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Abstract 

Operators of critical interactive systems are trained and 
qualified before being allowed to operate critical systems in 
“real” contexts. However, during operation, things might 
happen differently from during training sessions as system 
failures may occur and operators may make errors when 
interacting with the system. Both events may also be cross-
related as a misunderstanding of a system failure can lead to 
an erroneous subsequent operation.  
The proposed approach focuses on assessing the impact that 
potential failures and/or human errors may have on human 
performance. This analysis targets the design and 
development phases of the system, when user tasks are 
analyzed in order to build the right system (i.e. 
corresponding to the users’ needs and activities they have to 
perform on the system). We use a task modeling notation for 
describing precisely operators’ activities as well as 
information, knowledge and objects required for performing 
these activities. These task models are then augmented into 
several variants through integration of potential system 
failure patterns (with associated recovery tasks) and human 
error patterns. The produced deviated task models are used 
to assess the impact of the task deviation on the operators’ 
performance.  

Introduction 

Design and development of interactive critical systems 

require methods to account for their dependability. Several 

aspects of dependability have to be addressed: 

dependability of the system, dependability of the user and 

dependability of the interaction between the system and the 

user. In this paper we focus on management of system 

failures and human error at runtime. Even if systems have 

been designed and developed with dependability in mind, 

failures may occur. Even if operators are trained before 

being allowed to operate critical systems, they may make 

errors when interacting with the system. We propose a 

notation and associated CASE tool to provide support for 

analysis of the impact of system failures and human error 

on human performance. First section presents an overview 

of classifications of system failures and human errors. 

Second section presents the proposed task modeling 

notation used to describe human activities and potential 

human errors that may be made during the planned 

activities. Last section discusses about how these task 

models can be used to assess the impact of failures and 

human errors on human activities and on the system. The 

proposed approach is exemplified all along the sections 

with a case study from the space satellite ground segments 

domain. This case study belongs to the category of 

complex command and control systems from the space 

domain. Such interactive systems are less time constrained 

than other ones (such as aircraft cockpits). These systems 

are less safety critical (the only possible safety issue would 

correspond to a spacecraft falling on earth and injuring 

people). However, the potential cost of a failure is far 

beyond the development cost of these systems making 

them belong to the category of critical systems.  

This paper first reviews how system failures and human 

errors can be taken into account. Second part is dedicated 

to task modeling and integration of human errors in task 

models. Last part describes how the deviated task models 

can be used to assess the impact of failure or human errors 

on human activities and system in the context of a satellite 

ground segment. 

Accounting for System Failures and Human 

Errors 

In the area of dependable systems such issues have been 

looked at and current state of the art in the field identifies 

five different ways to increase a system’s reliability 

(Avizienis et al., 2004) and (Bowen and Stavridou, 1993): 

• Fault avoidance: preventing the occurrence of faults by
construction (usually by using formal description
techniques and proving safety and liveness properties
(Pnueli, 1986)).

• Fault removal: reducing the number of faults that can
occur (by verification of properties).

• Fault forecasting: estimating the number, future
incidence and likely consequences of faults (usually by



statistical evaluation of the occurrence and consequences 
of faults). 

• Fault tolerance: avoiding service failure in the presence
of faults (usually by adding redundancy, multiple
versions and voting mechanisms).

• Fault mitigation: reducing the severity of faults (by
adding barriers or healing behaviors (Neema et al.,
2004)). 

Fault avoidance can be attained by the formal specification 

of the interactive system behavior provided all the aspects 

of interactive systems are accounted for including device 

drivers’ behaviors, graphical rendering and events handling 

and a Petri net based approach dealing with these aspects 

can be found here (Navarre et al., 2009). 

However, due to this software/hardware integration faults 

might occur at runtime regardless the effort deployed 

during design phases. To increase the system reliability 

concerning runtime faults, we have previously proposed 

(Tankeu-Choitat et al., 2011) ways to address both fault 

tolerance and fault mitigation for safety critical interactive 

systems, while fault recovery was addressed through 

interaction reconfiguration as described in (Navarre et al., 

2008). While fault tolerance and fault mitigation can be 

seen as rather different they require the deployment of the 

same underlying mechanisms:  

• Fault detection: identifying the presence of faults, the
type of the fault and possibly its source,

• Fault recovery: transforming the system state that
contains one or more faults into a state without fault.

Of course, the training program must deal with these 

adverse events and prepare the user to be able to deal with 

them in a dependable and timely manner. However, as 

aforementioned some autonomous mechanisms can be 

defined and deployed leaving most of the faults un-notified 

to the operator. However, the operator may also make 

errors. 

Figure 1. Overview of Human Errors 

Several taxonomies of human errors have been proposed 

(Reason, 1990; Hollnagel, 1998) and Figure 1 depicts a 

summary of these errors. In order to mitigate human errors, 

several actions can be taken: 

• Error detection or notice: identifying the presence of
errors, the type of the error and possibly its root cause.
One of the key elements here is to detect errors even
though they have no impact on operations as this might

be due to contingencies that might lead to incidents or 
accidents in another context.  

