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Impact of long separating distances on the energy production of two interacting 
wave energy converters

Aurélien Babarit
Laboratoire de Mécanique des Fluides (CNRS UMR6598), Ecole Centrale de Nantes, 1 Rue de la Noë B.P 92101, 44321 Nantes Cedex 3, France

In this paper, wave farms composed of two either surging or heaving wave energy converters are

considered. Using a numerical model which takes into account wave interactions, the impact on the

absorbed wave power of the separating distance between the two systems and the wave direction is

studied. In regular waves, a modified qmod factor is introduced and it is found to be more relevant than

the usual q factor for identifying this impact. Then, it is shown that, asymptotically, the alteration of the

energy absorption due to wave interaction effects decreases with the square root of the distance. This is

a slow decay, which leads to a still significant modification of the wave energy absorption at long

distance (up to 15% at a distance of 2000m). In irregular waves, it is shown that constructive and

destructive effects compensate each other, particularly when considering the mean annual power. It

leads to a smaller impact of the wave interactions on the absorbed energy and shorter distances

(smaller than 10% for distances greater than 400m). Finally, conclusions on if wave interactions should

be taken into account or not when designing a wave farm are drawn in function of the distance.

0. Introduction

Wave energy converters (WECs) are designed to be deployed

in large arrays composed of many systems. In such arrays, each

single system interacts with all the others by absorbing, radiating

and diffracting waves. These wave interactions have an impact on

the energy output from arrays, which motivated many research

studies over the last decades.

The effect of array interactions on the energy production is

usually quantified by the q factor, defined as the ratio between the

output power from an array of N systems divided by N times the

output power from a single isolated system. If qo1, it means that

the averaged energy production of each system in the array is

lower than the energy production of isolated systems. Hence, the

wave interferences have a destructive effect on the output power

of the wave farm. Reversely, if q41, the effect is constructive.

In the pioneering work of Budal (1977), Evans (1979) and

Falnes (1980), it has been shown that the q factor can be either

higher or lower than 1 depending on the wave frequencies and

the array layout. This means that it can exist farm arrangements

in which the energy production from a sum of WECs is more than

the sum of the energy production of each single WEC. However, in

Thomas and Evans (1981), it is stated that farm layouts should be

designed in order to minimise destructive interferences for

practical applications. Since then, many studies have been

conducted by various authors on linear arrays of small devices

(Simon, 1982; McIver and Evans, 1984; Mavrakos and Mclver,

1997; Falcão, 2002; Justino and Clément, 2003; Child and

Venugopal, 2007; Cruz et al., 2009; Weller et al., 2009).

In most of these studies, only closely spaced arrays are

considered. In such arrays, wave interactions are strong because

each WEC feels the wave perturbation coming from one or several

others WECs in the array. It is well known (Falnes, 2002)

that the wave perturbation is composed of a near field part

which decays with the inverse distance to the body which

generated it; and a far field part which decays with the square-

root of that distance. Hence, when the distance between the WECs

in the array is sufficiently large, wave interactions become

negligible.

For practical reasons (moorings for example), arrays of WECs

can become sparse, with typical separating distances of a few

hundred meters. Taking into account the considerations of

previous paragraph, one could ask if the WECs are far enough in

order to neglect the wave interactions. This is the question

addressed in this study by considering two arrays of two generic

wave energy converters—one heaving and one surging device—

located at several different distances one from the other.

In the first part of this paper, a numerical model of the array

is derived in the frequency domain. In the second part, results

of numerical simulation are presented, both in regular and

irregular waves. In conclusion, range of distances for which it

seems to be worth taking into account wave interactions or not

are proposed.E-mail address: aurelien.babarit@ec-nantes.fr
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1. Methods

1.1. Equation of motion of two wave energy converters

Let us consider two basic arrays of wave energy converters,

Fig. 1. The first array, array I, is composed of two semi-submerged

cylinders and the second array, array II, of two semi-submerged

rectangular shaped floating bodies. The diameter of each cylinder is

taken equal to 10m and their draught is equal to 10m,

corresponding to a displacement V1 of around 785m3. It is

assumed that both cylinders can move only in the heave motion

z (i.e. along the vertical axis), with all other degrees of freedom

ideally restricted. For the second array, the width and draught of

the two bodies are taken equal to 10m in order to have the same

surface facing the waves and the length is taken equal to 7.85m in

order to have a volume similar as the one of the cylinders. Their

motion is restricted to the surge motion x, all other degrees of

freedom being ideally restricted. For both arrays, an idealised

power take off (PTO) is considered, composed of a linear spring and

damper system with stiffness kPTO and damping coefficient bPTO.

