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Doubly-resonant saddle-nodes in C3 and the

fixed singularity at infinity in the Painlevé

equations: formal classification.

Amaury Bittmann∗

May 3, 2016

Abstract

In this work we consider formal singular vector fields in C3 with
an isolated and doubly-resonant singularity of saddle-node type at the
origin. Such vector fields come from irregular two-dimensional systems
with two opposite non-zero eigenvalues, and appear for instance when
studying the irregular singularity at infinity in Painlevé equations (Pj),
j ∈ {I, II, III, IV, V }, for generic values of the parameters. Under generic
assumptions we give a complete formal classification for the action of for-
mal diffeomorphisms (by changes of coordinates) fixing the origin and
fibered in the independent variable x. We also identify all formal isotropies
(self-conjugacies) of the normal forms. In the particular case where the
flow preserves a transverse symplectic structure, e.g. for Painlevé equa-
tions, we prove that the normalizing map can be chosen to preserve the
transverse symplectic form.

Keywords: Painlevé equations, singular vector fields, irregular singularity, reso-
nant singularity, normal form

1 Introduction

1.1 Definition and main result

We consider singular vector fields Y in C3 which can be written in appro-
priate coordinates (x,y) := (x, y1, y2) as

Y = x2
∂

∂x
+
(
− λy1 + F1 (x,y)

) ∂

∂y1
+
(
λy2 + F2 (x,y)

) ∂

∂y2
, (1.1)
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where λ ∈ C∗ and F1, F2 are formal power series of order at least two. They
represent singular irregular 2-dimensional systems having two opposite non-zero
eigenvalues and a vanishing third eigenvalue.

Our main motivation is the study of the irregular singularity at infinity in
Painlevé equations (Pj), j ∈ {I, II, III, IV, V }, for generic values of the param-
eters [22]. These equations, discovered (mainly) by Paul Painlevé [18], share
the property that the only movable singularities of their solutions are poles (the
so-called Painlevé property); this is the complete list of all such equations up
to changes of variables. They have been intensively studied since the impor-
tant work of Okamoto [16]. The study of fixed singularities, and more particu-
larly those at infinity, started to be investigated by Boutroux with his famous
tritronquées solutions [18]. Recently, several authors provided more complete
information about such singularities, studying the so-called quasi-linear Stokes
phenomena and also giving connection formulas ([10], [12] and [11]). However,
to the best of our knowledge there are no general analytic classification for this
kind of doubly-resonant saddle-nodes yet (using normal form theory).

More precisely, we would like to understand the action of germs of analytic
diffeomorphisms on such vector fields by changes of coordinates. If one tries to
do this, a first step would be to provide a formal classification, that is to study
the action of formal changes of coordinates on these vector fields. This is the
aim of this paper. Based on the usual strategy employed for the classification
of resonant vector fields [15] in dimension 2, we give in a forthcoming paper
a complete analytic classification for a more specific class of vector fields, by
studying the non-linear Stokes phenomena.

To state our main results we need to introduce some notations and nomen-
clature.

• C JxK is the C-algebra of formal power series in the (multi)variable x =
(x1, . . . , xn) with coefficients in C. We denote by m its unique maximal
ideal: it is formed by formal series with null constant term. For any formal
series f1, . . . , fm in C JxK, we denote by 〈f1, . . . , fm〉 the ideal generated
by these elements.

• D(1) is the Lie algebra of formal vector fields at the origin of C3 which are
singular (i.e. vanish at the origin). Any formal vector field in D(1) can be
written

Y = b
∂

∂x
+ b1

∂

∂y1
+ b2

∂

∂y2

with b, b1, b2 ∈ m.

• D̂iff is the group of formal diffeomorphisms fixing the origin of C3. It acts

on D(1) by conjugacy: if (Φ, Y ) ∈ D̂iff ×D(1),

Φ∗ (Y ) := (DΦ · Y ) ◦ Φ−1 , (1.2)

where DΦ is the Jacobian matrix of Φ.
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• D̂ifffib is the subgroup of D̂iff of diffeomorphisms fibered in the x-coordinate,
i.e. of the form (x,y) 7→ (x, φ (x,y)).

Definition 1.1. A doubly-resonant saddle-node is a vector field Y ∈ D(1)

which is D̂ifffib -conjugate to one of the form

Y = x2
∂

∂x
+
(
− λy1 + F1 (x,y)

) ∂

∂y1
+
(
λy2 + F2 (x,y)

) ∂

∂y2
,

with λ ∈ C∗ and F1, F2 ∈ m
2. We will denote by ŜN the set of all such formal

vector fields.

By Taylor expansion up to order 1 with respect to y, given a vector field Y ∈
ŜN written as above we can consider the associated 2-dimensional differential
system:

x2
dy

dx
= α (x) +A (x)y (x) + f (x,y (x)) , (1.3)

where y = (y1, y2), such that the following conditions hold:

• α (x) =

(
α1 (x)
α2 (x)

)
, with α1, α2 ∈ 〈x〉2 ⊂ C JxK

• A (x) ∈ Mat2,2 (C JxK) with A (0) = Diag (−λ, λ), λ ∈ C∗

• f (x,y) =

(
f1 (x,y)
f2 (x,y)

)
, with f1, f2 ∈ 〈y1, y2〉2 ⊂ C Jx,yK.

Based on this expression, we state:

Definition 1.2. The residue of Y ∈ ŜN is the complex number

res (Y ) :=

(
Tr (A (x))

x

)

|x=0

.

We say that Y is non-degenerate if res (Y ) ∈ C\Q≤0, and we denote by

ŜN nd ⊂ ŜN the subset of non-degenerate vector fields.

We will prove in subsection 3.1 that the residue of Y ∈ ŜN is invariant

under the action of D̂ifffib by conjugacy. We can state now our first main result.

Theorem 1.3. Let Y ∈ ŜN nd be a non-degenerate doubly-resonant saddle-
node. Then there exists a fibered diffeomorphism Φ ∈ D̂ifffib such that:

Φ∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x+ c1 (v)) y1

∂

∂y1

+(λ+ a2x+ c2 (v)) y2
∂

∂y2
, (1.4)

where we put v := y1y2. Here, c1, c2 in 〈v〉 = vC JvK are formal power series
with null constant term and a1, a2 ∈ C are such that a1 + a2 = res (Y ).
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Remark 1.4. We will see in Corollary 3.4 and Proposition 3.2 that Φ as above is
essentially unique (that is, unique up to pre-composition by linear transforms).

Definition 1.5. The parameter space for ŜN nd is the set

P :=
{
p = (λ, a1, a2, c1, c2) ∈ C∗ ×

(
C2\∆

)
× (vC JvK)

2
}

where

∆ =
{
(a1, a2) ∈ C2 | a1 + a2 ∈ Q≤0

}

is the locus of degeneracy. A vector field in the form (1.4) will be called a

normal form of ŜN nd with parameters (λ, a1, a2, c1, c2) in P .

Let us consider the quotient space

P
/
(C∗ × Z/2Z)

where the group (C∗ × Z/2Z) acts on P as follows. Given p = (λ, a1, a2, c1, c2) ∈
P , θ ∈ C∗ and ǫ ∈ Z/2Z we define

θ · (λ, a1, a2, c1, c2) = (λ, a1, a2, c1 ◦ ϕθ, c2 ◦ ϕθ)

ǫ · (λ, a1, a2, c1, c2) =

{
(λ, a1, a2, c1, c2) , if ǫ = 0

(−λ, a2, a1, c2, c1) , if ǫ = 1
,

where ϕθ is the homothecy v 7→ θv. If two parameters p,p′ ∈ P are in the
same orbit for this action we write p ∼ p′. Our second main result shows the
uniqueness of the normal forms up to this action.

Theorem 1.6. Suppose Z and Z ′ are two normal forms of ŜN nd with respective
parameters p = (λ, a1, a2, c1, c2) ∈ P and p′ = (λ′, a′1, a

′
2, c

′
1, c

′
2) ∈ P. Then Z

and Z ′ are D̂ifffib-conjugate if and only p ∼ p′.

One can rephrase the above results in terms of group actions as follows.

Corollary 1.7. There exists a bijection

ŜN nd

/
D̂ifffib

≃ P
/
(C∗ × Z/2Z) ,

where D̂ifffib acts on ŜN nd by conjugacy.

Let us make some remarks.

Remark 1.8.

1. The condition of non-degeneracy is necessary to obtain such normal forms.
For instance for any a1, a2 ∈ C such that a1 + a2 = − p

q
∈ Q≤0, with

(p, q) ∈ N× N∗, the vector field

Y = x2
∂

∂x
+
(
−λ+ a1x+ xp+1 (y1y2)

q)
y1

∂

∂y1
+ (λ+ a2x) y2

∂

∂y2
,
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with residue res (Y ) = −p
q

is not D̂ifffib-conjugate to a normal form as in

Theorem 1.3. Indeed, the resonant term xp+1 (y1y2)
q

cannot be eliminated

by the action of D̂ifffib.

2. Notice that the above two results are not immediate consequences of
Poincaré-Dulac normal form theory. In fact, the usual Poincaré-Dulac
normal form possibly contains several additional resonant terms of the

form
(
xk (y1y2)

l
)
k,l∈N

, and is far from being unique.

1.2 Painlevé equations and the transversally symplectic

case

In [22] Yoshida shows that a vector field in the class ŜN nd naturally appears
after a suitable compactification (given by the so-called Boutroux coordinates
[2]) of the phase-space of Painlevé equations (Pj), j ∈ {I, II, III, IV, V } (for
generic values of the parameters). In these cases the vector field presents an
additional Hamiltonian structure that will interest us.

Let us illustrate these computations in the case of the first Painlevé equation:

(PI)
d2z1
dt2

= 6z21 + t .

As is well known since Okamoto [17], (PI) can be seen as a non-autonomous
Hamiltonian system {

∂z1
∂t

= − ∂H
∂z2

∂z2
∂t

= ∂H
∂z1

with Hamiltonian

H (t, z1, z2) := 2z31 + tz1 −
z22
2
.

