STRONG-VISCOSITY SOLUTIONS: SEMILINEAR PARABOLIC PDEs AND PATH-DEPENDENT PDEs

Abstract : The aim of the present work is the introduction of a viscosity type solution, called strong-viscosity solution to distinguish it from the classical one, with the following peculiarities: it is a purely analytic object; it can be easily adapted to more general equations than classical partial differential equations. First, we introduce the notion of strong-viscosity solution for semilinear parabolic partial differential equations, defining it, in a few words, as the pointwise limit of classical solutions to perturbed semilinear parabolic partial differential equations; we compare it with the standard definition of viscosity solution. Afterwards, we extend the concept of strong-viscosity solution to the case of semilinear parabolic path-dependent partial differential equations, providing an existence and uniqueness result.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-01145301
Contributeur : Francesco Russo <>
Soumis le : jeudi 23 avril 2015 - 17:28:52
Dernière modification le : lundi 29 mai 2017 - 14:22:22
Document(s) archivé(s) le : lundi 14 septembre 2015 - 13:01:45

Fichiers

ComparisonViscosityII_April201...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01145301, version 1
  • ARXIV : 1505.02927

Collections

Citation

Andrea Cosso, Francesco Russo. STRONG-VISCOSITY SOLUTIONS: SEMILINEAR PARABOLIC PDEs AND PATH-DEPENDENT PDEs. 2015. 〈hal-01145301〉

Partager

Métriques

Consultations de
la notice

128

Téléchargements du document

53