{a, 2}(t)}{\mathrm{d} t}
$$

Then:

$$
\begin{aligned}
\oint_{\gamma_{a}} \tau_{Y_{0}} & =\int_{0}^{1} \tau_{Y_{0}}\left(\gamma_{a}(t)\right) \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} t}\left(\gamma_{a}\right)(t)\right) \mathrm{d} t \\
& =\int_{0}^{1} \tau_{Y_{0}}\left(\gamma_{a}(t)\right) \cdot\left(v_{a}(t) Y_{0}\left(\gamma_{a}(t)\right)\right) \mathrm{d} t \\
& =\int_{0}^{1} v_{a}(t) \mathrm{d} t
\end{aligned}
$$

since $\tau_{Y_{0}} \cdot\left(Y_{0}\right)=1$.
Definition 4.7. We call T_{H} the period map of H near the origin.
Now, consider a germ of an analytic diffeomorphism Ψ fixing the origin of \mathbb{C}^{2}. Then:

$$
\begin{aligned}
T_{H}(a) & =\frac{1}{2 i \pi} \quad \oint_{\gamma_{a}} \tau_{Y_{0}} \\
& =\frac{1}{2 i \pi} \quad \oint_{\Psi^{-1}\left(\gamma_{a}\right)} \Psi^{*}\left(\tau_{Y_{0}}\right) .
\end{aligned}
$$

Notice that if we write $X_{0}:=\left(\Psi^{-1}\right)_{*}\left(Y_{0}\right)$ and $\tau_{X_{0}}:=\Psi^{*}\left(\tau_{Y_{0}}\right)$, then:

$$
\tau_{X_{0}} \cdot\left(X_{0}\right)=\left(\Psi^{*}\left(\tau_{Y_{0}}\right)\right) \cdot\left(\left(\Psi^{-1}\right)_{*}\left(Y_{0}\right)\right)=\tau_{Y_{0}} \cdot\left(Y_{0}\right)=1
$$

Now, let us take $\Psi^{-1}=\Phi_{\mid\{x=0\}}$ as in Corollary 4.5 such that

$$
X_{0}=(\lambda+c(v))\left(-y_{1} \frac{\partial}{\partial y_{1}}+y_{2} \frac{\partial}{\partial y_{2}}\right)
$$

with $v=y_{1} y_{2}, c \in \mathbb{C}\{v\}$ and $c(0)=0$. Then $\tilde{\gamma}_{a}:=\Psi^{-1}\left(\gamma_{a}\right)=\Phi_{\mid\{x=0\}}\left(\gamma_{a}\right)$ is a loop generating the homology of the leaf $\Phi_{\mid\{x=0\}}\left(L_{a}\right)$.

Consider $h:=H \circ \Psi$ near the origin. Then, $\Phi_{\mid\{x=0\}}\left(L_{a}\right)=\{h=a\}$ in a neighborhood of the origin. Notice that h depends in fact only on $v=y_{1} y_{2}$, and $h(v)=\lambda v+\underset{|v| \rightarrow 0}{o}(|v|)$. Since $\lambda \neq 0$, the inverse function theorem ensures the existence of an analytic function $g \in \mathbb{C}\{v\}$ such that $g(0)=0$ and $h \circ$ $g(v)=g \circ h(v)=v$ in a neighborhood of 0 . Thus, $\{h(v)=a\}=\{v=g(a)\}$. Consequently, taking for instance $\tau_{X_{0}}=-\frac{\mathrm{d} y_{1}}{y_{1}(\lambda+c(v))}$, we see that:

$$
\begin{aligned}
T_{H}(a)= & \frac{1}{2 i \pi} \oint_{\tilde{\gamma}_{a}} \tau_{X_{0}} \\
& =\frac{1}{2 i \pi} \frac{1}{\lambda+c(g(a))} \oint_{\tilde{\gamma}_{a}}-\frac{\mathrm{d} y_{1}}{y_{1}} \\
& =\frac{-1}{\lambda+c(g(a))}
\end{aligned}
$$

according to the orientation chosen for γ_{a}. In particular, we see that T_{H} is analytic at the origin, and T_{H} can be extend at 0 by $\frac{-1}{\lambda}$.