More precisely, if we consider the standard symplectic form ωst := dz1∧dz2 and
the vector field

Z :=
∂

∂t
− ∂H

∂z2

∂

∂z1
+
∂H

∂z1

∂

∂z2

induced by (PI), then the Lie derivative

LZ (ωst) =

(
∂2H

∂t∂z1
dz1 +

∂2H

∂t∂z2
dz2

)
∧ dt = dz1 ∧ dt

belongs to the ideal 〈dt〉 generated by dt in the exterior algebra Ω∗ (C3
)

of
differential forms in variables (t, z1, z2). Equivalently, for any t1, t2 ∈ C the flow
of Z at time (t2 − t1) acts as a symplectomorphism between fibers {t = t1} and
{t = t2}.
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The weighted compactification given by the Boutroux coordinates [3] (see
also [6]) defines a chart near {t =∞} as follows:





z2 = y2x
− 3

5

z1 = y1x
− 2

5

t = x−
4
5

.

In the coordinates (x, y1, y2), the vector field Z is transformed, up to a transla-
tion y1 ← y1 + ζ with ζ = i√

6
, into the vector field

Z̃ = − 5

4x
1
5

Y (1.5)

where

Y = x2
∂

∂x
+

(
−4

5
y2 +

2

5
xy1 +

2ζ

5
x

)
∂

∂y1

+

(
−24

5
y21 −

48ζ

5
y1 +

3

5
xy2

)
∂

∂y2
. (1.6)

We observe that Y is a non-degenerate doubly-resonant saddle-node Y as in
Definitions 1.1 and 1.2 with residue res (Y ) = 1. Furthermore we have:





dt = − 4
55

4
5 x−

9
5dx

dz1 ∧ dz2 = 1
x
(dy1 ∧ dy2) +

1
5x2 (2y1dy2 − 3y2dy1) ∧ dx

∈ 1
x
(dy1 ∧ dy2) + 〈dx〉

,

where 〈dx〉 denotes the ideal generated by dx. We finally obtain



LY
(
dy1 ∧ dy2

x

)
= 1

5x (3y2dy1 − (2ζ + 2y1)dy2) ∧ dx

LY (dx) = 2xdx
.

Therefore, both xLY
(
dy1 ∧ dy2

x

)
and LY (dx) are differential forms which lie

in the ideal 〈dx〉. This motivates the following definition.

Definition 1.9. Consider the rational 1-form

ω :=
dy1 ∧ dy2

x
.

We say that a formal vector field Y ∈ D(1) is transversally Hamiltonian

(with respect to ω and dx) if

LY (dx) ∈ 〈dx〉 and xLY (ω) ∈ 〈dx〉 .

We say a formal diffeomorphism Φ ∈ D̂iff is transversally symplectic (with
respect to ω and dx) if

Φ∗ (x) = x and xΦ∗ (ω) ∈ xω + 〈dx〉 .
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(Here Φ∗ (ω) denotes the pull-back of ω by Φ.)

We denote respectively byDω and D̂iffω the sets of transversally Hamiltonian
vector fields and transversally symplectic diffeomorphisms.

Remark 1.10.

• The flow of a transversally Hamiltonian X defines a map between fibers
{x = x1} and {x = x2} which sends ω|x=x1

onto ω|x=x2
, since

(exp (X))
∗
(ω) ∈ ω + 〈dx〉 .

• By our definition, a transversally symplectic diffeomorphism Φ ∈ D̂iffω is

necessarily a fibered diffeomorphism. In other words: D̂iffω ⊂ D̂ifffib.

Definition 1.11. A transversally Hamiltonian doubly-resonant saddle-

node is a vector field Y ∈ Dω which is D̂iffω -conjugate to one of the form

Y = x2
∂

∂x
+
(
− λy1 + F1 (x,y)

) ∂

∂y1
+
(
λy2 + F2 (x,y)

) ∂

∂y2
,

with λ ∈ C∗ and F1, F2 ∈ m
2. We will denote by ŜN ω the set of all such formal

vector fields.

Notice that a transversally Hamiltonian doubly-resonant saddle-node Y ∈
ŜN ω is necessarily non-degenerate since its residue is always equal to 1. In
other words: ŜN ω ⊂ ŜN nd.

Theorem 1.12. Let Y ∈ ŜN ω be a transversally Hamiltonian doubly-resonant
saddle-node. Then, there exists a transversally symplectic diffeomorphism Φ ∈
D̂iffω such that:

Φ∗ (Y ) = x2 ∂
∂x

+ (−λ+ a1x− c (v)) y1 ∂
∂y1

+ (λ+ a2x+ c (v)) y2
∂

∂y2
. (1.7)

where we put v := y1y2. Here, c (v) in vC JvK is a formal power series with null
constant term and a1, a2 ∈ C are such that a1 + a2 = res (Y ) = 1. Furthermore

this normal form is unique with respect to the action of D̂iffω.

One can rephrase the theorem above in terms of group action.

Corollary 1.13. There exists a bijection

ŜN ω

/
D̂iffω

≃ C∗ ×
{
(a1, a2) ∈ C2 | a1 + a2 = 1

}
× vC JvK .

Remark 1.14.

1. As for Theorem 1.3, Φ is essentially unique (Corollary 3.4). This is an
immediate consequence of Theorem 1.6. However, the fact that the nor-
malizing diffeomorphism Φ in Theorem 1.12 is transversally symplectic is
not an immediate consequence of Theorem 1.6.
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2. The above normalization theorem can be interpreted as defining local
action-angle coordinates for vector fields in ŜN ω. More precisely, if we
consider the successive symplectic changes of coordinates




y1 = e

i π
4√
2
(u1 + iu2)

y2 = e
i π
4√
2
(u1 − iu2)

and {
u1 =

√
2ρ cosϕ

u2 =
√
2ρ sinϕ

,

then the vector field (1.7) becomes:

x2
∂

∂x
+ e−iπ4 x

√
ρ
∂

∂ρ
+ i

(
λ+ c (iρ) +

(a2 − a1)
2

x

)
∂

∂ϕ
.

Notice that the corresponding differential equation can be explicitly inte-
grated by quadratures in terms of an anti-derivative of c.

We will explain in section 4 how to compute inductively any finite jet of c (v)
in the case of the Painlevé equations (for which c (v) is a germ of an analytic
function at the origin).

Corollary 1.15. Let Y be as in (1.6). Then a1 = a2 = 1
2 , λ = 8

√
3ζ
5 =

4·2
3
4 ·3

1
4

5 e
iπ
4 and

c (v) = 3v +

(
9 +

167 · 2 1
4 · 3 3

4

96
e

3iπ
4

)
v2

+

(
16 +

31837
√
6

6912
i+

5

2
· 2 1

4 · 3 1
4 · e 3iπ

4

)
v3 +O

(
v4
)
.

1.3 Known results

In [22], [21] Yoshida shows that the doubly-resonant saddle-nodes arising
from the compactification of Painlevé equations (Pj), j ∈ {I, II, III, IV, V }
(for generic values for the parameters) is conjugate to polynomial vector fields
of the form

Z = x2
∂

∂x
+
(
− (1 + γy1y2) + a1x

)
y1

∂

∂y1

+
(
1 + γy1y2 + a2x

)
y2

∂

∂y2
, (1.8)

with γ ∈ C∗ and (a1, a2) ∈ C2 such that a1+a2 = 1. One drawback of this result
is that Yoshida admits fibered transformationsΨ(x,y) = (x, ψ1 (x,y) , ψ2 (x,y))
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of a more general form:

ψi (x,y) = yi


1 +

∑

(k0,k1,k2)∈N
3

k1+k2≥1

qi,k (x)

xk0
yk1+k0
1 yk1+k0

2


 , (1.9)

where each qi,k is a formal power series. Notice that x can appear with negative

exponents and therefore Ψ /∈ D̂iff. As we will see in the next subsection, the
problem (when seen from the viewpoint of analytic classification) is that the
transformations used by Yoshida have “small” regions of convergence, in the
sense that one cannot cover an entire neighborhood of the origin in C3 by taking
the union of these regions. On the contrary, we prove in an upcoming work that
the formal normalizations presented here can be embodied by diffeomorphisms
analytic on finitely many sectors whose union is a neighborhood of the origin.
This entails the classical theory of summability of formal power series.

1.4 Analytic results

Several authors studied the problem of convergence of the conjugating transfor-
mations described above. Some results (that we recall soon) will hold not only
in the class of formal objects, but also for Gevrey (and even summable) ones,
or more generally for holomorphic functions with asymptotic expansions in sec-
torial domains. We refer to [13] and [15] for details on asymptotic expansions,
Gevrey and summability theory.

Assuming that the initial vector field is analytic, Yoshida proves in [21] that
he can chose a conjugacy of the form (1.9) which is the asymptotic expansion
of an analytic function in a domain

{
(x, z) ∈ S ×D (0, r) | |z1z2| < ν |x|

}

for some small ν > 0, where S is a sector of opening less than π with vertex at
the origin and D (0, r) is a polydisc of small poly-radius r = (r1, r2). Moreover,
the (qi,k (x))i,k are in fact Gevrey-1 series.

Under more restrictive conditions (which correspond to c1 = c2 = 0 and
Re (a1 + a2) > 0 in Theorem 1.3), Shimomura, improving on a result by Iwano
[9], shows in [19] that analytic doubly-resonant saddle-nodes satisfying these
conditions are conjugate to:

x2
∂

∂x
+ (−λ+ a1x) y1

∂

∂y1
+ (λ+ a2x) y2

∂

∂y2

via a diffeomorphism whose coefficients have asymptotic expansions as x → 0
in sectors of opening greater than π. Stolovitch generalized this result for any
dimension in [20]. Unfortunately, as shown by Yoshida in [22], the hypothesis
c1 = c2 = 0 is not met in the case of Painlevé equations.
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In a forthcoming series of papers we will prove an analytic version of Theorem
1.12, valid in sectorial domains with sufficiently large opening, which in turn
will help us to provide an analytic classification. Let us insist once more on the
key fact that the union of these sectorial domains forms a whole neighborhood
of the origin.

1.5 Outline of the paper

• In section 2 we recall some basic concepts and results from the theory of
formal vector fields and differential forms.

• In section 3 we prove Theorems 1.3, 1.6 and 1.12, and compute the
isotropies of the associated normal forms.

• In section 4 we explain how to compute any finite jet of the formal invariant
c in Theorem 1.12 in the case of the Painlevé equations.