Let us note with index 1 and 2 all quantities related,

respectively, to the first and with the second system in each

array. Let z1 and z2 be the heave motion of each buoy in the first

array, and x1 and x2 be the surge motions in the second one. Let

X=(z1 z2)
t (respectively (x1 x2)

t) be the position vector of the

whole array. Assuming the fluid to be non-viscid and incompres-

sible, the flow to be irrotational, and the amplitude of motions

and waves to be sufficiently small in comparison with the

wavelength and the dimensions of the bodies, the classical

linearised potential theory can be used as a framework for

calculation of the fluid–structure interactions. Hence, one can

write the equation of motion of the WEC in the frequency domain

for unitary wave amplitude and a wave frequency o:

ðMþAMðoÞÞ €XþðBPTOþBðoÞÞ _XþðKHþKAþKPTOÞX¼ Fex ð1Þ

with:

� X¼RðXeiotÞ and _X; €X being, respectively, the velocity and

acceleration vectors of the WECs.

� M¼ ðm1
0

0
m2
Þ the mass matrix of the system. As it is considered

identical bodies in each of both arrays, m1=m2=785 t.

� KH ¼ ðkh10
0

kh2
Þ the hydrostatic stiffness matrix of the system. In

the array composed of heaving cylinders, kh1=kh2=770 kN

m�1. In the array composed of surging barges, kh1=kh2=0kN

m�1.

� KA an additional stiffness matrix which represents the action

of possible moorings. In this study, it was neglected, i.e. KA=0

in both arrays.

� AMðoÞ ¼ ðam11
am21

am12
am22

Þ the added mass matrix and BðoÞ ¼ ðb11b21
b12
b22

Þ

the wave damping matrix which represent the radiation of

waves by the body when it moves. In these matrices, the

nondiagonal terms are not anymore equal to 0. They represent

the pressure force measured on one body due to the radiated

wave associated with a motion of the other one. For obvious

symmetry reasons, am11=am22, am12=am21, b11=b22, b12=b21.

� Fex ¼RðF exe
iotÞ is the excitation vector per unit of wave

amplitude, associated to the action of incident and diffracted

wave fields upon the WECs.

� KPTO ¼ ðkPTO0
0

kPTO
Þ and BPTO ¼ ðbPTO0

0
bPTO

Þ are the matrices asso-

ciated with the action of the PTOs. In array I, kPTO is set equal to

0. In array II, kPTO is tuned in order the surging barges to have

the same natural frequency than the heaving cylinders of array

I. For both arrays, the value of bPTO has been tuned in order to

achieve the maximum energy absorption at the natural

frequency o0 of an isolated device. Following Falnes (2002),

it has been set equal to the wave damping coefficient, i.e:

bPTO ¼ bisolatedðo0Þ.

In regular waves, the mean power extracted by each buoy in

the array per unit of wave amplitude is given by

pi ¼
1
2bPTOo

2jXi j
2 ð2Þ

with iA1;2. For the whole array, the mean absorbed power is

p¼
X

2

i ¼ 1

pi ð3Þ

In irregular waves, characterised by a wave energy spectrum S,

the mean power extracted by each buoy is given by

Pi ¼

Z þ1

0
SðoÞpiðoÞdo ð4Þ

Fig. 1. Schematic representation of two arrays of generic wave energy converters. On the left, array I is composed of two heaving cylinders. On the right, array II is

composed of two surging barges.
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In this study, the standard Jonswap energy spectrum

SðHS; T1; gÞ (Molin, 2002) has been used, in which HS is the

significant wave, T1 is the peak period and g gives the frequency

spreading. The frequency spreading parameter has been taken

equal to g¼ 3:3 in all sea states (HS,T1).

