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ABSTRACT

This paper presents recent advances of the SWENSE (Spectral Wave
Explicit Navier-Stokes Equations) approach, a method for simulating
fully nonlinear wave-body interactions including viscous effects. Po-
tential flow theory is used to compute the incident waves while viscous
effects are taken into account by using a Reynolds Averaged Navier-
Stokes Equations (RANSE) solver to obtain the diffracted field in the
full domain. Arbitrary incident wave systems can be described, includ-
ing regular, irregular waves, multidirectional waves and focused wave
events. The model may be fixed or moving with arbitrary speed and 6
degrees of freedom motion.
This paper presents the results of the SWENSE method for a captive
calm buoy in various sea states (regular waves, 2D and 3D irregular
waves). Results of the present approach compare favorably with
experimental data.

KEY WORDS: RANS Equations; potential flow; nonlinear flow;
combined approach; wave-body interactions; HOS model; SWENSE
method.

INTRODUCTION

Performance and seakeeping predictions are usually carried out in tow-
ing tank. However, in ship hydrodynamics, Computational Fluid Dy-
namics (CFD) is more and more used as a practical design tool. Main
advantages of CFD are cost and time reduction as well as easier ac-
cess to detailed flow field information. The complexity of simulating
the behaviour of a ship in seaways was historically overcome by sep-
arating the problem in many simpler analysis: resistance, propulsion,
maneuvering and seakeeping. Although these aspects are strongly cou-
pled, CFD tends to simulate each of these phenomena separately using
adapted theories :

• Resistance and propulsion analysis are now often addressed using
viscous flow solvers based on the solution of RANS Equations,
because viscosity or flow separation effects play an important role
in the physics of those phenomena.

• Maneuvering and seakeeping problems are still currently solved
by potential flow theory which is less time consuming and enables
an accurate and efficient account of wave propagation phenomena.

However neglecting viscous effects can lead to poor predictions espe-
cially for rolling motion or cases for which strong separation occurs.
This is why a natural evolution for CFD is to try to address seakeep-
ing and resistance problems within a unified approach by taking into
account incident waves in performance predictions.
The classical method used to simulate the viscous flow around a ship
advancing in head waves is to impose an incident wave field at the inlet
boundary. It is modelled as velocity and pressure perturbations which
are added to the uniform stream. These perturbations are usually derived
from the linear potential flow solution for free-surface travelling waves.
However such simulations require very large computing resources be-
cause grids must be very refined between the location of the structure
and the outer boundaries of the domain. This is indeed necessary to
propagate waves from the paddle to the structure with no noticeable
damping. Moreover successive wave reflections on the body or on the
paddle affect the incoming wave train and reduce the useable duration
of the numerical simulation ; it is indeed very complicated to damp the
diffracted field without modifying the incident waves.
Yet, to be fair, it must be said that RANSE seakeeping simulations of
a ship advancing in head regular waves using this straightforward ap-
proach are realizable and have been presented in Weymouthet al. (2005)
or more recently in Visionneauet al. (2008) showing good results com-
pared to ”state of the art” potential simulations. However, the generation
of irregular wave trains or focused waves will be very problematic with
this method, especially for 3D sea states.

To overcome these difficulties an original formulation is used here by
modifying the initial problem in order to solve the diffracted flow only.
This approach has previously been used in the frame of potential theory,
by Di Mascioet al. (1994) or Ferrant (1996) in 3D cases. It consists in
splitting all unknowns of the problem (potential and free-surface eleva-
tion) into the sum of an incident term and a diffracted term. The incident
terms are described explicitly using a nonlinear potential flow model.
Thus only the part of the grid in the vicinity of the structure needs to be
refined. Far from the body a stretched grid allows an efficient damping
of the diffracted flow.
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In the method presented here called SWENSE (Spectral Wave Explicit
Navier Stokes Equations), potential flow theory is used to compute the
incident waves while viscous effects are taken into account by using a
RANSE solver to obtain the diffracted field in the full domain. By using
this approach it is possible to simulate various nonlinear incident waves
in an efficient and accurate manner: regular wave trains, focused waves,
irregular 2D or 3D sea states. Moreover, the useful part of the simu-
lations becomes practically unlimited because the incident waves and
the diffracted field are separated during computation so that it becomes
quite simple to damp the diffracted field only at the boundaries of the
domain.
This technique has been already successfully applied and validated in
3D cases, like a vertical cylinder in regular waves with very accurate re-
sults on forces and wave runups comparing to experiments (Gentazet al.
(2004)). The numerical procedure has been further developed to simu-
late the forward speed diffraction on a naval combatant (a DTMB Model
5415) in regular nonlinear head waves (Luquetet al. (2004)) showing
accurate results for the diffracted field and the forces components as well
as successful grid dependency tests. Moreover the efficiency and accu-
racy of the method was showed at the last CFD workshop (Luquetet
al. (2005)). First computations for irregular seas have been undertaken
for a fixed TLP platform (Luquetet al. (2007)), while a more detailed
validation of the method against the experiment in the case of an exten-
sively long 2 DOF simulation in irregular head waves has been achieved
in (Monroyet al. (2009)).