Contents

1 Introduction 1

1.1 Definition and main result . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Painlevé equations and the transversally symplectic case . . . . . 5
1.3 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Analytic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11

2.1 Formal power series, vector fields and diffeomorphisms . . . . . . 11
2.2 Exponential map and logarithm . . . . . . . . . . . . . . . . . . . 13
2.3 Jordan decomposition and Dulac-Poincaré normal forms . . . . . 14
2.4 Formal differential forms . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Transversal Hamiltonian vector fields and transversal symplecto-

morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Formal classification under fibered transformations 20

3.1 Invariance of the residue by fibered conjugacy . . . . . . . . . . . 20
3.2 Proof of Theorems 1.3 and 1.12 . . . . . . . . . . . . . . . . . . . 21
3.3 Uniqueness: proof of Theorem 1.6 . . . . . . . . . . . . . . . . . 24
3.4 Fibered isotropies of the formal normal form . . . . . . . . . . . 28

4 Applications to Painlevé equations 29

4.1 Asymptotically Hamiltonian vector fields . . . . . . . . . . . . . . 29
4.2 Periods of the Hamiltonian on {x = 0} . . . . . . . . . . . . . . . 32
4.3 Example: the case of the first Painlevé equation . . . . . . . . . . 35

5 Acknowledgement 37

10



References 37

2 Background

We refer the reader to [8], [14] and [4] for a detailed introduction to formal vector
fields and formal diffeomorphisms. Although these concepts are well-known by
specialists, we will recall briefly the needed results and nomenclature.

2.1 Formal power series, vector fields and diffeomorphisms

As usual, we will denote a formal power series as f (x) =
∑

k

fkx
k where,

for all k = (k1, . . . , kn) ∈ N, fk ∈ C and xk = xk1
1 . . . xkn

n . We will also use
the notation |k| = k1 + · · · + kn for the degree of a monomial xk (which is of
homogenous degree k = (k1, . . . , kn)).

We denote respectively by C JxK, D, D̂iff the sets of formal power series
(equipped with an algebra structure), vector field (equipped with a Lie algebra
structure), diffeomorphisms (equipped with a group structure). The maximal
ideal of the algebra C JxK formed by formal power series with null constant term
is denoted by m.

A vector field will be seen either as a an element of (C JxK)
n

or as a derivation
on C JxK: for any vector field

X = α1
∂

∂x1
+ · · ·+ αn

∂

∂xn
∈ (C JxK)

n
, (2.1)

its Lie derivative is defined as the operator

LX (f) = α1
∂f

∂x1
+ · · ·+ αn

∂f

∂xn
, (2.2)

for any formal power series f ∈C JxK. The Lie bracket [X,Y ] of two vector fields
X,Y ∈ D is defined by

L[X,Y ] (f) = LX (LY (f))− LY (LX (f))

for all f ∈ C JxK.

Similarly, a formal diffeomorphism will be seen either as an element of
Φ (x) ∈ (C JxK)n such that Φ (0) = 0 and D0Φ = Jac (Φ (0)) ∈ Gln (C), or as

an algebra automorphism of C JxK: given a formal series f =
∑

k∈Nn

akx
k ∈ C JxK,

we denote by

Φ∗ (f) =
∑

k∈Nn

akφ
k1
1 · · ·φkn

n , (2.3)

11



the pull-back of f by Φ ∈ D̂iff, where

φ1 = Φ(x1) , . . . , φn = Φ(xn) .

The Jacobian matrix (or the linear part) of Φ in the basis (x1, . . . , xn) is the

matrix

(
∂φi
∂xj

(0, . . . , 0)

)

i,j

.

The order ord (f) (resp. ord (X), resp. ord (Φ)) of a non-zero formal power

series f ∈ C JxK (resp. vector field X ∈ D, resp. diffeomorphism Φ ∈ D̂iff)
is the maximal integer k ≥ 0 such that f ∈ m

k (resp. LX (m) ⊂ m
k, resp.

Φ∗ (m) ⊂ m
k). The notion of order allows to define the classical Krull topology

on C JxK, D and D̂iff . The set of formal vector field of order at least k is
a submodule denoted by D(k) ⊂ D. In particular, D(1) is the submodule of

singular formal vector fields. We denote by A(k) ⊂ D̂iff the normal subgroup
formed by those automorphisms Φ such that

Φ (xi)− xi ∈ m
k+1

for each i = 1, . . . , n. Each element of A(k) will be called a formal diffeomor-
phism tangent to the identity up to order k.

Given a subgroup G ⊂ D̂iff , we say that two vector fields Y1, Y2 in D are
G−conjugate if there exits a Φ∈G such that:

LY1 ◦ Φ = Φ ◦ LY2 .

The following two lemmas will be important in the proof of Theorem 1.3.

Lemma 2.1. Let X,Y ∈ D(1) be two singular formal vector fields. Then:

ord ([X,Y ]) ≥ ord (X) + ord (Y )− 1 .

Lemma 2.2. Let (dn)n≥0 ⊂ N>0 be a strictly increasing sequence of positive
integers, and (Φn)n≥0 a sequence of formal diffeomorphisms. Assume that for
all n ≥ 0,

Φn (x) = x+ Pdn
(x)

(
mod m

dn+1
)

,

where Pdn
(x) is a vector homogenous polynomial of degree dn. Then the se-

quence
(
Φ[n]

)
n≥0

, defined by Φ[n] = Φn ◦ · · · ◦ Φ0, for all n ≥ 0, is convergent,

of limit Φ ∈ D̂iff.
Moreover, if each Φn is fibered then Φ is fibered too.

Proof. It suffices to prove by induction that for all n ≥ 0:

Φn ◦ · · · ◦ Φ0 (x) = x+ Pd0 (x) + · · ·+ Pdn
(x)

(
mod m

dn+1
)
,

because the sequence (dn)n≥0 ⊂ N>0 is strictly increasing.

12



2.2 Exponential map and logarithm

Given formal vector field X ∈ D(1) and a formal power series f ∈ C JxK and
we set {

L◦0X (f) = f

L◦(k+1)
X (f) := LX

(
L◦kX (f)

)
, for all k ≥ 0

so that we can consider the algebra homomorphism given by:

exp (X)∗ : f 7→
∑

k≥0

1

k!
L◦kX (f) . (2.4)

This series is convergent in the Krull topology and defines in fact a formal
diffeomorphism, which is called the time 1 formal flow of X ∈ D(1) or the
exponential of X . (see e.g. section 3 in [8]).

For any vector field X ∈ D(1), we consider also the adjoint map

adX : D(1) → D(1)

Y 7→ [X,Y ]

and define
{
(adX)◦0 := Id

(adX)◦(k+1) := adX ◦ (adX)◦k , ∀k ∈ N
.

We will need the following classical formula (see [14]).

Proposition 2.3. Given X,Y ∈ D(1):

exp (X)∗ (Y ) = exp (adX) (Y ) ,

where

exp (adX) (Y ) =
∑

k≥0

1

k!
(adX)◦k (Y ) = Y +

1

1!
[X,Y ] +

1

2!
[X, [X,Y ]] + . . . .

We also recall the existence of a logarithm for all formal diffeomorphisms
tangent to the identity (see [8], section 3).

Proposition 2.4. For any formal diffeomorphism Φ ∈ D̂iff, there exists a
unique vector field F ∈ D(2) such that Φ = ϕ ◦ exp (F ), where ϕ ∈ D̂iff is
the linear change of coordinate given by D0Φ. Moreover, for each k ≥ 2, the
exponential map defines a bijection between D(k) and A(k−1).
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2.3 Jordan decomposition and Dulac-Poincaré normal forms

According to [14], any singular formal vector field X ∈ D(1) admits a unique
Jordan decomposition:

X = XS +XN , with XS , XN ∈ D(1) and [XS , XN ] = 0 , (2.5)

where the restriction of XS (resp.XN ) to each k-jet vector space Jk = m/mk

(which is finite dimensional), k ≥ 0, is semi-simple (resp. nilpotent). This
decomposition is compatible with truncation and invariant by conjugacy: if
X = XS +XN is the Jordan decomposition of X then

1. for all k ≥ 0, jk (X) = jk (XS) + jk (XN ) is the Jordan decomposition of
jk (X)(here, for any singular vector field Y ∈ D(1), jk (Y ) is the endomor-
phism Jk → Jk induced by LY );

2. for any formal diffeomorphism ϕ ∈ D̂iff , ϕ∗ (X) = ϕ∗ (XS) + ϕ∗ (XN ) is
the Jordan decomposition of ϕ∗ (X).

Definition 2.5. We say that X ∈ D(1) is in Poincaré-Dulac normal form if its
Jordan decomposition X = XS +XN is such that XS is in diagonal form, i.e.
XS = S (λ), where λ := (λ1, . . . , λn) ∈ Cn and

S (λ) := λ1x1
∂

∂x1
+ · · ·+ λnxn

∂

∂xn
. (2.6)

As mentioned in the introduction, according to Poincaré-Dulac Theorem, any
singular vector field is conjugate to a Poincaré-Dulac normal form, but this
normal form is far from being unique: every vector field is conjugate to many
distinct Poincaré-Dulac normal forms.

Definition 2.6. A monomial vector field is a vector field in D of the form
xkS (µ) for some k ∈ I, where I is the index set

I := {k = (k1, . . . kn) ∈ (Z≥−1)
n | at most one of the kj ’s is -1} ,

and some µ ∈ Cn with the condition that µ = (0, . . . , 0, µj, 0, . . . 0)

↑
j

if kj = −1.

Fixing λ ∈ Cn, each monomial vector field xkS (µ) is an eigenvector for
adS(λ) with eigenvalue

〈λ,k〉 := λ1k1 + · · ·+ λnkn .

This is a consequence of the following elementary lemma.

Lemma 2.7. For all λ, µ ∈ Cn, and for all l,m ∈ Zn:
[
xlS (λ) ,xmS (µ)

]
= xl+m (〈λ,m〉S (µ)− 〈µ, l〉S (λ)) .
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Remark 2.8. Notice that each X ∈ D can be uniquely written as an infinite sum
of monomial vector fields of the form

X =
∑

k∈I
xkS (µk) ,

which is a Krull-convergent series in D. We will call this expression the mono-
mial expansion of X .

Assume now that X = S (λ)+XN is in Poincaré-Dulac normal form and let
us consider the monomial expansion of XN :

XN =
∑

k∈I
xkS (µk) .

The condition [XS , XN ] = 0 is equivalent to require

∀k ∈ I, 〈λ,k〉 6= 0 =⇒ µk = 0 ;

in other words, each xk in the monomial expansion of XN is a so-called resonant
monomial.