The fact that $\Phi_{\mid\{x=0\}}$ satisfies

$$
\left(\Phi_{\mid\{x=0\}}\right)^{*}\left(\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}\right)=\mathrm{d} y_{1} \wedge \mathrm{~d} y_{2}
$$

implies that $\operatorname{det}\left(\Phi_{\mid\{x=0\}}\right)=1$, so that

$$
X_{0}=-\frac{\partial h}{\partial y_{2}} \frac{\partial}{\partial y_{1}}+\frac{\partial h}{\partial y_{1}} \frac{\partial}{\partial y_{2}}
$$

and

$$
\frac{\mathrm{d} h}{\mathrm{~d} v}=\lambda+c(v)
$$

As a consequence, for $a=h(v)$, we have the following relation:

$$
\frac{\mathrm{d} h}{\mathrm{~d} v}(v) \cdot T_{H}(h(v))=-1 .
$$

If we consider the antiderivative S_{H} of T_{H} such that $S_{H}(0)=0$, we have

$$
S_{H}(h(v))=-v,
$$

and in particular

$$
S_{H}=-g
$$

Let us summarize this study in the following proposition.
Proposition 4.8. Let

$$
Y_{0}=-\frac{\partial H}{\partial y_{2}} \frac{\partial}{\partial y_{1}}+\frac{\partial H}{\partial y_{1}} \frac{\partial}{\partial y_{2}}
$$

be the restriction on $\{x=0\}$ of a transversally Hamiltonian doubly-resonant saddle-node $Y \in \widehat{\mathcal{S N}}_{\omega}$, where $H(\mathbf{y})=\lambda y_{1} y_{2}+\underset{\mathbf{z} \rightarrow 0}{o}\left(\|\mathbf{y}\|^{2}\right)$ is analytic at the origin of \mathbb{C}^{2}. Consider its unique transversally Hamiltonian normal form

$$
X=x^{2} \frac{\partial}{\partial x}+\left(-(\lambda+c(v))+a_{1} x\right) y_{1} \frac{\partial}{\partial y_{1}}+\left(\lambda+c(v)+a_{2} x\right) y_{2} \frac{\partial}{\partial y_{2}}
$$

given by Theorem 1.12. Consider the period map T_{H} as defined above. Then the following holds:

1. c is the germ of an analytic function at the origin.
2. T_{H} defines the germ of an analytic function in a neighborhood of $0 \in \mathbb{C}^{2}$, such that $T_{H}(0)=\frac{-1}{\lambda}$.
3. If S_{H} is the primitive of T_{H} such that $S_{H}(0)=0$, then $\left(-S_{H}\right)$ is invertible (for the composition), and its inverse h satisfy:

$$
\frac{d h}{d v}(v)=\lambda+c(v)
$$

The conclusion is that if one is able to compute the period map of the original Hamiltonian vector field on $\{x=0\}$, then one can compute the formal invariant c in the normal form given in Theorem 1.12, which is in fact even analytic in this case.
Remark 4.9. The Hamiltonian function $h\left(y_{1} y_{2}\right)=\lambda y_{1} y_{2}+\int^{y_{1} y_{2}} c(v) \mathrm{d} v$ is in fact the symplectic normal form of the original Hamiltonian function $H\left(y_{1}, y_{2}\right)=$ $\lambda y_{1} y_{2}+\underset{\mathbf{z} \rightarrow 0}{o}\left(\|\mathbf{y}\|^{2}\right)$, as described in [7] (section 2.7).