The objective of the present paper is to show the capabilities of the
method for an industrial case: a calm buoy in various sea states. Results
in regular waves and head irregular waves will be presented ant the
method will be validated in 3D irregular waves.

NUMERICAL FORMULATION

Theory

The original RANS Equations solver used for the implementation of the
SWENSE scheme was initially developed by Alessandrini and Delhom-
meau (1995) to solve the viscous, turbulent and free surface flow around
a ship with a forward speed. It employs a free surface tracking method.
The classical set of RANS Equations has been rewritten in order to for-
mulate a problem for the nonlinear, viscous diffracted flow. Primitive
unknowns (cartesian components of velocity (Uα) with α ∈ {1, 2, 3},
pressureP and free-surface elevationh) are decomposed as follows:







Uα = Uα
I + Uα

D

P = PI + PD

h = hI + hD

(1)

Variables with the subscriptsI andD represent incident and diffracted
variables respectively.

SWENS Equations

The previous decomposition is introduced in the set of initial RANS
equations in cartesian coordinates, assuming that the incident wave flow
fulfils Euler equations and non-linear free surface boundary conditions
in potential flow theory:

• Continuity equation

∂U i
D

∂xi
= 0 (2)

• Momentum equation
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• Free surface kinematic condition
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(4)

• Free surface normal dynamic condition

PD − ρghD = ρghI −PI − 2ρ (ν + νt)
∂U i

I + ∂U i
D

∂xj
ninj (5)

• Free surface tangential dynamic conditions

{

(njt1i + nit1j)
∂Ui

D

∂xj = − (njt1i + nit1j)
∂Ui

I

∂xj

(njt2i + nit2j)
∂Ui

D

∂xj = − (njt2i + nit2j)
∂Ui

I

∂xj

(6)

We obtain a new set of equations (Eqs. (2) to (6)) called SWENS equa-
tions in which incident variables (dynamic pressure, velocities, free-
surface elevations and their gradients) are explicit. Their values are
directly computed at each time step from the kinematics and interface
location of the incident flow. Then, the diffracted variables are the only
remaining unknowns of the problem and are solved by the modified vis-
cous flow solver.

Other boundary conditions include a no-slip condition on the hull:

U
i
D = −U

i
I (7)

On the farfield, the cancellation of the diffracted velocities is progres-
sively imposed. This modified condition combined with a stretching of
the grid, in order to create a so-callednumerical beach, prevents ef-
ficiently from diffracted wave reflections and verifies the decay of the
diffracted field far from the body.

Turbulence Model

Finally, to close the previous equation set we use a classicalk − ω

turbulence model proposed by Wilcox (1988), introducing a specific
dissipation rate̟ without low Re formulation requirement.

INCIDENT WAVE MODELS

In order to apply the SWENSE method it is necessary to have access
at each time step to all the characteristics of the incident field (veloc-
ities, pressure, free surface elevations). Two nonlinear models for the
incident flow have been implemented in the present version of the code:
one for 2D nonlinear regular incident wave trains and another to model
irregular wave trains. Some attributes were essential in the choice of
these two models. Especially, in the SWENSE method, values of the in-
cident field will be possibly needed above the undisturbed incident free
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surface, as the total free surface elevation can indeed be higher than the
incident elevation. Both wave models described below give access to
a regular continuation of the incident fluid flow above the incident free
surface, allowing an effective implementation of the SWENSE scheme.
Furthermore, the velocity field generated by these methods is infinitely
derivable in the whole space and this continuity is essential for the im-
plementation of the equations and the behaviour of the computations.