Proposition 2.9. Let X,Y ∈ D(1) be two vector fields in Poincaré-Dulac nor-
mal form with the same semi-simple part S (µ) for some µ ∈ Cn, and with
nilpotent parts in D(2):
{
X = S (µ) +XN , with XN ∈ D(2), nilpotent, and [S (µ) , XN ] = 0

Y = S (µ) + YN , with YN ∈ D(2), nilpotent, and [S (µ) , YN ] = 0
.

Assume X and Y are conjugate by a formal diffeomorphism Φ such that D0Φ =
diag (λ1, . . . , λn) for some λ1, . . . , λn ∈ C∗. If we write Φ = ϕ◦exp (F ) for some
vector field F ∈ D(2), where ϕ ∈ D̂iff is the linear diffeomorphism associated to
D0Φ = diag (λ1, . . . , λn), then necessarily [S (µ) , F ] = 0.

Remark 2.10. Recall that the condition [S (µ) , F ] = 0 means that if we write

F =
∑

k∈I
xkS (λk), then 〈µ,k〉 6= 0 =⇒ λk = 0.

Proof. We can assume without loss of generality that Φ is tangent to the identity.
Indeed by setting P := (D0Φ)

−1
, we obtain that P ◦Φ is tangent to the identity

and conjugatesX to Ỹ = DP ·
(
Y ◦ P−1

)
. Since DP is diagonal, the assumptions

made on Y are also met by Ỹ . Moreover, it is clear that the property we have
to prove is true for Φ if and only if it is true for P ◦ Φ. Therefore we may
suppose that Φ is tangent to the identity. According to Proposition 2.4, there
exists F ∈ D(2) such that exp (F ) = Φ, while according to Proposition 2.3 we
have:

exp (F )∗ (S (µ)) = S (µ) + [F, S (µ)] +
1

2!
[F, [F, S (µ)]] + . . . (2.7)
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Since exp (F )∗ (S (µ)) = S (µ) by uniqueness of the Jordan decomposition, we
have

[F, S (µ)] +
1

2!
[F, [F, S (µ)]] + . . . = 0 . (2.8)

This implies that [F, S (µ)] = 0, using Lemma 2.1 and the fact that ord (F ) ≥
2.

Remark 2.11. The assumption that D0Φ is in diagonal form necessarily holds if
µi 6= µj , for all i 6= j.

2.4 Formal differential forms

Definition 2.12. We denote by Ω̂1 (C JxK) (or just Ω̂1 for simplicity) the set of
formal 1-forms in Cn. It is the dual of Der (C JxK) as C JxK-module.

Fixing the dual basis (dx1, . . . dxn) of (Cn)
∗
, Ω̂1 (C JxK) is a free C JxK-

module of rank n, generated by dx1, . . . , dxn.

Definition 2.13. For any p ∈ N, we denote the p-exterior product of Ω̂1 (C JxK)
by

Ω̂p (C JxK) :=

p∧
Ω̂1 (C JxK)

(or just Ω̂p). Its elements will be called formal p-forms.

The set of 0-forms is the set of formal series: Ω̂0 (C JxK) := C JxK.

Definition 2.14. We denote by

Ω̂ (C JxK) :=
+∞
⊕
p=0

Ω̂p (C JxK)

(or just Ω̂ for simplicity) the exterior algebra of the formal forms in Cn, and by
d the exterior derivative on it.

One can also extend the Krull topology to Ω̂.

We can define the action of D̂iff by pull-back on Ω̂ (C JxK) thanks to the
following properties:

1. C-linearity

2. for all f ∈ C JxK, Φ∗ (f) is defined as in (2.3)

3. ∀α, β ∈ Ω̂ (C JxK), ∀Φ ∈ D̂iff , Φ∗ (α ∧ β) = Φ∗ (α) ∧ Φ∗ (β)

4. ∀Φ ∈ D̂iff, Φ∗ ◦ d = d ◦ Φ∗.
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For any X ∈ D(1) and α ∈ Ω̂ (C JxK), we denote by LX (α) the Lie derivative of
α with respect to X . We recall that LX is uniquely determined by the following
properties:

1. for all k ≥ 0, LX : Ω̂k (C JxK) −→ Ω̂k (C JxK) is linear

2. for all f ∈ C JxK (i.e. f is a 0-form ), LX (f) is as in Definition (2.2)

3. LX is a derivation of Ω̂ (C JxK), i.e. for all α, β ∈ Ω̂ (C JxK):

LX (α ∧ β) = LX (α) ∧ β + α ∧ LX (β)

(Leibniz rule)

4. LX ◦ d = d ◦ LX .

We will need the following classical formula, which extends (2.4).

Proposition 2.15. ∀α ∈ Ω̂ (C JxK) , X ∈ D(1):

exp (X)
∗
(α) = exp (LX) (α) =

∑

k≥0

1

k!
L◦kX (α) .

Proof. (Sketch)
This formula is true for 0-forms, and we just has to prove it for 1-forms,

because we can then it extend to any p-form using the exterior product and the
Leibniz formula. In order to prove the result for 1-forms, one has to use the fact
that LX ◦ d = d ◦ LX .

With the same arguments, and using formulas Φ∗◦d = d◦Φ∗ and Φ∗ (α ∧ β) =
Φ∗ (α) ∧ Φ∗ (β), we can prove the following Proposition.

Proposition 2.16. For all Φ ∈ D̂iff, X ∈ D(1) and θ ∈ Ω̂ (C JxK), we have;

Φ∗ (LΦ∗(X) (ω)
)
= LX (Φ∗ (ω)) .

In other words, the following diagram is commutative for all p ≥ 0:

Ω̂p Φ∗

//

LΦ
*
(X)

��

Ω̂p

LX

��

Ω̂p

Φ∗

// Ω̂p

From now on, we set n = 3, we denote by x = (x,y) = (x, y1, y2) the
coordinates in C3 .

Definition 2.17. We denote by 〈dx〉 the ideal generated by dx in Ω̂ = Ω̂ (C Jx,yK):

it is the set of forms θ ∈ Ω̂ such that θ = dx ∧ η, for some η ∈ Ω̂.
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Proposition 2.18. Let θ ∈ Ω̂, X ∈ D(1) and set Φ := exp (X) ∈ D̂iff. Then
the following assertions are equivalent:

1. LX (x) = 0 and LX (θ) ∈ 〈dx〉

2. Φ∗ (x) = x and Φ∗ (θ) ∈ θ + 〈dx〉.

Proof. It is just a consequence of Propositions 2.15 and 2.3.

The next Lemma is proved by induction, as Lemma 2.2.

Lemma 2.19. In the situation described in Lemma 2.2, if we further assume
that there exists a form θ ∈ Ω̂ such that Φ∗

n (θ) ∈ θ + 〈dx〉, for all n ≥ 0, then
Φ∗ (θ) ∈ θ + 〈dx〉.

2.5 Transversal Hamiltonian vector fields and transversal

symplectomorphisms

We will need in fact to deal with forms with rational coefficients, and more
precisely with

ω :=
dy1 ∧ dy2

x
.

Given a formal vector field X such that LX (x) ∈ 〈x〉 we can easily extend its

Lie derivative action to the set x−1Ω̂ (C Jx,yK) by setting:

LX
(
1

x
θ

)
:= −LX (x)

x2
θ +

1

x
LX (θ) , θ ∈ Ω̂ (C Jx,yK)

∈ x−1Ω̂ (C Jx,yK) , because LX (x) ∈ 〈x〉 .

In particular we have

xLX
(
1

x
θ

)
∈ Ω̂ (C Jx,yK) .

Notice that if a vector field X satisfy LX (dx) ∈ 〈dx〉, then LX (x) ∈ 〈x〉.
Similarly, we naturally extend the action of fibered diffeomorphisms by pull-
back on rational forms in x−1Ω̂ (C Jx,yK) by:

Φ*

(
1

x
θ

)
=

1

x
Φ∗ (θ) , for (Φ, θ) ∈ D̂ifffib × Ω̂ (C Jx,yK)

so that

xΦ*

(
1

x
θ

)
= Φ∗ (θ) .

Recalling Definition 1.9, we can now state a result analogous to Proposition
2.18.
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Proposition 2.20. Let F ∈ D(1) be a singular vector field. The following two
statements are equivalent:

1. exp (F ) is a transversally symplectic diffeomorphisms ,

2. LF (x) = 0 and F is transversally Hamiltonian.

Proof. It is just a consequence of Proposition 2.18.

Lemma 2.21. Let Φ ∈ D̂iffω and X ∈ Dω . Then, Φ∗ (X) ∈ Dω.

Proof. This comes from Proposition 2.16: Φ∗ (LΦ∗(X) (ω)
)
= LX (Φ∗ (ω)), and

from the fact that D̂iffω is a group, so Φ−1 ∈ D̂iffω . Consequently we have:

xLΦ∗(X) (ω) = x
(
Φ−1

)∗ LX (Φ∗ (ω))

= x
(
Φ−1

)∗ LX (ω + 〈dx〉)
= x

(
Φ−1

)∗
(LX (ω)) + x

(
Φ−1

)∗
(LX (〈dx〉))

= x
(
Φ−1

)∗
(〈dx〉) + x

(
Φ−1

)∗
(〈dx〉)

∈ 〈dx〉 .

Remark 2.22. In other words, we have an action of the group D̂iffω on Dω, and
then on ŜN ω.

We would like now to give a characterization of transversally Hamiltonian
vector fields in terms of its monomial expansion (see Remark 2.8). Consider a
monomial vector field

X = xk0yk1
1 y

k2
2 S (µ) ,

with µ = (µ0, µ1, µ2) ∈ C3\ {0}, such that LX (x) ∈ 〈x〉. We necessarily have
either µ0 = 0 or k0 ≥ 0. Let us compute its Lie derivative applied to ω:

LX (ω) = −LX (x)

x2
dy1 ∧ dy2 +

1

x
d (LX (y1)) ∧ dy2 +

1

x
dy1 ∧ d (LX (y2))

= −µ0x
k0−1yk1

1 yk2
2 dy1 ∧ dy2 +

µ1

x
d
(
xk0yk1+1

1 yk2
2

)
∧ dy2

+
µ2

x
dy1 ∧ d

(
xk0yk1

1 y
k2+1
2

)

= (µ1 (k1 + 1) + µ2 (k2 + 1)− µ0)x
k0−1yk1

1 yk2
2 dy1 ∧ dy2 + 〈dx〉 .