4.3 Example: the case of the first Painleve equation

In the case of the first Painlevé equation, in appropriate coordinates, we are working with the Hamiltonian

$$
H\left(y_{1}, y_{2}\right)=\frac{1}{5}\left(-2 y_{2}^{2}+24 \zeta y_{1}^{2}+8 y_{1}^{3}\right)
$$

where $\zeta=\frac{i}{\sqrt{6}}$, according to equation (1.6). These are not the system of coordinates which diagonalizes the linear part of the vector field, but the value of the period does not changes by symplectic changes of coordinates (those which preserve $\left.\mathrm{d} y_{1} \wedge \mathrm{~d} y_{2}\right)$. Now, if we fix $a \neq 0$ with $|a|$ small enough and look at the level curve $\{H=a\}$ near the origin in \mathbb{C}^{2}, we can compute the associated period:

$$
\begin{aligned}
T_{H}(a) & =\frac{1}{2 i \pi} \oint_{\gamma_{a}} \frac{5 \mathrm{~d} y_{1}}{-4 y_{2}} \\
& =\frac{1}{2 i \pi} \oint_{\gamma_{a, 1}} \frac{5 \mathrm{~d} y_{1}}{-4 \sqrt{12 \zeta y_{1}^{2}+4 y_{1}^{3}-\frac{5}{2} a}}
\end{aligned}
$$

where $\gamma_{a, 1}$ is the component of γ_{a} with respect to $\frac{\partial}{\partial y_{1}}$.
Remark 4.10. The period $T_{H}(a)$ is one of the periods of the Weierstrass function \wp associated to the cubic

$$
H\left(y_{1}, y_{2}\right)=a
$$

(see e.g. [5], [1]). To compute it we can chose for instance

$$
\begin{aligned}
\gamma_{a, 1}:[0,2 \pi] & \longrightarrow \mathbb{C} \\
t & \longmapsto \rho_{a} e^{i t}
\end{aligned}
$$

where $\rho_{a}>0$ is such that $\left|12 \zeta y_{1}^{2}+4 y_{1}^{3}\right|>\frac{5|a|}{2}$, for all $y_{1}=\gamma_{a, 1}(t), t \in[0,2 \pi]$. Now we write:

$$
\begin{aligned}
\frac{1}{-4 \sqrt{12 \zeta y_{1}^{2}+4 y_{1}^{3}-\frac{5}{2} a}} & =\frac{\sqrt{2}}{-4 \sqrt{24 \zeta y_{1}^{2}+8 y_{1}^{3}}} \frac{1}{\sqrt{1-\frac{5 a}{24 \zeta y_{1}^{2}+8 y_{1}^{3}}}} \\
& =\frac{\sqrt{2}}{-4 \sqrt{24 \zeta y_{1}^{2}+8 y_{1}^{3}}} \sum_{k \geq 0}\binom{\frac{-1}{2}}{k}\left(\frac{5 a}{24 \zeta y_{1}^{2}+8 y_{1}^{3}}\right)^{k} .
\end{aligned}
$$

As we have normal convergence, we can swap the order of summation and integration:

$$
\begin{aligned}
T_{H}(a) & =\frac{5}{2 i \pi} \oint_{\gamma_{a, 1}} \frac{\sqrt{2}}{-4 \sqrt{24 \zeta y_{1}^{2}+8 y_{1}^{3}}} \sum_{k \geq 0}\binom{\frac{-1}{2}}{k}\left(\frac{5 a}{24 \zeta y_{1}^{2}+8 y_{1}^{3}}\right)^{k} \mathrm{~d} y_{1} \\
& =\frac{-5 \sqrt{2}}{8 i \pi} \sum_{k \geq 0}\binom{\frac{-1}{2}}{k} 5^{k}\left(\oint_{\gamma_{a, 1}}\left(24 \zeta y_{1}^{2}+8 y_{1}^{3}\right)^{-\left(k+\frac{1}{2}\right)} \mathrm{d} y_{1}\right) a^{k} .
\end{aligned}
$$