Using wave data statistics at a given location, one can calculate

the annual mean wave power absorbed by each body /PiS. Let

C(HS,T1) be the probability of occurrence of each sea state (HS,T1).

/PiS is given by

/PiS¼
X

ðHS ;T1Þ

CðHS; T1ÞPiðHS; T1Þ ð5Þ

For the whole array, the mean absorbed power is

/PS¼
X

2

i ¼ 1

/PiS ð6Þ

In this study, wave data statistics measured by a datawell a

few kilometers offshore from Yeu island (on the French Atlantic

coast) were used, see Fig. 2.

1.2. Numerical model

A numerical model was written in Fortran to solve Eq. (1). The

hydrodynamic coefficients AMðoÞ;BðoÞ and FexðoÞ were calcu-

lated using the BEM based code AQUADYN (Delhommeau, 1993).

In order to minimise the number of parameters, all calculations

were performed in deep water. Although the water depth may

have an influence on the results, it has been chosen not to

consider this parameter in this study to keep it simple.

The hydrodynamic coefficients calculated using AQUADYN are

plotted in Fig. 3 in the case of array I, the WECs being separated

by a distance of 10 diameters. For the sake of comparison, the

hydrodynamic coefficients of a single isolated body have also

been plotted. One could notice that the amplitude of the crossed

coupled wave damping coefficients b12 can be of an order of

magnitude close to b11, which shows the interaction between the

buoys in the velocity-proportional part of the radiation force. This

interaction is not as strong in the acceleration part of the radiation

force, in which the crossed coupled added mass coefficients are, at

most, 10 times smaller than the diagonal ones.

About the wave excitation force coefficient, the interaction

effect appears to be small. One could have expected that the main

effect of wave interactions would have been experienced by the

second system which lies in the wake of the first system (which

meets the wave first) but it appears that it happens the contrary.

One can see that the wave excitation force coefficient of the

second body is not disturbed in comparison with the one of a

single isolated system, whereas it exists a small wavy difference

for the first system in the range of frequencies [0.5,1.5] rad s�1.

This is a quite surprising result which was already observed by

Child and Venugopal (2007) in the same case of two interacting

cylinders.

In Fig. 4, the same hydrodynamic coefficients are plotted

with the same distance between the WECs (i.e. 100m) but in the

case of array II. One can see that the results for these surging

devices are very different from the previous ones. Now, the

wave interactions appear to be much stronger both on the wave

damping and added mass crossed coefficients, and on the wave

excitation force. Again, the effect on this last coefficient appears to

be stronger on the first body than on the second one.

Fig. 5 shows RAOs and capture width ratios w of both heaving

and surging WECs, w being defined as the ratio of the power

absorbed by the system divided by the incident power in the

width of each system. The natural period of the surging device

matches with the one of the heaving WEC, which has been

obtained by tuning the PTO stiffness kPTO of the surging device to

104 kNm�1. Table 1 gives the other PTO parameters which have

been taken in these calculations.
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Fig. 2. Wave scatter diagram for Yeu island (46341:450 N, 2325:650 W).
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Fig. 3. Comparisons of the amplitude of the wave excitation force coefficients

(top), wave damping coefficients (middle) and added mass coefficients (bottom) in

array I with the ones of a single isolated heaving cylinder. Wave direction is 03 .

Separating distance between the two bodies is 10 diameters, i.e. 100m.
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One can see in this figure that the capture width ratio of

the surging WEC is much higher than the one of the heaving

device, whereas the amplitude of the motion is much lower. At

resonance, one could notice that it is around twice the capture

width of the heaving device, which was expected since the

theoretical maximum capture width of a point absorber in surge

is double the one in heave (Falnes, 2002).

Reminding that the total displacements of both systems are

the same, this last figure suggests that a surging device would be

more efficient for wave energy conversion than a heaving one, at

least for the dimensions considered. However, these considera-

tions are out of the scope of this study and they have not been

investigated deeper here.

1.3. Layout of the array

In the layouts shown in Fig. 1 for the array, there are two

parameters which could affect the mean absorbed power by the

array P. They are the distance d between the two systems and

the main direction of propagation of the incident waves b. In this

study, both are considered.

2. Results

2.1. Regular waves

2.1.1. Modified qmod factor

In Fig. 6, the capture width ratio and standard q factors for

both bodies 1 and 2 of array I have been plotted in regular waves.