Moreover:

LX (dx) = d (LX (x))

= d
(
µ0x

k0+1yk1
1 y

k2
2

)

= µ0

(
(k0 + 1)xk0yk1

1 y
k2
2 dx+ k1x

k0+1yk1−1
1 yk2

2 dy1 + k2x
k0+1yk1

1 y
k2−1
2 dy2

)
.

Thus, we see that X is transversally Hamiltonian if and only if the following
two conditions hold:
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1. µ1 (k1 + 1) + µ2 (k2 + 1) = µ0

2. either µ0 = 0 or k1 = k2 = 0.

So we have the following:

Proposition 2.23. Let X ∈ D(1) be a singular vector field and let

X =
∑

k∈I
xkS (µk)

be its monomial expansion. X is transversally Hamiltonian if and only if for all
k ∈ I, xkS (µk) is transversally Hamiltonian.

Proof. Clearly if xkS (µk) is transversally Hamiltonian for all k ∈ I, then X
is transversally Hamiltonian is obvious, by convergence of the above series in
the Krull topology. Assume conversely that X is transversally Hamiltonian.
First of all, notice that we necessarily have, for all k ∈ I, LxkS(µk) (dx) ∈ 〈dx〉.
Indeed, if it were not the case, consider k with |k| minimum among the set of
multi-index l satisfying

LxlS(µl) (dx) /∈ 〈dx〉
to obtain a contradiction, by looking at the terms of higher order. Similarly,
according to the computation above, for each k ∈ I:
LxkS(µk) (ω) = (µ1 (k1 + 1) + µ2 (k2 + 1)− µ0)x

k0−1yk1
1 y

k2
2 dy1 ∧ dy2 + 〈dx〉

If one of the two conditions 1. or 2. above were not satisfied by a couple (k, µk)
with |k| minimal, then we could not have xLX (ω) ∈ 〈dx〉 (just consider the
terms of higher order).

3 Formal classification under fibered transforma-

tions

3.1 Invariance of the residue by fibered conjugacy

We start this section by proving that the non-degenerate condition defined
in the introduction only depends on the conjugacy class of the vector field under
the action of fibered diffeomorphisms. More precisely, the following proposition
states that the residue is an invariant of a doubly-resonant saddle-node under

the action of D̂ifffib.

Proposition 3.1. Let X,Y ∈ ŜN . If X and Y are D̂ifffib−conjugate, then
res (X) = res (Y ).

Proof. Consider the system

x2
dy

dx
= α (x) +A (x)y (x) + f (x,y (x)) , (3.1)

with y = (y1, y2) and where the following conditions hold:
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• α (x) =

(
α1 (x)
α2 (x)

)
, with α1, α2 ∈ 〈x〉2 ⊂ C JxK

• A (x) ∈ Mat2,2 (C JxK) with A (0) = Diag (−λ, λ), λ ∈ C∗

• f (x,y) =

(
f1 (x,y)
f2 (x,y)

)
, with f1, f2 ∈ 〈y1, y2〉2 ⊂ C Jx,yK.

Perform the change of coordinates given by y = β (x) +P (x) z+ h (x, z), with
z = (z1, z2) and where:

• β (x) =
(
β1 (x)
β2 (x)

)
, with β1, β2 ∈ 〈x〉 ⊂ C JxK

• P (x) ∈ Mat2,2 (C JxK) such that P (0) ∈ GL2 (C)

• h (x,y) =

(
h1 (x,y)
h2 (x,y)

)
, with h1, h2 ∈ 〈z1, z2〉2 ⊂ C Jx, zK.

Then one obtain the following system satisfied by z (x):

x2
dz

dx
= P (x)

−1

(
α (x) +A (x)β (x) + f (x, β (x))− x2 dβ

dx
(x)

)

+P (x)
−1

(
A (x)P (x)− x2 dP

dx
(x) +

∂f

∂y
(x, β (x))P (x)

)
z+ 〈z1, z2〉2 ,

Since A (0) ∈ GL2 (C), f (x,y) ∈ 〈y1, y2〉2 and ord (β) ≥ 1, the order of

P (x)−1

(
α (x) +A (x)β (x) + f (x, β (x))− x2 dβ

dx
(x)

)

is at least 2 if and only if ord (β) ≥ 2. Then:

Tr

(
P (x)−1

(
A (x)P (x)− x2 dP

dx
(x) +

∂f

∂y
(x, β (x))P (x)

))
∈ Tr (A (x)) + 〈x〉2 .

So

(
Tr (A (x))

x

)

|x=0

is invariant by fibered change of coordinates on system of

the form (3.1) with ord (α) ≥ 2.

3.2 Proof of Theorems 1.3 and 1.12

We will use the tools described in Section 2.

Proof. Let Y ∈ ŜN nd (resp. in ŜNω) be a non-degenerate (resp. transversally
Hamiltonian) doubly-resonant saddle-node:

Y = x2
∂

∂x
+ (−λy1 + F1 (x, y1, y2))

∂

∂y1
+ (λy2 + F2 (x, y1, y2))

∂

∂y1
,
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with λ ∈ C∗, and Fν (x,y) ∈ m
2, for ν = 1, 2 . As seen in the previous

subsection, we can assume that F1 (x, 0, 0) = F2 (x, 0, 0) = 0.
The general idea is to apply successive (infinitely many) diffeomorphisms of

the form
exp

(
xj0yj11 y

j2
2 S (0, µ1,j, µ2,j)

)

for convenient choices of j, µ1,j, µ2,j, in order to remove all the terms we want
to. Let us consider the monomial expansion of Y :

Y = λS (0,−1, 1) + xS (1, 0, 0) +
∑

k∈I, |k|≥1

xk0yk1
1 y

k2
2 S (0, µ1,k, µ2,k) .(3.2)

Since Y in non-degenerate we necessarily have

µ1,(1,00) + µ2,(1,0,0) = res (Y ) ∈ C\Q≤0 .

In the transversally Hamiltonian case, each term in the sum

∑

k∈I, |k|≥1

xk0yk1
1 yk2

2 S (0, µ1,k, µ2,k)

must satisfy
µ1,k (k1 + 1) + µ2,k (k2 + 1) = 0 ,

if k 6= (1, 0, 0) and µ1,(1,0,0) + µ2,(1,0,0) = 1.
The normalizing conjugacy Φ is constructed in two steps.

1. The first step is aimed at removing all non-resonant monomial terms,
i.e. those of the form

xk0yk1
1 yk2

2 S (0, µ1,k, µ2,k) , with k ∈ I, |k| ≥ 1 and k1 6= k2 .

2. The second step is aimed at removing certain resonant monomial terms,
and more precisely those of the form

xk0 (y1y2)
k S (0, η1,i, η2,i) , except for (k0, k) = (1, 0) and k0 = 0 .

We will see that each one of these steps allows us to define a fibered diffeo-
morphism Φj (transversally symplectic in the transversally Hamiltonian case),
for j = 1, 2. Finally we define Φ := Φ2 ◦ Φ1. The main tool used at each
step is Proposition 2.15. Moreover, each Φj will be constructed using Corollary
2.2. The fact that each Φj is a fibered diffeomorphism (transversally symplectic
in the transversally Hamiltonian case) will again come from Lemma 2.2 (and
Lemma 2.19 in the transversally symplectic case, and each Yj = (Φj)∗ (Yj−1),
j = 1, 2 with Y0 := Y , will be transversally Hamiltonian according to Lemma
2.21).
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1. First step: we remove all non-resonant monomial terms, using diffeomor-
phisms of the form

exp
(
xi0yi11 y

i2
2 S (0, η1,i, η2,i)

)
,

with i ∈ I, |i| ≥ 1, i1 6= i2 and η1,i, η2,i to be determined. We have, thanks
to Proposition 2.15:
(
exp

(
xi0yi11 y

i2
2 S (0, η1,i, η2,i)

)
)

∗
(Y0) = Y0+

1

1!

[
xi0yi11 y

i2
2 S (0, η1,i, η2,i) , Y0

]
+. . . ,

where (. . . ) are terms computed via successive nested brackets, and they
are all of order at least |i|+ 1. Let us compute the first bracket:

[

x
i0y

i1
1 y

i2
2 S (0, η1,i, η2,i) , Y0

]

= λ (i1 − i2)x
i0y

i1
1 y

i2
2 S (0, η1,i, η2,i)

−i0x
i0+1

y
i1
1 y

i2
2 S (0, η1,i, η2,i)

+
∑

k∈I, |k|≥1

x
i0+k0y

i1+k1
1 y

i2+k2
2 (k1η1,i0 + k2η2,i2)S (0, µ1,k, µ2,k)

−
∑

k∈I, |k|≥1

x
i0+k0y

i1+k1
1 y

i2+k2
2 (i1µ1,k + i2µ2,k)S (0, η1,i, η2,i) .

Then one can remove all terms of the form xi0yi11 y
i2
2 S (0, µ1,i, µ2,i) with

|i| ≥ 1 and i1 6= i2 by induction on |i| ≥ 1. We then define (using Lemma
2.2) a fibered diffeomorphism Φ1, such that Y1 := (Φ1)∗ (Y0) is still of the
form (3.2), but without non-resonant terms:

Y1 = λS (0,−1, 1) + xS (1, a1, a2)

+
∑

k0+k≥1
(k0,k) 6=(1,0)

xk0yk1y
k
2S (0, µ1,k, µ2,k)

for maybe different µj,k. Notice that a1, a2 here are necessarily such that
a1+a2 /∈ Q≤0 since the vector field is supposed to be non-degenerate, and
this condition is invariant under fibered change of coordinates.

Remark. In the transversally Hamiltonian case, the terms xi0yi11 y
i2
2 S (0, η1,i, η2,i)

to be removed at this stage satisfy η1,i (i1 + 1) + η2,i (i2 + 1) = 0, so that
Φ1 is transversally symplectic according to Proposition 2.20 and Lemma
2.19. Moreover, in this case, we necessarily have a1 + a2 = 1.

2. Second step: we finally remove all the terms of the form

xi0 (y1y2)
i S (0, η1,i, η2,i) , except for (i0, i) = (1, 0) and i0 = 0 ,

using diffeomorphisms of the form

exp
(
xi0 (y1y2)

i
S (0, η1,i, η2,i)

)
,
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with i0 + i ≥ 1, and η1,i, η2,i to be determined. We have, thanks to
Proposition 2.15:
(
exp

(
xi0 (y1y2)

i
S (0, η1,i, η2,i)

))

∗
(Y1) = Y1+

1

1!