• Error prevention: reducing the potential number of
occurrences by designing adequate training, designing
affording products and designing usable system

• Error protection: reducing the impact of an error by
including barriers in the design and duplicating
operators.

While the same applies to human error and system failures 

current methods, techniques and tools address them 

independently and promote different treatment. 

Next section presents how these failures and errors can be 

described when analyzing user activities during system 

design proposing a unified process for both. 

Modeling Operator Tasks with Having System 

Failures and Human Errors in Mind 

Task models are a mean to gather and structure data from 

the analysis of users’ activities. They aim at recording, 

refining and analyzing information about users’ activities. 

Several notations are available and provide various formats 

to describe tasks and having various expressiveness levels 

depending on targeted analysis, one of the most famous 

being CTT (Mori et al. 2002). This section briefly 

introduces HAMSTERS, the task modeling notation and its 

associated CASE tool used for assessing impact of system 

failures and human errors on human performance.  

HAMSTERS Notation and Tool 

HAMSTERS is a tool-supported graphical task modeling 

notation aiming at representing human activities in a 

hierarchical and ordered way. Goals can be decomposed 

into sub-goals, which can in turn be decomposed into 

activities. Output of this decomposition is a graphical tree 

of nodes. Nodes can be tasks or temporal operators.  

Figure 2. High-level Task Types in HAMSTERS 

Tasks can be of several types (as illustrated in Figure 2) 

and contain information such as a name, information 

details, critical level… Only the high-level task type are 

presented here (due to space constraints) but they are 

further refined (for instance the cognitive tasks can be 

refined in Analysis and Decision tasks (Martinie, Palanque, 

Ragosta, Barboni, 2011). 

Temporal operators are used to represent temporal 

relationships between sub-goals and between activities (as 

detailed in Table 1). Tasks can also be tagged by temporal 

properties to indicate whether or not they are iterative, 



optional or both. Composition and structuration 

mechanisms provide support for description of large 

amounts of activities (Martinie, Palanque, Winckler, 2011). 

Table 1. Temporal Ordering Operators in 
HAMSTERS 

Operator type Symbol Description 

Enable T1>>T2 T2 is executed after T1 

Concurrent T1|||T2 T1 and T2 are executed at the same time 

Choice T1[]T2 T1 is executed OR T2 is executed 

Disable T1[>T2 Execution of T2 interrupts the execution of T1 

Suspend-

resume 
T1|>T2 

Execution of T2 interrupts the execution of T1, T1 

execution is resumed after T2  

Order 

Independent 
T1|=|T2 T1 is executed then T2 OR T2 is executed then T1 

Explicit and systematic integration of object, 

information and knowledge provides support for 

description of required objects, information, declarative 

knowledge and procedural knowledge required to 

accomplish the tasks (Martinie et al., 2013). 

Figure 3. Representation of Objects, Information and 
Knowledge with HAMSTERS Notation 

Figure 3 presents the notation elements for objects, input 

and output device objects, information used by users to 

perform the tasks, and knowledge required to perform the 

tasks. Figure 4 shows an extract (high level tasks) of the 

HAMSTERS task model of PICARD satellite platform 

management. Refined models that include low-level 

routine activities (such as the ones depicted in Figure 6) are 

not included here due to space constraints.  

Modeling Failure Detection and Recovery 

Once planned activities have been described, we propose to 

build task models for failure and detection recovery 

activities that may take place after a system failure. In this 

way, it is possible to ensure that the interactive system 

provide support for this type of activities but also to en sure 

that the operators will be trained (Martinie et al., 2011) for 

this type of adverse events. A new version of the high level 

task model has been produced (presented in Figure 4). A 

“Failure detection and recovery” branch has been added 

(“Detect and recover from failure” sub-goal concurrent to 

the “Monitor satellite parameters” and “Handle routine 

activities” sub-goals). This “Failure detection and 

recovery” sub-goal has then been refined in several task 

models to describe the activities that the user may have to 

lead depending of the various types of failures that may 

occur. For the rest of the paper, we will take the example 

of a failing Sun Array Driver Assembly (SADA). If this 

appliance fails, operators have to detect it and try to switch 

ON the redundant SADA.  

An excerpt of this activity is depicted in Figure 5.a). The 

operator has to select and launch a procedure through the 

ground segment application (interactive input tasks “Select 

procedure Switch ON SADA2” and “Start procedure 

“Switch ON SADA2”).Operator has then to wait for the 

system to trigger the rotation of the redundant SADA and 

wait for a message from the system asking if the rotation 

has to be stopped (interactive output task “Display rotation 

stop message”). 

Figure 4. HAMSTERS Task Model of PICARD Satellite Platform Management (High Level Tasks) 

Figure 5. HAMSTERS Task Model of PICARD Satellite Platform Management (Including Failures) 



a)                     b)
Figure 6. Task Model of “Switch ON SADA2” Procedure a) without Human Error b) with Human Error 



Modeling Human Error 

Operators have then to check parameters in order to 

identify the current position (human perceptive task 

“Perceive position” which output the information “current 

position”) of the SADA2 and whether or not it is compliant 

to the targeted position (human cognitive analysis tasks 

“Analyze that SADA2 position is set correctly” and 

“Analyze that SADA2 position is not set correctly” which 

need “current position” and “targeted position” as inputs). 