The wave direction is 03 and the distance between the two

systems is taken equal to 100m. For the sake of comparison, the

capture width ratio of a single isolated system has also been

plotted in this figure.

Let us consider first only the q factors. One could say that wave

interactions are significant for all the wave periods below 8 s and

that, again, the wave interaction effect is stronger on the system
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(top), wave damping coefficients (middle) and added mass coefficients (bottom) in

array II with the ones of a single isolated surging device. Wave direction is 03 .

Separating distance between the two bodies is 10 times the width of the system,

i.e. 100m.
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Table 1

PTO parameters.

kPTO (kNm�1) bPTO (kN sm�1) Natural period T0 (s)

Surging WEC 104 3.026�103 7.35

Heaving WEC 0 27 7.29
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which meets the wave first than on the second one. However,

considering now the two graphs showing the capture width ratio

of each body, one can see that, if the second statement is true, the

first one is kind of specious, since the capture width from the

wave is very low as soon as the wave period is off-resonance.

Actually, on these capture width ratio graphs, one could conclude

that the wave interaction effect appears to be noticeable only

when the systems are close and only when the wave period is

close to the natural period of the system, for which the absorbed

power is significant.

This shows that the q factor is not sufficient when considering

wave interactions in an array of WECs because it hides the real

amount of absorbed power. Hence, one could use a modified

factor qmod instead of the usual q factor, defined as the ratio of the

difference between the power absorbed Pi by the system i in the

array minus the power absorbed by an isolated system Pisolated,

divided by the maximum absorbed power by an isolated system

maxT PisolatedðTÞ:

qmod ¼
Pi�Pisolated

maxTPisolatedðTÞ
ð7Þ

If qmod is positive, it means that the wave interaction has a

constructive effect on the energy production. Reversely, if qmod is

negative, the effect is destructive.

Fig. 7 shows this qmod factor for the previous array. One can see

that the periods for which the absorbed power is very low are

now filtered out. One would draw the same conclusions from

these graphs as the ones which were made by considering the

capture width ratios on Fig. 6.

Fig. 8 shows capture width ratios and qmod factors for body 1

(left figures) and body 2 (right figures) in regular waves, but now

in the case of array II. Again, both bodies are separated with a

distance of 100m and the wave direction is 03.

From the effect of wave interactions on the absorbed power

point of view, the same conclusions can be drawn from both

capture width ratios and qmod factors:

� The wave interactions effect is much more important than in

the case of array I and it exists on the whole bandwidth of the

system.

� The wave interactions effect is oscillating for body 1. It can be

constructive (up to 70% at natural period) or destructive (down

to 55%) depending on the wave period. For body 2, it is

destructive for almost all wave periods, with a minimum at

50%.

Hence, from these two examples, one can see that the modified

version of the q factor seems to be a better parameter for

characterising the impact of wave interactions on absorbed power

than the usual definition of the q factor.

2.1.2. Influence of the distance

Let us consider array I with long distances between the two

systems, from 2 to 20km between each body. For each distance,
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the qmod factors of each body in each array have been computed

for wave periods between 3 and 20 s. To get a synthetic view of

the wave interactions effect on the absorbed power in function of

the distance, only the maximum and minimum of these qmod

factors for each body have been plotted in Fig. 9.

One can see that, for both bodies, wave interaction effect can

be positive ðmaxqmod40Þ or negative ðminqmodo0Þ, depending on

the wave period. As it was expected, the interaction decreases

regularly with the distance separating the two bodies. Best fit for

these curves was found to be a polynomial law with power
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coefficient around �0.5. This suggests that, at long distances, the

wave interaction effect on the power absorption decreases with

the square root of the distance. This is a bit surprising because, if

the amplitude of the far field part of the wave decays with the

square root of the distance, its energy decreases with the distance.

Hence, one could have expected the wave interaction effect to

decrease with the distance, not the square root of the distance.

However, if one consider the way the wave energy is rebuilt

behind the first body, one will find a dependency on the square

root the distance (the proof of this last statement is given in

appendix), which provide an explanation for such behaviour.