[
xi0 (y1y2)

i
S (0, η1,i, η2,i) , Y1

]
+. . . ,

where (. . . ) are terms computed via successive nested brackets, and they
are all of order strictly greater than the order of the first bracket. Let us
compute the first bracket:

[

x
i0 (y1y2)

i
S (0, η1,i, η2,i) , Y3

]

= − (i0 + i (a1 + a2)) x
i0+1 (y1y2)

i
S (0, η1,i, η2,i)

+
∑

k0+2k≥1
(k0,k) 6=(1,0)

x
i0+k0 (y1y2)

i+k
k (η1,i0 + η2,i2)S (0, µ1,k, µ2,k)

−
∑

k0+2k≥1
(k0,k) 6=(1,0)

x
i0+k0 (y1y2)

i+k
i (µ1,k + µ2,k)S (0, η1,i, η2,i) .

Then we see that one can remove all terms of the form xi0 (y1y2)
i S (0, η1,i, η2,i)

except for (i0, i) = (1, 0) and for i0 = 0, without creating non-resonant
terms, since (a1 + a2) /∈ Q≤0 . We do this by induction on I := i0+ i ≥ 1,
and for fixed I ≥ 1, we remove the terms with i increasing and i0 decreas-
ing. Notice that at each step we do not create terms already removed
earlier in the process.
We then define (using Lemma 2.2) a fibered diffeomorphism Φ2, such that
Y2 := (Φ2)∗ (Y1) is of the form

Y2 = λS (0,−1, 1) + xS (1, a1, a2) +
∑

k≥1

(y1y2)
k
S (0, µ1,k, µ2,k) .

Remark. In the transversally Hamiltonian case, the terms xi0 (y1y2)
i
S (0, η1,i, η2,i)

to be removed at this stage satisfy (η1,i + η2,i) = 0, so that Φ2 is transver-
sally symplectic, according to Proposition 2.20 and and Lemma 2.19.

Finally, we define Φ := Φ2 ◦ Φ1, so that Φ∗ (Y ) = Y2 and Φ is a fibered diffeo-
morphism (transversally symplectic in the Hamiltonian case).

3.3 Uniqueness: proof of Theorem 1.6

We now prove Theorem 1.6.

Proof. Let

Z = x2
∂

∂x
+ (−λ+ a1x+ c1 (v)) z1

∂

∂z1
+ (λ+ a2x+ c2 (v)) z2

∂

∂z2

Z ′ = x2
∂

∂x
+ (−λ′ + a′1x+ c′1 (v)) z1

∂

∂z1
+ (λ′ + a′2x+ c′2 (v)) z2

∂

∂z2
,
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where (λ, λ′, a1, a2, a′1, a
′
2) ∈ (C∗)2 × C4, (a1 + a2, a

′
1 + a′2) ∈ (C\Q≤0)

2
and

(c1, c2, c
′
1, c

′
2) ∈ (vC JvK)

4
are formal power series in v = z1z2 of order at least

one.

• It is clear that if there exists ϕ : v 7→ θv with θ ∈ C∗ such that

(λ, a1, a2, c1, c2) = (λ′, a′1, a
′
2, c

′
1 ◦ ϕ, c′2 ◦ ϕ)(

resp. (λ, a1, a2, c1, c2) = (−λ′, a′2, a′1, c′2 ◦ ϕ, c′1 ◦ ϕ)
)

then Z is D̂ifffib-conjugate to Z ′.

• Now assume that Z is D̂ifffib-conjugate to Z ′. First of all, studying the
terms of degree 1 with respect to z, we see that we either have (λ, a1, a2) =
(λ′, a′1, a

′
2) or (λ, a1, a2) = (−λ′, a′2, a′1). Up to perform a linear change of

coordinates beforehand, let us assume that (λ, a1, a2) = (λ′, a′1, a
′
2). In

the following, and for convenience, we will use the notations:
{
Z = Z(c,r) := xS (1, a1, a2) + (λ+ c (v))S (0,−1, 1) + r (v)S (0, a1, a2)

Z ′ = Z(c′,r′) := xS (1, a1, a2) + (λ+ c′ (v))S (0,−1, 1) + r′ (v)S (0, a1, a2) ,

where:
{
c1 = −c+ r , c2 = c+ r

c′1 = −c′ + r′ , c′2 = c′ + r′
,

so that ord (c) ≥ 1, ord (r) ≥ 1.

Now we have to prove that if Z(c,r) is D̂ifffib−conjugate to Z(c′,r′), then

(c, r) = (c′, r′). By assumption, there exists Φ ∈ D̂ifffib such that

Φ∗
(
Z(c,r)

)
= Z(c′,r′) .

By Remark 2.11, D0Φ = diag (1, θ1, θ2) is diagonal. Now, set Ψ :=

(D0Φ)
−1 ◦ Φ , ϕ : v 7→ (θ1θ2) v, and (c, r) := (c′ ◦ ϕ, r′ ◦ ϕ), so that:

Ψ∗
(
Z(c,r)

)
= Z(c,r) .

We are going to prove that Ψ = Id. By Proposition 2.9, there exists
G ∈ D(1) such that Ψ = exp (G) and:

G = g0 (x, v)
∂

∂x
+ g1 (x, v) z1

∂

∂z1
+ g2 (x, v) z2

∂

∂z2
,

where gi ∈ m ⊂ C Jx, vK for i = 1, 2 and g0 ∈ m
2 ⊂ C Jx, vK is of order at

least two. Since Ψ is fibered in x we deduce that g0 = 0. Therefore, using
the notation (2.6), we can write:

G = A (x, v)S (0,−1, 1) +B (x, v)S (0, a1, a2) ,
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where 



A = Ai,jx
ivj

B =
∑

i,j≥0
i+j≥1

Bi,jx
ivj .

Let us prove that A = B = 0 (hence G = 0) so that Ψ = Id. We consider
the Jordan decompositions of Z := Z(c,r) and Z := Z(c,r):

{
Z = ZS + ZN , ZS semi-simple, ZN nilpotent, [ZS , ZN ] = 0

Z = ZS + ZN , ZS semi-simple, ZN nilpotent,
[
ZS , ZN

]
= 0

.

By uniqueness of this decomposition we clearly have:





ZS = ZS = S (0,−λ, λ)
ZN = xS (1, a1, a2) + c (v)S (0,−1, 1) + r (v)S (0, a1, a2)

ZN = xS (1, a1, a2) + c (v)S (0,−1, 1) + r (v)S (0, a1, a2)

,

and we also know that:

Ψ∗ (Z) = Z ⇒
{
Ψ∗ (ZS) = ZS

Ψ∗ (ZN ) = ZN

.

Let us now consider the associated two-dimensional vector fields in the
variables (x, v). In the “chart” (x, v) the vector field G is given by F =
B.S (0, a), with a = a1 + a2. Z and Z correspond respectively to:

Y := xS (1, a) + r (v)S (0, a) ,

Y := xS (1, a) + r (v)S (0, a) .

Thus we have exp (F )∗ (Y ) = Y . By Proposition 2.3 we derive

exp (F )∗ (Y ) = Y + [F, Y ] +
1

2!
[F, [F, Y ]] + . . .

and

r (v)S (0, a) + [F, Y ] +
1

2!
[F, [F, Y ]] + . . . = r (v)S (0, a) . (3.3)

We compute next

[F, Y ] =
{
−x
(
LS(1,a) (B)

)
+B

(
LS(0,a) (r)

)
− r

(
LS(0,a) (B)

)}
S (0, a)

and, setting

C(1) (x, v) := −x
(
LS(1,a) (B)

)
+B

(
LS(0,a) (r)

)
(3.4)

−r
(
LS(0,a) (B)

)
,
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we obtain

[F, Y ] = C(1) (x, v)S (0, a) .

Now, it is easy to see that for all l ∈ N, ad◦l
F (Y ) ca be written

ad◦l
F (Y ) = C(l) (x, v)S (0, a) ,

where C(l) is determined by the recursive relation:

C(l+1) (x, v) = B (x, v)
(
LS(0,a)

(
C(l)

))
− C(l) (x, v)

(
LS(0,a) (B)

)
.

In particular, we see that for all l ≥ 2, C(l) (x, 0) = 0. Equation (3.3) can
now be rewritten:

r (v) + C(1) (x, v) +
∑

l≥2

C(l) (x, v) = r (v) . (3.5)

Let us set r (v) =
∑

k≥1

rkv
k and r (v) =

∑

k≥1

rkv
k. Looking at terms inde-

pendent of v in (3.5) (i.e. by taking v = 0), we see that C(1) (x, 0) = 0.

Taking (3.4) into account we obtain that
∂B (x, 0)

∂x
= 0. Since ord (B) ≥ 1

(by assumption) this means that B (x, 0) = 0. Let us prove the properties
Bi,k = 0 and rk = rk for all i, j ∈ N and k ≤ j by induction on j ≥ 0.

– j = 0. This corresponds to the case described above: for all i ≥ 0,
Bi,0 = 0 (and r0 = r0).

– If the property holds at a rank j ≥ 0, if we consider for all i ≥ 0
terms of homogenous degree (i+ 1, j + 1) in (3.5), we obtain:

(i+ a (j + 1))Bi,j+1 = 0

by induction, and because for all l ≥ 2 the relation C(l) (x, 0) = 0
also holds. Since a /∈ Q≤0 we have Bi,j+1 = 0. On the other hand, if
we look at terms of homogeneous degree (0, j + 1), we obtain: rj+1 =
rj+1.

We conclude that B = 0, so that F = 0 and r = r.
Finally, we have G = AL (0,−1, 1). Taking the relation exp (G)∗ (ZN) = ZN

into account, we have:

ZN + [G,ZN ] +
1

2!
[G, [G,ZN ]] + . . . = ZN

if and only if

c (v)S (0,−1, 1) + [G,ZN ] +
1

2!
[G, [G,ZN ]] + . . . = c (v)S (0,−1, 1) .
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Let us compute [G,ZN ]:

[G,ZN ] = −
{
xLS(1,a1,a2) (A) + r (v)LS(0,a1,a2) (A)

}
S (0,−1, 1) .

All other Lie brackets vanish. There only remains

c (v)− xLS(1,a1,a2) (A)− r (v)LS(0,a1,a2) (A) = c (v) ,

which becomes a system of identities between terms of same degree:





cj −
j−k1∑

k=0

akA0,krj−k = cj , j ≥ 0

(i+ aj)Ai,j +

j−k1∑

k=0

akAi+1,krj−k = 0 , i ≥ 0, j ≥ 0

.