Notice that $y_{1} \mapsto\left(24 \zeta y_{1}^{2}+8 y_{1}^{3}\right)^{\left(k+\frac{1}{2}\right)}$ is in fact analytic in a neighborhood of the origin, with a zero of order $2 k+1$. Hence we can compute the integral above using the residue theorem. As we have
$\left(24 \zeta y_{1}^{2}+8 y_{1}^{3}\right)^{-\left(k+\frac{1}{2}\right)}=(24 \zeta)^{-\left(k+\frac{1}{2}\right)} y_{1}^{-(2 k+1)} \sum_{j \geq 0}\binom{-\left(k+\frac{1}{2}\right)}{j}\left(\frac{8}{24 \zeta}\right)^{j} y_{1}^{j}$,
we see that the associated residue at 0 is equal to $8^{2 k}(24 \zeta)^{-\left(3 k+\frac{1}{2}\right)}\binom{-\left(k+\frac{1}{2}\right)}{2 k}$, so that

$$
T_{H}(a)=\sum_{k \geq 0} T_{H, k} a^{k}
$$

with:

$$
T_{H, k}=-5^{k+1}\binom{\frac{-1}{2}}{k}\binom{-\left(k+\frac{1}{2}\right)}{2 k} 8^{-(k+1)}(3 \zeta)^{-\left(3 k+\frac{1}{2}\right)} .
$$

Using notations of Proposition 4.8 we have:

$$
S_{H}(a)=\sum_{k \geq 0} \frac{T_{H, k}}{k+1} a^{k+1}=\sum_{k \geq 1} S_{H, k} a^{k}
$$

with $S_{H, k}=\frac{T_{H, k-1}}{k}$ for $k \geq 1$. Since $S_{H}(0)=0$ and $\frac{\mathrm{d} S_{H}}{\mathrm{~d} a}(0)=T_{H}(0) \neq 0$, the mapping $\left(-S_{H}\right)$ is invertible for the composition and we can compute recursively its inverse (denoted by h):

$$
h(v)=\sum_{k \geq 1} h_{k} v^{k} .
$$

For all $k \geq 1$, the coefficient h_{k} is uniquely determined by the coefficients $S_{H, j}, j \leq k$. Finally, we have

$$
\lambda+c(v)=\frac{\mathrm{d} h}{\mathrm{~d} v}(v)=\sum_{k \geq 0}(k+1) h_{k+1} v^{k}=\lambda+\sum_{k \geq 1} c_{k} v^{k} .
$$

As a conclusion, the jet of order k of T_{H} gives us the jet of order k of c. After computations performed with Maple, we obtain for instance:

$$
\begin{aligned}
\lambda & =\frac{8 \sqrt{3 \zeta}}{5}=\frac{4 \cdot 2^{\frac{3}{4}} \cdot 3^{\frac{1}{4}}}{5} e^{\frac{i \pi}{4}} \\
c_{1} & =3 \\
c_{2} & =9+\frac{167 \cdot 2^{\frac{1}{4}} \cdot 3^{\frac{3}{4}}}{96} e^{\frac{3 i \pi}{4}} \\
c_{3} & =16+\frac{31837 \sqrt{6}}{6912} i+\frac{5}{2} \cdot 2^{\frac{1}{4}} \cdot 3^{\frac{1}{4}} \cdot e^{\frac{3 i \pi}{4}}
\end{aligned}
$$

One can in fact compute any finite jet of c.
Remark 4.11. Similar computations can be performed for any Hamiltonian of the form $H\left(y_{1}, y_{2}\right)=\beta y_{2}^{2}+\alpha y_{1}^{2}+f\left(y_{1}\right)$, where $\alpha, \beta \in \mathbb{C} \backslash\{0\}$ and $f \in \mathbb{C}\left\{y_{1}\right\}$.

5 Acknowledgement

I would like to express my gratitude to my supervisors Daniel Panazzolo and Loïc Teyssier for their useful comments and suggestions. The many discussions we had played an important role in the improvement of this paper.