In Fig. 10, the qmod factor for both bodies 1 and 2 of array I have

been plotted but in function of shorter distances from 100 to

2000m. One can see that the wave interactions effect is close

to its asymptotic behaviour when the distance is longer than

1000m. For lower distances, the difference can be explained by

nonnegligible near field effects.

More precisely, it appears in Fig. 10 that:

� The positive effect of wave interactions is much higher on body

1 than on body 2.

� The negative effect of wave interactions is of the same order of

magnitude for both bodies 1 and 2.

� For body 1, both positive and negative wave interactions

effects remain significant (about 10%) even when the two

systems are separated by a distance higher than 1 km. For body

2, the positive effect is much smaller and decays rapidly with

the distance. However, the maximum of negative effect

appears to be still noticeable at large distances (5% at 2 km).

In Fig. 11, the case of array II is considered. One can see that,

like in the previous case:

� The asymptotic behaviour of the wave interactions effect can

be fitted using a polynomial law almost proportional with the

square root of the distance.

� For short distances (shorter than 1800m in this case),

differences between the asymptotic behaviour and the com-

putation become important. It shows that the effect of near

wave field cannot be neglected anymore in the assessment of

the wave interactions effect.

The positive effect is much higher on the first body than on the

second one at short distances, and the negative one is of same

order of magnitude. However, the trend is reversed for distances

around 1800m, for which the positive effect becomes higher for

body 2 than for body 1, which corresponds with the asymptotic

behaviour. It shows that near field effects are responsible for this

change in the behaviour of maximum of qmod.

One could also notice that, in absolute value, the interaction

effect is 3 times higher with these pontoon shapes in surge

than in the case of the cylindrical shapes in heave. This leads

to a still large wave interaction around 15% at a 2000m

distance.

2.1.3. Influence of the wave direction

Let us consider again array I but now with waves coming from

a nonzero angle. In Fig. 12, the maximum and minimum of the

qmod factor have been plotted in function of the distance between
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the two systems for waves coming from the direction 03, 303, 603

and 903.

One can see that the wave direction affects the wave

interaction effects, but not in the same way for the first and

second body. On the first body, wave direction has an influence

(oscillating with the distance) on the qmod factor, but only at short

distances ðdo600mÞ. Moreover, it does not modify its order of

magnitude. On the second body, it is different: the maximum of

the qmod factor is increased (up to a factor 6 in comparison with

the 03 wave direction) and both maximum and minimum of qmod

shows a large influence (also oscillating with the distance) of the

wave direction for all the range of distances considered. Hence,

one can see that the wave interactions effect is stronger on body 2

when the two bodies are not aligned. However, it remains limited,

but it is still around 10% at 2000m. One could notice that, for

wave direction of 903, the qmod factor is the same for both bodies 1

and 2. This is due to obvious symmetry reasons.

In the case of array II, oscillations of the qmod factor can be

observed for both bodies 1 and 2 in Fig. 13. However, the order of

magnitude of the wave interaction effect is the same whatever the

wave direction, except for the maximum of the qmod factor for

body 1 at long distances, greatly increased. Here, it is assumed

that it can be explained by near field effects, whose range would

be increased for waves coming from a nonzero angle, but it has

not been verified. Results with wave direction of 903 have not

been plotted on this figure because the qmod factor is not defined

in this case (the absorbed power of an isolated system is 0).

2.2. Irregular waves

In regular waves, whatever the distance, the wave interaction

effect can be negative ðqmodo0Þ or positive ðqmod40Þ depending

on the wave period. It can also remain quite large even at long

distances (10–15% at 2000m). In irregular waves and a fortiori

when considering the whole annual energy production, one can

expect the wave interaction effect to be smaller, because

constructive and destructive interactions would compensate

between each other.

In Fig. 14, the qmod factor of the mean annual wave power

absorbed by bodies 1 and 2 of array I has been plotted in function

of the distance separating the two bodies, for four wave

directions.

For wave direction equal to 03, wave interaction has a

monotonous effect on each body. It is positive on the first body

and negative on the second one. As it is expected, it decreases

with the distance, but much faster for body 1 than for body 2.

Actually, for body 1, it appears to be almost unnoticeable for

distances longer than 200m, whereas it still can be seen at a

2000m distance for body 2. However, one could notice that it is

small, below 2% for distances longer than 200m.