Once again, we prove by induction on j ≥ 0 that for all i ≥ 0 and all 0 ≤ k ≤ j
the relations Ai,k = 0 and ck = ck hold. Thus A = 0 and c = c.

As a conclusion Ψ = Id and (c, r) = (c, r), so that Φ = D0Φ = diag (1, θ1, θ2)
and (c, r) := (c′ ◦ ϕ, r′ ◦ ϕ) where ϕ : v 7→ (θ1θ2) v.

3.4 Fibered isotropies of the formal normal form

Looking back at the uniqueness proof in the previous paragraph, we immediately
obtain all formal fibered isotropies of the normal form given by Theorems 1.3
and 1.12. We recall that an isotropy of a vector field is a self-conjugacy. For a
vector field X ∈ D(1), we set:

Îsotfib (X) :=
{
Φ ∈ D̂ifffib | Φ∗ (X) = X

}
.

Proposition 3.2. Consider a normal form of ŜN nd

Z = x2
∂

∂x
+ (−λ+ a1x+ c1 (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c2 (y1y2)) y2

∂

∂y2
,

with parameters (λ, a1, a2, c1, c2) ∈ P. Then:

Îsotfib (Z) =
{
diag (1, θ1, θ2) , (θ1, θ2) ∈ (C∗)2

∣∣∣ (c1, c2) (θ1θ2v) = (c1, c2) (v)
}

.

Remark 3.3. If (c1, c2) 6= (0, 0) the condition ci (θ1θ2v) = ci (v) for each i ∈
{1, 2} is equivalent to requiring that each ci lie in C JvqK, for some q ∈ N>0, and

that θ1θ2 be a qth root of unity.

This proposition has for immediate consequence the (almost) uniqueness of

the normalizing conjugacy Φ ∈ D̂iff in Theorem 1.3. More precisely:
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Corollary 3.4. Let Y ∈ ŜN nd be a non-degenerate doubly-resonant saddle-
node such that D0Y = diag (0,−λ, λ), with λ 6= 0. Then there exists a unique

fibered diffeomorphism Φ ∈ D̂ifffib tangent to the identity such that:

Φ∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x+ c1 (v)) y1

∂

∂y1

+(λ+ a2x+ c2 (v)) y2
∂

∂y2
, (3.6)

where we put v := y1y2. Here, c1, c2 belong to 〈v〉 = vC JvK and a1, a2 ∈ C are
such that a1 + a2 = res (Y ).

Definition 3.5. Let Z ∈ ŜNω . We denote by Îsotω (Z) the subgroup of ele-

ments Φ ∈ D̂iffω such that Φ∗ (Z) = Z.

Proposition 3.6. Let (λ, a1, a2) ∈ C∗×C2 such that a1+a2 = 1, and c ∈ vC JvK
with v = y1y2. Consider

Z = x2
∂

∂x
+ (− (λ+ c (v)) + a1x) y1

∂

∂y1
+ (λ+ c (v) + a2x) y2

∂

∂y2
.

Then:

Îsotω (Z) =

{
diag

(
1, α,

1

α

)
, α ∈ C\ {0}

}
≃ C\ {0} .

4 Applications to Painlevé equations

In this section we investigate the study of the irregular singularity at infinity in
the first Painlevé equation

(PI)
d2z1
dt2

= 6z21 + t

in terms of Theorem 1.12. More precisely, we are going to explain that the formal
invariant c ∈ C JvK of a doubly-resonant, transversally symplectic saddle-node

Y ∈ ŜNω is in fact a germ of an analytic function at the origin, whenever Y
is analytic at the origin (and not merely a formal vector field). Moreover, we
show how to compute recursively this invariant in some specific cases, including
Painlevé equations.

4.1 Asymptotically Hamiltonian vector fields

We deal here with the case of asymptotically Hamiltonian vector fields.

Definition 4.1.
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• We say that a formal vector field X in
(
C2, 0

)
is orbitally linear if

X = U (y)

(
λ1y1

∂

∂y1
+ λ2y2

∂

∂y2

)
,

for some unity U (y) ∈ C JyK
×

(i.e. U (0, 0) 6= 0) and (λ1, λ2) ∈ C2.

• We say that a formal (resp. germ of an analytic) vector field X in
(
C2, 0

)

is formally (resp. analytically) orbitally linearizable if X is formally
(resp. analytically) conjugate to an orbitally linear vector field.

• We say that a doubly-resonant saddle-node Y ∈ ŜN is formally/analytically
asymptotically orbitally linearizable if the formal/analytic vector
field Y|{x=0} in

(
C2, 0

)
is formally/analytically orbitally linearizable.

Remark 4.2.

1. If a vector field X is analytic at the origin of C2 and has two opposite
eigenvalues, it follows from a classical result of Brjuno (see [14]), that X
is analytically orbitally linearizable if and only if it is formally orbitally
linearizable.

2. The fact of being orbitally linearizable is naturally invariant under orbital
equivalence, and then, by (almost) uniqueness of c1, c2 in Theorem 1.6, if

Y ∈ ŜN nd is asymptotically linearizable, then its formal invariants c1, c2
satisfy c1 + c2 = 0. In this case, we write c := c2 = −c1.

The two remarks above imply the following corollary.

Corollary 4.3. Let Y ∈ ŜN nd be a doubly-resonant saddle-node asymptotically
orbitally linearizable such that Y0 := Y|{x=0} be a germ of an analytic vector field

in
(
C2, 0

)
. Then, there exists Φ ∈ D̂ifffib such that Φ|{x=0} be a germ an analytic

diffeomorphism in
(
C2, 0

)
and:

Φ∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x− c (v)) y1

∂

∂y1
+ (λ+ a2x+ c (v)) y2

∂

∂y2
,

where we put v := y1y2. Here, c (v) ∈ vC {v} is a germ of an analytic function
vanishing at the origin, and a1, a2 ∈ C are such that a1+a2 = res (Y ). Moreover,
Φ is unique up to linear transformations.

It is important to notice that the following property holds.

Proposition 4.4. If Y ∈ ŜN ω is doubly-resonant transversally Hamiltonian
saddle-node, then Y is asymptotically orbitally linearizable.

Proof. The facts that LY (ω) ∈ 〈dx〉 and LY (x) = x2 imply that a1 + a2 = 1
and then:

LY (dy1 ∧ dy2) = x (dy1 ∧ dy2) + 〈dx〉 .
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Consequently, if we denote Y0 := Y|x=0 the restriction of Y to the invariant
hypersurface {x = 0}, we have:

LY0 (dy1 ∧ dy2) = 0 .

This means that Y0 is a Hamiltonian vector field, i.e. there exists H (y) ∈ C JyK
such that:

Y0 (y1, y2) = −
∂H

∂y2
(y1, y2)

∂

∂y1
+
∂H

∂y1
(y1, y2)

∂

∂y2
.

Possibly by performing a linear change of coordinate, we can assume that
H (y) ∈ λy1y2 +m

3, therefore we can write:

Y = x2
∂

∂x
+

(
−∂H
∂y2

+ xF1 (x,y)

)
∂

∂y1
+

(
∂H

∂y1
+ xF2 (x,y)

)
∂

∂y2
,

where F1, F2 ∈ C Jx,yK vanish at the origin. If we define J :=

(
0 −1
1 0

)
∈M2 (C)

and ∇H := t (DH), then Y|{x=0} = J∇H. According to the Morse lemma for

holomorphic functions, there exists an analytic change of coordinates ϕ ∈ D̂iff
in
(
C2, 0

)
tangent to the identity such that H̃ (y) := H

(
ϕ−1 (y)

)
= y1y2. Let

us now recall a trivial result from linear algebra.

Fact. Let J :=

(
0 −1
1 0

)
∈M2 (C), and P ∈M2 (C). Then, PJP t = det (P )J .

We deduce the next result.

Lemma. Let H ∈ m
2 ⊂ C JyK, Y0 := J∇H the associated Hamiltonian vec-

tor field in C2 (for the standard symplectic form dy1 ∧ dy2), and an analytic
diffeomorphism near the origin denoted by ϕ. Then:

ϕ∗ (Y0) :=
(
Dϕ ◦ ϕ−1

)
·
(
Y0 ◦ ϕ−1

)
= det

(
Dϕ ◦ ϕ−1

)
J∇H̃ ,

where H̃ := H ◦ ϕ−1.

As a conclusion,the previous lemma shows that Y is asymptotically orbitally
linearizable.

The next property is a straightforward consequence of Corollary 4.3, Propo-
sition 4.4 and Theorem 1.12.

Corollary 4.5. Let Y ∈ ŜN ω be a transversally Hamiltonian doubly-resonant
saddle-node. Then, there exists a transversally symplectic diffeomorphism Φ ∈
D̂iffω such that Φ|{x=0} be a germ an analytic diffeomorphism in

(
C2, 0

)
and:

Φ∗ (Y ) = x2 ∂
∂x

+ (−λ+ a1x− c (v)) y1 ∂
∂y1

+ (λ+ a2x+ c (v)) y2
∂

∂y2
. (4.1)

where we put v := y1y2. Here, c (v) ∈ vC {v} is a germ of an analytic function
vanishing at the origin, and a1, a2 ∈ C are such that a1 + a2 = res (Y ) = 1.
Moreover, Φ is unique up to linear symplectic transformations, and:

(
Φ|{x=0}

)∗
(dy1 ∧ dy2) = dy1 ∧ dy2 .
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4.2 Periods of the Hamiltonian on {x = 0}
From now on, we consider a vector field

Y = x2
∂

∂x
+

((
−∂H
∂y2

+ xF1 (x,y)

)
∂

∂y1
+

(
∂H

∂y1
+ xF2 (x,y)

)
∂

∂y2

)
,

with H (y) = λy1y2 + O
y→0

(
‖y‖3

)
analytic at the origin of C2, and F1, F2 ∈

C Jx,yK vanishing at the origin. Let us consider the restriction Y0 := Y|{x=0}:
it is an analytic Hamiltonian vector field in

(
C2, 0

)
:

Y0 = −∂H
∂y2

∂

∂y1
+
∂H

∂y1

∂

∂y2
.