Once operators have made a decision (human cognitive 

decision tasks “Decide to…”), they press the 

corresponding button on the user interface associated with 

the interactive input tasks “Press YES” and “Press NO”. 

Human errors can then be integrated into the tasks models 

for ensuring system robustness. In that perspective, 

erroneous behavior described in task models can be used to 

evaluate the impact of a human error on the system as 

proposed by (Bass and Bolton, 2013). Also in that 

perspective, mutant task specifications can be used to 

analyze the ability of the system to remain safe if a user 

performs deviated tasks on the system (Yasmeen and 

Gunter, 2011). Human errors can also be integrated into 

task models in order evaluate the usability of the system 

(Paterno and Santoro, 2002) and to inform design. In 

current paper, we focus on human performance and on task 

recovery whether the deviated task is performed upon 

system failure and/or upon human error. We propose to 

extend the work done by (Palanque & Basnyat, 2004) who 

proposed a Task Analysis for Error Identification 

technique. This technique can be used to identify potential 

human errors during routine activities as well as during 

failure detection and recovery activities. In this example, 

we focus on one type of error but an example of a complete 

case study of task analysis for error identification can be 

found in (Palanque & Basnyat, 2004). However, in that 

earlier work, information, devices and objects required to 

perform a task were not represented in the task models. 

Thus, it did not provide support to assess performance at 

the information level. This made impossible to reason 

about workload aspect of operator performance. In our 

presented case study, human errors can occur while 

accomplishing the procedure to setup the redundant Sun 

Array Driver Assembly. For example, Figure 5 b) presents 

the task model of erroneous actions performed by the 

operator in that case. From Reason’s classification, an 

associative-activation error (Reason, 1990) can occur if an 

operator clicks on “YES” while s/he had decided not to 

confirm stop or if s/he clicks on “NO” while s/he had 

decided to confirm stop. This error implies that the 

operators will have additional tasks to perform in order to 

reach the goal of switching to the redundant SADA. These 

additional tasks are presented in detail in Figure 6. 

Operators will have to understand that the rotation did not 

stop in spite of the fact he/she wanted it to stop (cognitive 

analysis task “Analyze the rotation did not stop” in Figure 

6). They will then have to wait for the SADA2 position to 

become correct and for the next confirmation message in 

order to be able to terminate the procedure.  

Assessment of the Impact of Failures or 

Human Errors on Human Performance 

Task models of failure detection and recovery as well as 

task models integrating potential human errors and their 

impact on the operators’ activities provide support for 

establishing requirements on the future system but also for 

evaluating the impact of failures and errors on the global 

human performance and on the mission execution. In our 

example, we can see that in the case of a human error while 

switching to the redundant SADA: 

• At least 9 more activities will have to be performed. As
“Monitor position task” is iterative (round shaped arrow
on the left side of the task widget), operators might have
to examine several times the position before it becomes
correct.

• Operators will have to cognitively handle more
information and during a longer period of time (“current
position” and “targeted position” information objects in
Figure 5.b)) than without the interference error.

In this example, given the decision to switch on the 

redundant SADA, the satellite is maybe currently in a low 

Figure 4. Zoom on Tasks Inserted for Error and Recovery from Error (from Figure 3)b)) 



power state (survival mode). This means that energy has to 

be spared and redundant SADA set as soon as possible. 

This analysis highlights that a human error during this 

recovery task could be fatal for the mission. 

Conclusion 

The proposed approach combining operators’ tasks 

modeling with operators’ errors information provides 

support for assessment of the articulatory activities the 

operators will have to perform in order to recover from 

system failure. This can be applied to routine activities, 

failure detection and recovery activities or human error 

detection and recovery activities. By making explicit the 

tasks, the information and the objects that have to be 

handled by the operators, this approach enables assessing 

the recovery cost from a system failure (i.e. to set the 

system in an acceptable state) but also from a human error 

i.e. performing a set of corrective actions in order to, as for 

a system failure, set the system to an acceptable state. 

This short presentation of the approach has not made it 

possible to exemplify a set of other benefits that become 

reachable using such task models enhanced with human 

error descriptions. For instance: 

• Some of the information explicitly represented in the
task model might correspond to information that has to
be stored in the operator’s working memory (e.g. a flight
level clearance received by a pilot from an air traffic
controller). The modeling approach would make explicit
how much time (quantitative) but also how many actions
have to be performed while keeping in mind such
information.

• The tasks and the related information might be located
on specific devices. This is not the case for a space
ground where monitoring is co-located with
telecommands triggering, but the possibility to represent
that information in HAMSTERS enables to assess low-
level complexity of tasks such as device localization,
moving attention and activity from one device to another
one…

The presented analysis is performed informally and 

manually but HAMSTERS models edition and simulation 

are supported by the eponym tool. Performance analysis 

functionalities are currently being integrated exploiting 

contributions previously made for synergistic system-task 

execution (Barboni et al., 2011) and training program 

assessment (Martinie et al., 2011). 
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