References

References

[1] S. Abenda and A. Bazzani. Singularity analysis of 2D complexified Hamiltonian systems. In Hamiltonian mechanics (Toruń, 1993), volume 331 of NATO Adv. Sci. Inst. Ser. B Phys., pages 205-212. Plenum, New York, 1994.
[2] P. Boutroux. Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre. Ann. Sci. École Norm. Sup. (3), 30:255-375, 1913.
[3] P. Boutroux. Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre. Ann. Sci. École Norm. Sup. (3), 30:255-375, 1913.
[4] A. D. Brjuno. Analytic form of differential equations. I, II. Trudy Moskov. Mat. Obšč., 25:119-262; ibid. 26 (1972), 199-239, 1971.
[5] A. D. Bryuno and I. V. Goryuchkina. Boutroux asymptotics of solutions of Painlevé equations and power geometry. Dokl. Akad. Nauk, 422(2):157-160, 2008.
[6] Hayato Chiba. The first, second and fourth Painlevé equations on weighted projective spaces. J. Differential Equations, 260(2):1263-1313, 2016.
[7] Shui-Nee Chow, Cheng Zhi Li, and Duo Wang. Normal forms and bifurcation of planar vector fields. Cambridge University Press, Cambridge, 1994.
[8] Yulij Ilyashenko and Sergei Yakovenko. Lectures on analytic differential equations, volume 86 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
[9] Masahiro Iwano. On a general solution of a nonlinear 2-system of the form $x^{2} d w / d x=\Lambda w+x h(x, w)$ with a constant diagonal matrix Λ of signature (1, 1). Tôhoku Math. J. (2), 32(4):453-486, 1980.
[10] N. Joshi and A. V. Kitaev. On Boutroux's tritronquée solutions of the first Painlevé equation. Stud. Appl. Math., 107(3):253-291, 2001.
[11] A. A. Kapaev. Quasi-linear stokes phenomenon for the Painlevé first equation. J. Phys. A, 37(46):11149-11167, 2004.
[12] A. A. Kapaev and A. V. Kitaev. Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys., 27(4):243-252, 1993.
[13] Bernard Malgrange. Sommation des séries divergentes. Exposition. Math., 13(2-3):163-222, 1995.
[14] Jean Martinet. Normalisation des champs de vecteurs holomorphes (d'après A.-D. Brjuno). In Bourbaki Seminar, Vol. 1980/81, volume 901 of Lecture Notes in Math., pages 55-70. Springer, Berlin-New York, 1981.
[15] Jean Martinet and Jean-Pierre Ramis. Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Inst. Hautes Études Sci. Publ. Math., (55):63-164, 1982.
[16] Kazuo Okamoto. Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé. C. R. Acad. Sci. Paris Sér. A-B, 285(12):A765-A767, 1977.
[17] Kazuo Okamoto. Polynomial Hamiltonians associated with Painlevé equations. I. Proc. Japan Acad. Ser. A Math. Sci., 56(6):264-268, 1980.
[18] P. Painlevé. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme. Acta Math., 25(1):1-85, 1902.
[19] Shun Shimomura. Analytic integration of some nonlinear ordinary differential equations and the fifth Painlevé equation in the neighbourhood of an irregular singular point. Funkcial. Ekvac., 26(3):301-338, 1983.
[20] Laurent Stolovitch. Classification analytique de champs de vecteurs 1résonnants de ($\left.\mathbf{C}^{n}, 0\right)$. Asymptotic Anal., 12(2):91-143, 1996.
[21] Setsuji Yoshida. A general solution of a nonlinear 2-system without Poincaré's condition at an irregular singular point. Funkcial. Ekvac., 27(3):367-391, 1984.
[22] Setsuji Yoshida. 2-parameter family of solutions for Painlevé equations (I)-(V) at an irregular singular point. Funkcial. Ekvac., 28(2):233-248, 1985.

[^0]: *IRMA, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France bittmann@math.unistra.fr Office P-106: 0368850192