We fix a small polydisc D (0, r) ⊂ C2 on which H is analytic with r = (r1, r2).
The leaves of the foliation defined by Y0 in D (0, r) are given by the level curves
La := {H = a} ∩D (0, r), a ∈ D (0, r), with r > 0 small enough. The Morse
Lemma for holomorphic functions tells us that La is topologically a cylinder for
a 6= 0, and r,r1, r2 small enough. Thus we can consider a generator γa of the
first homology group of La. We also consider a time-form for Y0, which is a
meromorphic 1-form τY0 in D (0, r) with a unique pole at the origin and such

that τY0 · (Y0) = 1. For instance, take τY0 = −dy1
∂H
∂y2

.

Now we define the associated period map:

TH : D (0, r) \ {0} −→ C

a 7−→ TH (a) :=
1

2iπ

˛

γa

τY0 .

This mapping is a well-defined meromorphic function of a ∈ D (0, r).

Proposition 4.6. For r > 0 small enough, and a ∈ D (0, r) \ {0}, TY0 (a) only
depends on the class of γa in H1 (La,Z). In other words, if τ ′Y0

is another
time-form of Y0 and γ′a is any loop in La homologous to γa, then

˛

γa

τY0 =

˛

γ′

a

τ ′Y0
.

Proof. The fact that this quantity does not depend on a specific choice of a
representative of γa in its homology class comes from Stokes Theorem. The fact
that it does not depend on the choice of a specific time-form comes from the
fact that γa lies in a leaf of the foliation generated by Y0. If

γa : [0, 1] → La

t 7→ (γa,1 (t) , γa,2 (t)) ,

then
d

dt
(γa) (t) = va (t)Y0 (γa (t)), where

va (t) =
1(

− ∂H
∂y2

(γa (t))
) dγa,1 (t)

dt
=

1(
∂H
∂y1

(γa (t))
) dγa,2 (t)

dt
.
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Then:
˛

γa

τY0 =

ˆ 1

0

τY0 (γa (t)) ·
(

d

dt
(γa) (t)

)
dt

=

ˆ 1

0

τY0 (γa (t)) · (va (t)Y0 (γa (t)))dt

=

ˆ 1

0

va (t)dt

since τY0 · (Y0) = 1.

Definition 4.7. We call TH the period map of H near the origin.

Now, consider a germ of an analytic diffeomorphism Ψ fixing the origin of
C2. Then:

TH (a) = 1
2iπ

˛

γa

τY0

= 1
2iπ

˛

Ψ−1(γa)

Ψ∗ (τY0) .

Notice that if we write X0 :=
(
Ψ

−1
)
∗
(Y0) and τX0 := Ψ∗ (τY0), then:

τX0 · (X0) = (Ψ∗ (τY0)) ·
((
Ψ−1

)
∗ (Y0)

)
= τY0 · (Y0) = 1 .

Now, let us take Ψ−1 = Φ|{x=0} as in Corollary 4.5 such that

X0 = (λ+ c (v))

(
−y1

∂

∂y1
+ y2

∂

∂y2

)
,

with v = y1y2 , c ∈ C {v} and c (0) = 0. Then γ̃a := Ψ−1 (γa) = Φ|{x=0} (γa) is
a loop generating the homology of the leaf Φ|{x=0} (La).

Consider h := H ◦ Ψ near the origin. Then, Φ|{x=0} (La) = {h = a} in a
neighborhood of the origin. Notice that h depends in fact only on v = y1y2,
and h (v) = λv + o

|v|→0
(|v|). Since λ 6= 0, the inverse function theorem ensures

the existence of an analytic function g ∈ C {v} such that g (0) = 0 and h ◦
g (v) = g ◦ h (v) = v in a neighborhood of 0. Thus, {h (v) = a} = {v = g (a)}.
Consequently, taking for instance τX0 = − dy1

y1 (λ+ c (v))
, we see that:

TH (a) = 1
2iπ

˛

γ̃a

τX0

=
1

2iπ

1

λ+ c (g (a))

˛

γ̃a

−dy1
y1

=
−1

λ+ c (g (a))
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according to the orientation chosen for γa. In particular, we see that TH is
analytic at the origin, and TH can be extend at 0 by −1

λ
.

The fact that Φ|{x=0} satisfies

(
Φ|{x=0}

)∗
(dy1 ∧ dy2) = dy1 ∧ dy2

implies that det
(
Φ|{x=0}

)
= 1, so that

X0 = − ∂h

∂y2

∂

∂y1
+
∂h

∂y1

∂

∂y2

and
dh

dv
= λ+ c (v) .

As a consequence, for a = h (v), we have the following relation:

dh

dv
(v) .TH (h (v)) = −1 .

If we consider the antiderivative SH of TH such that SH (0) = 0, we have

SH (h (v)) = −v ,

and in particular
SH = −g .

Let us summarize this study in the following proposition.

Proposition 4.8. Let

Y0 = −∂H
∂y2

∂

∂y1
+
∂H

∂y1

∂

∂y2

be the restriction on {x = 0} of a transversally Hamiltonian doubly-resonant

saddle-node Y ∈ ŜN ω, where H (y) = λy1y2 + o
z→0

(
‖y‖2

)
is analytic at the

origin of C2. Consider its unique transversally Hamiltonian normal form

X = x2
∂

∂x
+ (− (λ+ c (v)) + a1x) y1

∂

∂y1
+ (λ+ c (v) + a2x) y2

∂

∂y2

given by Theorem 1.12. Consider the period map TH as defined above. Then
the following holds:

1. c is the germ of an analytic function at the origin.

2. TH defines the germ of an analytic function in a neighborhood of 0 ∈ C2,
such that TH (0) = −1

λ
.

3. If SH is the primitive of TH such that SH (0) = 0, then (−SH) is invertible
(for the composition), and its inverse h satisfy:

dh
dv

(v) = λ+ c (v) .
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The conclusion is that if one is able to compute the period map of the original
Hamiltonian vector field on {x = 0}, then one can compute the formal invariant
c in the normal form given in Theorem 1.12, which is in fact even analytic in
this case.

Remark 4.9. The Hamiltonian function h (y1y2) = λy1y2+
´ y1y2 c (v)dv is in fact

the symplectic normal form of the original Hamiltonian function H (y1, y2) =

λy1y2 + o
z→0

(
‖y‖2

)
, as described in [7] (section 2.7).

4.3 Example: the case of the first Painlevé equation

In the case of the first Painlevé equation, in appropriate coordinates, we are
working with the Hamiltonian

H (y1, y2) =
1

5

(
−2y22 + 24ζy21 + 8y31

)

where ζ = i√
6
, according to equation (1.6). These are not the system of coor-

dinates which diagonalizes the linear part of the vector field, but the value of
the period does not changes by symplectic changes of coordinates (those which
preserve dy1 ∧ dy2). Now, if we fix a 6= 0 with |a| small enough and look at
the level curve {H = a} near the origin in C2, we can compute the associated
period:

TH (a) =
1

2iπ

˛

γa

5dy1
−4y2

=
1

2iπ

˛

γa,1

5dy1

−4
√
12ζy21 + 4y31 − 5

2a
,

where γa,1 is the component of γa with respect to ∂
∂y1

.

Remark 4.10. The period TH (a) is one of the periods of the Weierstrass function
℘ associated to the cubic

H (y1, y2) = a

(see e.g. [5], [1]). To compute it we can chose for instance

γa,1 : [0, 2π] −→ C

t 7−→ ρae
it

where ρa > 0 is such that
∣∣12ζy21 + 4y31

∣∣ > 5|a|
2 , for all y1 = γa,1 (t), t ∈ [0, 2π].

Now we write:

1

−4
√
12ζy21 + 4y31 − 5

2a
=

√
2

−4
√
24ζy21 + 8y31

1√
1− 5a

24ζy2
1+8y3

1

=

√
2

−4
√
24ζy21 + 8y31

∑

k≥0

( −1
2
k

)(
5a

24ζy21 + 8y31

)k

.
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As we have normal convergence, we can swap the order of summation and
integration:

TH (a) =
5

2iπ

˛

γa,1

√
2

−4
√
24ζy21 + 8y31

∑

k≥0

( −1
2
k

)(
5a

24ζy21 + 8y31

)k

dy1

=
−5
√
2

8iπ

∑

k≥0

( −1
2
k

)
5k

(
˛

γa,1

(
24ζy21 + 8y31

)−(k+ 1
2 ) dy1

)
ak .

Notice that y1 7→
(
24ζy21 + 8y31

)(k+ 1
2 ) is in fact analytic in a neighborhood of

the origin, with a zero of order 2k+1. Hence we can compute the integral above
using the residue theorem. As we have

(
24ζy21 + 8y31

)−(k+ 1
2 ) = (24ζ)

−(k+ 1
2 ) y

−(2k+1)
1

∑

j≥0

(
−
(
k + 1

2

)

j

)(
8

24ζ

)j

yj1 ,

we see that the associated residue at 0 is equal to 82k(24ζ)
−(3k+ 1

2 )
(
−
(
k + 1

2

)

2k

)
,

so that
TH (a) =

∑

k≥0

TH,ka
k

with:

TH,k = −5k+1

( −1
2
k

)(
−
(
k + 1

2

)

2k

)
8−(k+1)(3ζ)

−(3k+ 1
2 ) .

Using notations of Proposition 4.8 we have:

SH (a) =
∑

k≥0

TH,k

k + 1
ak+1 =

∑

k≥1

SH,ka
k

with SH,k =
TH,k−1

k
for k ≥ 1. Since SH (0) = 0 and dSH

da
(0) = TH (0) 6= 0, the

mapping (−SH) is invertible for the composition and we can compute recursively
its inverse (denoted by h):

h (v) =
∑

k≥1

hkv
k .

For all k ≥ 1, the coefficient hk is uniquely determined by the coefficients
SH,j , j ≤ k. Finally, we have

λ+ c (v) =
dh

dv
(v) =

∑

k≥0

(k + 1)hk+1v
k = λ+

∑

k≥1

ckv
k .
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As a conclusion, the jet of order k of TH gives us the jet of order k of c.
After computations performed with Maple, we obtain for instance:

λ =
8
√
3ζ

5
=

4 · 2 3
4 · 3 1

4

5
e

iπ
4

c1 = 3

c2 = 9 +
167 · 2 1

4 · 3 3
4

96
e

3iπ
4

c3 = 16 +
31837

√
6

6912
i+

5

2
· 2 1

4 · 3 1
4 · e 3iπ

4 .

One can in fact compute any finite jet of c.

Remark 4.11. Similar computations can be performed for any Hamiltonian of
the form H (y1, y2) = βy22 + αy21 + f (y1), where α, β ∈ C\ {0} and f ∈ C {y1}.
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