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Abstract :  
 
The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic 

ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and 
functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and 
heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, 
hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm 
fluids (pH>11; T<95 °C), harbored a singular archaeal diversity mostly composed of unaffiliated 
Methanosarcinales. The archaeal communities associated with the recently discovered Ashadze 1 site, one of the 
deepest active hydrothermal fields known (4100 m depth), showed significant differences between the two 
different vents analyzed and were characterized by putative extreme halophiles. Sequences related to the rarely 
detected Nanoarchaeota phylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze 
hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed 
hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system 
environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in 
ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled 
by hydrothermal fluids highly enriched in methane and hydrogen. 

Keywords : Archaea ; hydrothermal vent ; Mid-Atlantic Ridge ; 16S rRNA gene ; Sediment ; ultramafic 

Introduction 
 
Deep-sea hydrothermal environments are characterized by intense physico-chemical gradients providing a large 
range of habitats for chemolithoautotrophic microorganisms (Kelley et al., 2002). Most of the studies of microbial 
diversity associated with deep-sea hydrothermal environments have mainly investigated basaltic-hosted 
hydrothermal systems (Kelley et al., 2002). However, a few studies showed that ultramafic-hosted hydrothermal 
systems contained specific microbial communities (Brazelton et al., 2006; Perner et al., 2007; Voordeckers et al., 
2008; Flores et al., 2011). To date, only three ultramafic sites were fully described on the Mid-Atlantic Ridge 
(Rainbow, Lost City and Logatchev), and were characterized by high concentrations of methane and hydrogen, in 
contrast with basaltichosted hydrothermal systems (Kelley et al., 2001; Charlou et al., 2002; Schmidt et al., 2007). 
Moreover, Ashadze, a novel hydrothermal site, was recently reported on the Mid-Atlantic Ridge (MAR) (Bel'tenev 
et al., 2005; Charlou et al., 2007; Fouquet et al., 2007; Mozgova et al., 2008; Bassez et al., 2009; Charlou et al., 
2010). This part of the MAR is characterized by rock compositions indicating that anomalously enriched mantle 
domains are involved in the melting region (Dosso et al., 1993), and also by numerous outcrops of serpentinized 
mantlederived rocks (Bougault et al., 1993; Cannat et al., 1997). However, these ultramafic systems expelling 
fluids characterized by moderate to high temperatures are also probably linked to magmatic heating processes 
(Allen & Seyfried, 2004). Ultramafic hydrothermal fluids are 

http://dx.doi.org/10.1111/j.1574-6941.2011.01161.x
http://dx.doi.org/10.1111/j.1574-6941.2011.01161.x
http://onlinelibrary.wiley.com/
http://archimer.ifremer.fr/
mailto:rousseleg@cardiff.ac.uk
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highly enriched in abiogenic methane and hydrogen as a result of serpentinization reactions 

between the ultramafic rocks and seawater (Holm & Charlou, 2001; Charlou et al., 2002; 

Allen & Seyfried, 2004), and could therefore supply twice as much chemical energy as 

basaltic-hosted hydrothermal systems (McCollom, 2007). Hence, most of the prokaryotes 

found at these sites seemed to be related to methane and hydrogen cycling (Boetius, 2005; 

Perner et al., 2007; Voordeckers et al., 2008; Flores et al., 2011). 

A large number of microbial communities from hydrothermal environments could be fuelled 

by inorganic compounds (Amend & Shock, 2001). Although these microbial communities 

occupy both aerobic and anaerobic habitats, anaerobic hyper/thermophilic Archaea are 

reported to be usually associated with the hottest parts of these environments (Kelley et al., 

2002; Schrenk et al., 2003; Takai et al., 2004a), some of which could be entrained by 

hydrothermal fluids from subsurface ecosystems (Deming & Baross, 1993; Holden et al., 

1998; Summit & Baross, 1998). Moreover, it was suggested that Archaea could encompass 

up to 33-50% of the total microbial community in deep-sea hydrothermal environments 

(Harmsen et al., 1997; Nercessian et al., 2003). 

Although an increasing number of thermophilic prokaryotes are cultivated from hydrothermal 

environments (Huber et al., 2002; Miroshnichenko & Bonch-Osmolovskaya, 2006; 

Reysenbach et al., 2006; Wagner & Wiegel, 2008; Slobodkina et al., 2009), molecular 

phylogenetic approaches have revealed several new uncultivated lineages (Takai & 

Horikoshi, 1999; Nercessian, 2003; Kormas et al., 2006; Moussard et al., 2006a). 

Metagenomic approaches and functional gene analyses have also contributed to the 

characterization of metabolic and physiological properties of these communities (Nercessian 

et al., 2005; Moussard et al., 2006b; Moussard et al., 2006c). However, to our knowledge, 

rRNA-based molecular approaches have seldom been used to compare the microbial 

diversity from multiple different hydrothermal sites (López-García et al., 2003a; López-García 

et al., 2003b; Voordeckers et al., 2008; Flores et al., 2011). 

In the present study, we characterized the molecular genetic diversity, using 16S rRNA gene 

and functional genes of methanogens, methanotrophs and sulfate-reducers, associated with 
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three ultramafic-hosted hydrothermal sites: Rainbow, Lost City and Ashadze. As these 

hydrothermal fluids are highly enriched in methane and hydrogen, these environments could 

harbour specific prokaryotic communities possibly associated with potential subsurface 

chemolithoautotrophic ecosystems. Hence, the aim of this study was to compare the 

microbial communities of these ultramafic-hosted hydrothermal sites using molecular genetic 

methods, in order to
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 correlate their phylogeny with ecological niches. 