Regular waves

An algorithm based on the stream function theory, initially proposed by
Rienecker and Fenton (1981), has been implemented. This algorithm
has been chosen as it can generate the solution of steadily progress-
ing periodic waves on irrotational flow over a horizontal bed for a wide
range of wavelength/depth ratios and steepnesses, in the limit of regular
wave stability, with quasi-arbitrary accuracy. Figure 1 shows the axial
velocity field, computed with the Fenton-Rienecker algorithm for given
amplitude and wavelength, in order to demonstrate the continuity of the
wave field under, through and also above the free surface.
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Figure 1: Contours of the axial velocity in the whole space for
2A=0.1 m andλ=1.5 m. The bold line represents the free surface.

Irregular waves

The model used in this configuration belongs to the family of Higher
Order Spectral (HOS) schemes initiated by Westet al. (1987) and Dom-
mermuth and Yue (1987). This algorithm has been chosen as it can gen-
erate the solution of almost all the existing waves profiles on irrotational
flow over a horizontal bed for any depth (in the limit of breaking waves)
with huge accuracy (computer accuracy in fact) and fast computations.
It is based on potential theory with nonlinear free-surface boundary con-
ditions rewritten (following Zakharov (1968)) in terms of surface quan-
tities, namely the single-valued free surface elevationη (x, y, t) and the
surface potentialφs (x, y, t) = φ (x, y, η, t):

∂φs

∂t
= −gη − 1

2
|∇φ

s|2 +
1

2

(

1 + |∇η|2
)

W
2 (8)

∂η

∂t
=

(

1 + |∇η|2
)

W −∇φ
s
.∇η (9)

on z = η (x, y, t). W = ∂φ

∂z
is the vertical velocity. The unknows,

η (x, y, t) and φs (x, y, t), expressed at collocation points are time-
marched once the vertical velocity has been obtained through the
solution of a Dirichlet problem for the potential. The latter is solved
by the HOS expansion of the potential in orders of the wave elevation

Buoy diameter [m] 0.920
Buoy height [m] 0.560
Buoy draft [m] 0.250

Skirt diameter [m] 1.100
Skirt thickness [m] 0.004

Skirt location above keel [m] 0.040

Table 1: Characteristics of the experimental model

in parallel with the order consistent formulation of Westet al. (1987).
Right hand sides of equations (8) and (9) contain nonlinear products
which are computed in the spatial domain by means of a pseudospectral
method. Rapid conversion between spectral and spatial spaces are
made thanks to Fast Fourier Transforms (FFT). This leads us to a fully-
spectral technique with a FFT-based resolution and a computational
cost inO(N log(N )) with N , the number of collocation points (which
is equal to number of modes used in the spectral decomposition of the
rectangular free-surface domain). Thus, the proposed method exhibits
fast-convergence properties with very interesting computational time.
The periodic formulation has been implemented as well as a new
non-periodic one. The former gives the solution at large scale and
the latter is useful to model a wave tank. For the details of the recent
evolutions of the HOS method, you must refer to Ducrozetet al. (2006)
and Bonnefoyet al. (2009).

ILLUSTRATIVE APPLICATION

In 2004, an experimental campaign was conducted at the ECN wave
basin and investigated the flow around a JIP calm buoy model. In this
paper, we will compare the results of the SWENSE method against these
experiments in the case of three different sea states: in regular head
waves, in irregular head waves and in 3D irregular waves.

Experimental set-up

The Centrale Nantes basin is 50 m long, 30 m wide and 5 m deep.
One side is fitted with a bank of 48 flap-type wave generators while a
parabolic absorbing beach is on the other side. The buoy model is placed
at the centre of the basin in order to minimize the reflection effects from
the basin walls.
The buoy shape is composed of a vertical circular cylinder equipped
with a horizontal skirt close to the buoy keel. The characteristics of the
buoy model can be found in table (1) and a view of the model is provided
on Figure (2).

Figure 2: View of the experimental buoy.

In all the cases we have reproduced here, a framed structure keeps the
buoy model captive. It is equipped with a dynamometer measuring the
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efforts in the three directions. Five wave gauges are located at 1.150 m
from the buoy centre and regularly spaced around a half circle. We will
focus here on two surface elevationsη1 (gauge#1 is in front of the buoy
with respect to the incoming waves) andη2 (gauge#2 is also located
upstream, at 45 degrees from the direction of the wave propagation).
More exhaustive description of the experimental set-up can be found in
Roussetet al. (2005).