For wave direction equal to 303 and 603, the wave interaction

effect is more complex. It is not anymore monotonous, the

positiveness or negativeness of the effect on each body being

dependent on the distance. However, one can see that it decreases

with the distance faster for body 1 than for body 2 and it

q
m

o
d

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
minqmod

maxqmod

asymptotic behaviour

Body1

q
m

o
d

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Body2

distance (m)

q
m

o
d

5000 10000 15000 20000

distance (m)

5000 10000 15000 20000

distance (m)

5000 10000 15000 20000

distance (m)

5000 10000 15000 20000

-0.2

-0.1

0

0.1

0.2
Body2

y=-5.7607x -0.4944

y=4.8707x -0.4754

q
m

o
d

-0.2

-0.1

0

0.1

0.2
Body1Body1

y=-5.008x-0.4825

y=0.7579x-0.4938

Fig. 11. Maximum and minimum qmod factors in array II at short (left figures) and long (right figures) separation distances. Top figure corresponds with body 1 and bottom

figure with body 2. The wave direction is 03 .

8



becomes unnoticeable for distance greater than 400m for body 1.

For body 2, it has the behaviour of a sub critically damped

oscillator—oscillating with respect to the separating distance—

whose period seems to depend on the wave direction (longer for

303 than for 603). However, one could notice that it is not higher

than 5% for distances greater than 400m.

For wave direction equal to 903, the wave interaction effect is

the same for both bodies 1 and 2 for symmetry reasons. It appears

to be negative for distances smaller than 200m, positive for

distances between 200 and 400m, and negligible for distances

greater than 400m.

In an overall manner, one can see that the wave interaction

effect on the absorbed power is rather small (smaller than 10% as

soon as the distance exceeds 200m, even below 5% whatever the

wave direction for distance greater than 500m). Regarding all

the assumptions on which the numerical model is based, and all

the uncertainties associated, it seems reasonable to ask ourselves

if it is worth taking into account these wave interactions effect for

distance greater than a few hundred meters.

In Fig. 15, the case of array II is considered. As in regular waves,

results with wave direction of 903 have not been plotted on this

figure because of the qmod factor is not defined for this direction.

One can see that results are different from the case of array I.

For wave direction equal to 03, wave interaction is constructive for

body 1, negative for body 2 and decreases regularly for distances

between 100 and 1200m. But the qmod factor curves of bodies 1

and 2 cross around 1200m, leading to the reversed effect for

distances higher than 1200m. It increases for distance between

1200 and 1800m, then stabilises and finally decreases for longer

distances, as it can be seen in Fig. 16. This is consistent with the

results got in regular waves, for which it has been shown that

near field effects were still noticeable for distances up to 1800m.

It means that, in this case, near field effect leads to constructive

interaction for body 1 and destructive interaction for body 2, and

far field effect leads to the reverse. At long distances, the last one

will dominate, leading to a negative effect on body 1 and a

positive one on body 2 (contrarily to the case of array I). However,

overall, one could notice that the wave interaction is less than 10%

as soon as the distance is greater than 400m.

For wave directions equal to 303 and 603, the wave interaction

effect appears to be simpler. For body 1, it is positive at all

distances and smaller than 3% as soon as the distance is longer

than 500m. For body 2, it is oscillating as in case of array I, but

much more damped with the separating distance. It is also smaller

than a few percents as soon as the distance is longer than 500m.

In Fig. 17, a comparison of the mean annual wave power

absorbed by array I and array II has been plotted in dependence

on the distance for the four wave directions. In case of array I, the

device being omnidirectional, the total amount of wave power is

not affected by the wave direction at long separating distances.

One can see that the wave interaction effect appears to be

negligible for distances greater than 500m.

For array II, the device being directional, the absorbed wave

power is obviously affected by the wave direction. However, one

can notice that, as for array I, the total amount of absorbed wave

power is steady with the distance as soon as the bodies are

separated by more than 500m. It shows that for greater

separating distances, wave interactions effect can be neglected.
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3. Conclusion

In this paper, two arrays composed one of two heaving wave

energy converters and the other of two surging WECs were

considered. Parametric studies of the effects of the separating

distance between the two systems and the wave direction on the

wave interactions in the array and its wave energy absorption

were conducted, both in regular and irregular waves.