Numerical details

During this study, we have used different grids whose characteristics are
given in Table (2). As the solver is based on finite-difference schemes,
we use only structured meshes, and more specifically O-O grids. The
columnsi, j andk give the number of grid points in the three directions
andNtot the total number of cells.Rdom scales the radius of the mesh
domain.

i j k Ntot Rdom (m)
Grid R10N18 39 72 65 182520 10.0
Grid R15N14 33 77 56 142296 15.0
Grid R15N22 39 89 65 225615 15.0
Grid R15N34 45 102 75 344250 15.0
Grid R15N51 51 117 86 513162 15.0

Table 2: Characteristics of the different grids.

Figure (3) provides a global view of the gridR15N22 with a large do-
main size ofRdom = 15m. The mesh is stretched in the farfield. This
stretching combined to a canceling of the pressure is aimed at accurately
damping all the diffracted terms (velocities, pressure and free surface el-
evations) in the outer part of the domain. A close-up view of the grid
on the buoy can be observed on Figure (4). Grid refinements for an ac-
curate computation of boundary layers are implemented all around the
buoy and especially at the skirt in order to ensure a low y+ everywhere.
Indeed, in all our computations in this study, the firsts cells of the grid
on the buoy are inside the viscous sublayer with y+ always below 10.

Figure 3: Global view of the mesh. GridR15N22.

Regular waves

Amongst the different regular wave trains which were generated during
the experiments, we have focused on one specific case whose charac-
teristics are the following: an amplitudeA = 0.0744 m and a period
T = 1.8 s. We have chosen this experimental run because the wave-
length of the generated wave train (λ = 5.05 m) is close to the mean

Figure 4: Close-up view of the grid on the buoy.

wavelength of the head irregular sea problem we study later in this arti-
cle. It allows us to validate the size of the grid we use in order to avoid
reflection of the diffracted field on the outer boundary. In the different
computations we have performed for this regular wave train, we used
a time step of0.012 s, which makes 150 time steps per wave period.
The forces are adimensionnalized, the drag and lift coefficients take the
following form:

CX(t) =
FX(t)

Akρg∇ (10)

CZ(t) =
FZ(t)

Akρg∇ (11)

Convergence study

We tried to follow the instructions of the ITTC, regarding the verifica-
tion procedures for convergence studies. Between the gridsR15N14,
R15N122, R15N34 andR15N51, we used a refinement ratiori =
1.15 for the number of points in each direction each grid direction (i,j
and k). It makes a refinement ratio ofr = 1.52 for the total number of
pointsNtot, close tor =

√
2 suggested by the ITTC in itsrecommended

procedures and guidelinesfor Uncertainty Analysis in CFD, Verification
and Validation, Methodology and Procedures.
For every grid, 20 wave periods were computed (although only a few
wave periods are necessary to reach a fully periodic steady state) with
150 time steps per wave period. On a single AMD Opteron 250 (2.4
GHz) processor, it takes from 3 hours per wave period for the grid
R15N14 up to 18 hours per wave period for the gridR15N51. Ta-
bles (3) and (4) summarize the results of the convergence study. We
focus on the first and second harmonics of the adimensionnalized forces
(CX , CZ ) and of two adimensionnalized surface elevations (η1 andη2).
First, we can see that our method is very few grid-dependent, as the re-
sults do not vary much through the refinement process. For the finest
mesh (gridR15N51), our first harmonic results are very close to the
experimental values with an error of less than 4% (which is in the range
of the experimental uncertainty). The second harmonics results for the
forces are also satisfyingly predicted. However, we fail to get properly
the second harmonics of the surface elevation.
In the table (3), we have added a comparison with Aquaplus, which is
a state-of-the-art potential solver previously developped in our research
department. Aquaplus uses linearized free surface conditions and works
in the frequency domain. Its results for the first harmonics of the forces
are significantly worse with errors of 25% for C

(1)
X and 12% for C

(1)
Z .
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C
(1)
X C

(2)
X C

(1)
Z C

(2)
Z

Experiment 1.39 0.17 1.18 0.015
Aquaplus 1.73 1.04

(+24%) (−12%)

R15N14 1.42 0.165 1.15 0.010
R15N22 1.42 0.165 1.15 0.010
R15N34 1.42 0.165 1.16 0.010
R15N51 1.405 0.16 1.14 0.010

(+1.0%) (−6%) (−3%) (−33%)

Table 3: Results for forces in regular head waves.

η
(1)
1 η

(2)
1 η

(1)
2 η

(2)
2

Experiment 1.22 0.065 1.21 0.02
R15N14 1.225 0.115 1.225 0.050
R15N22 1.225 0.115 1.225 0.055
R15N34 1.23 0.12 1.225 0.055
R15N51 1.225 0.125 1.215 0.06

(+0.5%) (+92%) (+0.4%) (+200%)

Table 4: Results for surface elevations in regular head waves.

Vortex visualization

Indeed, we chose this particular test case of a buoy with a skirt to em-
phasize the capabilities of the SWENSE method. As a matter of fact, the
sharp geometry of the buoy induces complex viscous effects that only a
viscous solver is able to compute efficiently. As an illustration, we show
on Figure (5) the phenomenom of vortex-shedding which occurs at the
skirt of the buoy. It is materialized by iso-surfaces of the Q-criterion.
The Q-criterion (Eq. 12) was first defined in Huntet al. (1988) and we
recall here its expression:

Q =
1

2

(

∥

∥

∥
Ω

∥

∥

∥

2

E
−

∥

∥

∥
S

∥

∥

∥

2

E

)

(12)

whereΩ and S are the symmetric and antisymmetric components of
∇u. Thus, Q represents the local balance between shear strain rate and
vorticity magnitude. It is a convenient tool to visualize vortex structures.

Figure 5: Iso-surfaces ofQ = 100 m2.s−2 at a random time
step.

Irregular head waves

The experimental wave spectrum consists in a Jonswap spectrum with a
peak periodTp = 2 s, a significative heightHs = 0.12 m andγ = 3.
The experimental run last 175 seconds and 150 seconds of it have been
reproduced with the SWENSE method.
First, a 2D-HOS computation was realized with the same paddle-
movement history as for the experiment for input. The HOS compu-
tation is rather fast compared to the SWENSE computation and took a
few hours. For this case, we have used theR15N22 grid and a time
stepτ = 0.01s (which makes 200 time steps per mean wave period).
The whole computation took approximately three weeks on one AMD
Opteron 250 (2.4 GHZ) processor. Figures (6), (7) and (8) show re-
spectively the time history ofFx, Fz and η2 between 5 s and 50 s.
Graphically, we observe a good accordance between the numerical and
experimental signals. However, it is obvious that the accordance tends
to detoriate during the simulation.
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Figure 6: Time evolution ofFx between 5 s and 50 s. Irregular
head sea.
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Figure 7: Time evolution ofFz between 5 s and 50 s. Irregular
head sea.

Comparison of the signal envelopes

In this paragraph, we intend to compare the numerical and experimental
signals and quantify their accordance all along the simulation. In order
to introduce our comparator tool, we first consider two signals:xsimu(t)
et xexpe(t), x can represent the elevationη as well as the forcesFx or
Fz. Using the Hilbert transform, each of these two signals can take the
following form:

x (t) = ax(t)cos(φx(t)) (13)
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Figure 8: Time evolution ofη2, elevation at the probe 2, between
5 s and 50 s. Irregular head sea.

whereax (ax > 0) andφx stand respectively for the amplitude envelope
and the instantaneous phase of the signal x.
Figure (9) showsasimu

η2
(t) and−asimu

η2
(t) enveloping the signalηsimu

2 ,
as well asaexpe

η2
(t) and−aexpe

η2
(t) enveloping the signalηexpe

2 . In the
same way, figure (10) shows the numerical and experimental envelope
signals.
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Figure 9: Time evolution ofη2 between 10 s and 30 s. Solid line:
SWENSE signal and its envelope. Dashed line: experimenal sig-
nal and its envelope. Irregular head sea.
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Figure 10: Time evolution of the forceFx between 10 s and 30
s. Solid line: SWENSE signal and its envelope. Dashed line:
experimenal signal and its envelope. Irregular head sea.

In order to quantify the evolution of the accordance between the simu-
lation and the experiment, we have chosen to introduce the comparator
tool ζx (τ) defined by the equation 14.

ζx (τ) =

∫ τ

0

∣

∣aexpe
x (t) − asimu

x (t)
∣

∣ dt
∫ τ

0
a

expe
x (t)dt

(14)

Geometrically,ζx scales the area between the numerical and the exper-
imental envelopes divided by the area beneath the experimental enve-
lope. Figure 11 shows the time evolution of the envelope ratioζFx . ζFx

being important at the start of simulation is not significant and can be
explained by the low envelope amplitudes and the small phase shift be-
tween the numerical and experimental signals.
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Figure 11: Time evolution ofζFx
. Irregular head sea.
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Figure 12: Time evolution ofζFz
. Irregular head sea.
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Figure 13: Time evolution ofζη2
. Irregular head sea.