In regular waves, a modified version of the q factor is

introduced and it is shown that it is a better indicator of the

wave interaction effect on the wave power absorption than the

usual q factor. It is found that asymptotically, the absolute value

of maxima and minima of this qmod factor decrease with the

square root of the distance, which is consistent with the way the

wave energy is rebuilt behind the first body. This is a rather slow

decay, which leads to a still noticeable impact on the absorbed

power at long distance (maximum 10–15% at 2000m).

In irregular waves, it is shown that this impact on the mean

annual absorbed power decreases faster with the distance. It is

found to be, at maximum, less than 10% at 400m. Hence,

reminding all the uncertainties associated with the assumptions

on which is based the numerical model, it seems reasonable to

neglect wave interaction effects for distance greater than 500m
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when considering the mean annual absorbed power for the

specific configuration studied here.

At short distances, shorter than 100m, it appears that it should

not been neglected because the wave interaction can be

significant for these distances.

At medium range, for distances between 100 and 500, it seems

difficult to make any recommendation since the wave interaction

can be low or high depending on the configuration, particularly

when the wave direction is not aligned with the array.

Finally, these results were obtained with wave energy converters

of typical dimensions of around 10m. It would be interesting to

assess now how different dimensions of systems, particularly the

width, would affect the distances defining these three ranges.

Appendix A. Wave energy flux far behind a floating structure

Let us consider the wave field around a single structure at a

given point M. Let (x, y, z) be the coordinates of M in the reference

frame of the structure, see Fig. 18.

According to the linear potential theory, the wave potential F

can be decomposed into two:

F¼FIþFP ðA:1Þ

with:

� FI being the incident undisturbed wave potential. In the case

of a regular wave, one can write

FIðx; y; z; tÞ ¼ AI
ig

o

� �

ekzþ iðkx�otÞ

� �

ðA:2Þ

in which A is the wave amplitude, k is the wave number and o
is the circular wave frequency.

� FP being the perturbation potential corresponding with

diffracted and radiated waves.

Assuming to be sufficiently far from the source of the

perturbation, one can write FP as (Mei et al., 2005)

FP ¼ AI

ffiffiffiffiffiffiffiffi

k

2pr

r

ekzþ iðkr�ot�p=4ÞHðyÞ

!

ðA:3Þ

in which ðr; y; zÞ are the circular coordinates ofM—i.e. r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2
p

and y such as x¼ rcosy and y¼ rsinyFand HðyÞ is the so-called

complex Kochin function. This Kochin function, which depends

only on the direction of propagation y, fully characterises the far

field component of the diffraction–radiation potential.

From Eqs. (A.2) and (A.3), let us derive the pressure p and the

flow velocity V
!
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These two last equations are valid everywhere in the fluid

domain, provided the distance r to be sufficient. Let us focus now

on the variation of the wave along the x-axis, behind the system,

i.e. y¼ 0 and r = x. Eqs. (A.4) and (A.5) become

p
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The mean flux of wave energy propagating along the x-axis per

meter of wave front is given by

W ¼�

Z 0

�1

Z T

0
pV
!

: x
!

dt dz ðA:8Þ

Using Eqs. (A.6) and (A.7), one can show

W

rgA2
¼�
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4k
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 ! !
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in which H�ð0Þ is the complex conjugate of H(0). Finally,

neglecting the terms of order higher than
ffiffiffiffiffiffiffiffi

1=x
p

, one can get
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Fig. 17. Comparison of the mean annual power absorbed by array I (top) and array
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wave directions.

Fig. 18. Notations used for the calculation of wave energy flux far behind a

floating system.
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for W:

WC

rg2A2

4o
1þ

2o

g

ffiffiffiffiffiffiffiffiffi

k

2px

r

Iðe�ip=4Hð0ÞÞ

 !

ðA:10Þ

in which one recognises the addition of the wave energy flux of

the incident wave rg2A2=4o plus a correction which decays as the

square root of the distance. Hence, one can see that the rate of

recovery of the wave energy flux behind a wave energy system is

proportional to the inverse of the square root of the distance.
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