Aroundt = 25 s, we have an error rateζFx of 4.0% between the simu-
lation and the experiment forFx and an error rateζFz of 5.3% for Fz.
These results are very satisfying, but we observe a clear degradation of
the accordance between the experiment and the simulation with error
rates of approximately10% for Fx andFz aroundt = 55 s.
It is difficult to know to what extent this progressive degradation is due to
some numerical instabilities in our simulation or to the reflection effects
of the diffracted waves on the walls of the basin during the experiment.
These reflection effects are not taken into account in our HOS simulation
(without a body) and can play a major effect as we saw in the post-
processing of the experimental results for the regular waves.
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Due to the dispersion relation, we can associate a mean group veloc-
ity vgm ≈ 1.57 m.s−1 to the peak period of the generated spectrum
(Tp = 2 s). Both lateral basin walls are located at 14.5 m of the buoy,
therefore it takes the wavesTAR ≈ 18.5 s to go from the buoy to the
walls and back from the walls to the buoy. As the front wave reaches the
buoy at approximatelyt = 8 s, we should witness a degradation from
26.5 s. It coincides with what we can see on Figures 11, 12 and 13 with
a degradation of the solution constantly increasing from approximately
t = 26 s.

Irregular 3D waves

The 3D irregular sea is composed of 2 superimposed Pierson-Moskowitz
spectra: a swell sea coming from a directionθ = −22.5◦ with a peak
periodTp = 3 s and a significative heightHs = 6 cm, a wind sea
coming from a directionθ = 22.5◦ with Tp = 1.5 s andHs = 2 cm.
A 3D HOS computation was performed in a basin mode. The solver
grid had then to fit entirely in the basin limits, that is why we used a
small domain size ofRdom = 10 m. The gridR10N18 was doubled,
as this case is not symmetrical. We used a time stepτ = 0.05 s (which
makes 60 time steps per mean wave period if you consider the swell sea
as predominant). The whole computation took approximately ten days
on one AMD Opteron 250 (2.4 GHZ) processor.
Figures (14) and (15) show the time evolution ofFy respectively be-
tween 10 s and 50 s and between 100 s and 140 s. The conformity of
the experimental and numerical signals is qualitatively satisfying at the
start of the simulation and although the accordance is obviously worse
between 100 s and 140 s, both curves fit still well.
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Figure 14: Time evolution ofFy between 10 s and 50 s. 3D
irregular sea.

Figure (16) summarizes the evolution of theζ indicator for the forces
Fx, Fy, Fz and the elevationη2. The overall behaviour of the accor-
dance between the simulation and the experiment is similar to the 2D
irregular case with a somewhat good accordance at the start (though not
as good as in the 2D case) and a degradation along the simulation. After
30 seconds,ζFx andζFz scale approximately10% andζFy around15%.
Then, the results tend to detoriate, one can assume partly because of the
come-back of diffracted waves from the basin walls in the experiment.
However, in this case, the accordance for the surface elevation is quite
poor right from the start.ζη2 scales more than25% at every moment
and shows an even worse detoriation than the error rates for forces. The
feet of the framed structure used to keep the buoy captive in the basin
are not modeled in our computations. They may play a role in the poor
accordance between the experimental and numerical elevations, as their
effect on surface waves can not be neglected.
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Figure 15: Time evolution ofFy between 100 s and 140 s. 3D
irregular sea.

CONCLUSION

The illustrative application shows the potentialities of the SWENSE
method. Strong viscous effects such as vortex shedding, produced by
the sharp geometry of the model, are efficiently catched by the solver,
and results for forces and elevations compare very well in the regular
case. The method appears to be very few grid-dependent, which allows
to perform trustworthy computations on relative light meshes and with
low CPU time requirements. Both 2D and 3D irregular sea states have
been reproduced with the HOS model. The characteristics of accuracy
and efficiency are maintained with this new wave model. The introduc-
tion of an error-rate tool has permitted to quantify the accordance be-
tween the computation and the experiment all along the simulation and
the results compare also favourably in both these cases. Future work will
include a parallelization of the code in order to fasten the computations.
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