 

Materials and methods 

Site location and sampling techniques 

Fluid, chimney and sediment samples were collected during the scientific cruises EXOMAR 

(2005), SERPENTINE (2007) and MoMARDREAM-Naut (2007) conducted with the R. V. 

“L’Atalante” and “Pourquoi pas ?” and using the ROV “Victor 6000” and DSV “Nautile”. The 

three hydrothermal fields explored, Rainbow (36°13’N; 33°54’W; ~ 2300 m depth), Lost City 

(30°07’N; 42°07’W; ~ 750 m depth) and Ashadze 1 (12°58’N; 44°51’W; ~ 4090 m depth) 

were all located along the Mid-Atlantic Ridge (MAR), although Lost City and Ashadze were 

further from the axis (Fig. 1a). 

Fluid samples from Rainbow, Lost City and Ashadze were collected respectively from the 

“thermitière” chimney (36°13’76’’N; 33°54’16’’W; 2294 m depth, Fig. 1e), from a flange near 

the EXOMAR 11 Marker (30°07’43’’ N; 42°07’16’’W; 748 m depth, Fig. 1c), and from two 

chimneys in the SE2 area at Ashadze 1 site (12°58’33’’N; 44°51’78’’W; 4097 m depth, Fig. 

1f). Chimney samples were also retrieved from the two chimneys in the SE2 area of Ashadze 

1 site where the fluids were previously collected. The sediment samples were retrieved from 

the Rainbow site close to the active hydrothermal area (36°13’76’’N; 33°54’04’’W; 2287 m 

depth, Fig. 1d) and from the immediate periphery of the Lost City site (30°07’57’’ N; 

42°07’05’’W; 752 m depth, Fig. 1b). 

In order to describe the microbial communities from the surrounding seawater, the water 

column from the Rainbow site (36°13’76’’N; 33°54’06’’W; 2291 m depth) was also sampled. 
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All fluid samples were collected using titanium syringes and analyzed as described 

elsewhere (Charlou et al., 2002). On board, the fluid samples were immediately removed 

aseptically from the titanium syringes and stored at −80°C for molecular genetic analyses. 

On board the sediment cores (~ 20 cm in length, 5 cm diameter) collected from the Rainbow 

site, using a push-core device operated by the arm of the DSV “Nautile”, were sectioned in 

three equal samples and were designated as top, middle and bottom. The sediment surface 

sample from the Lost City site was collected using PSDE system (Fig. 1b, Kato C., 

unpublished). The chimney fragments were collected in biobox and sediment samples were 

stored aseptically at −80°C for molecular genetic analyses. 

DNA extractions and PCR amplification 

To avoid contaminations, all manipulations were carried out in a PCR cabinet (Biocap™ 

RNA/DNA, erlab®), using Biopur® 1.5 mL Safe-Lock micro test tubes (Eppendorf™), 

Rnase/Dnase Free Water (MP Biomedicals™) and UV-treated (>60 min) plasticware and 

pipettes. 

DNA extractions from fluids were performed from 50 mL of fluid left to thaw on ice prior 

centrifugation (15000 g for 60 min). Supernatant was carefully discarded and DNA was 

extracted from the pellet, following a modified FastDNA® Spin Kit for Soil (Bio101 Systems, 

MP Biomedicals™) protocol (Webster et al., 2003; Roussel et al., 2009a). The DNA 

extractions from sediments and chimney fragments were also performed using the modified 

FastDNA® Spin Kit for Soil as described elsewhere (Roussel et al., 2009a). 

All amplifications were performed using a "GeneAmp PCR system" 9700® (Applied 

Biosystems™). All PCR mixtures (50 µL) contained 5 µL of DNA template, 1X Taq DNA 

polymerase buffer (MP Biomedicals™), 1 µL of dNTP (10 mM of each dATP, dCTP, dGTP 

and dTTP), 10 µM of each primer and 0.5 µL of Taq DNA polymerase (MP Biomedicals™). 

Negative controls were also carried out with DNA extractions performed without any sample. 

For all controls, no PCR products were detected. Inhibition of PCR amplification by soluble 
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contaminants in the DNA extracts was also tested as described elsewhere (Juniper et al., 

2001). 

Archaeal 16S rRNA gene amplification was conducted by nested PCR with combination of 

primers A8f (5’-CGG TTG ATC CTG CCG GA-3’) and A1492r (5’-GGC TAC CTT GTT ACG 

ACT T-3’) in the first round (Teske et al., 2002; Lepage et al., 2004), and with A344f (5’-AYG 

GGG YGC ASC AGG SG-3’) and A915r (5’-GTG CTC CCC CGC CAA TTC CT-3’) in the 

second round (Stahl & Amann, 1991; Sørensen et al., 2004). PCR cycles for the first round 

(A8f/A1492r), and for the second round (A344f/A915r) were as previously described 

(Roussel et al., 2009a). To minimize PCR bias, five independent PCR products from the first 

round were pooled and purified (QIAquick PCR purification Kit; Qiagen™) and used as 

template for the second round. This nested PCR was necessary to obtain visible PCR 

products on a 0.8% (w/v) agarose gel stained with ethidium bromide. 

A portion of the mcrA gene was amplified using the ME primers (Hales et al., 1996) with the 

following reaction conditions as described elsewhere (Roussel et al., 2009a). A fragment of 

the pmoA gene was amplified using the pmoA189-mb661 primer couple (Holmes et al., 

1995; Costello & Lidstrom, 1999) with the following reaction conditions: 1 cycle of 4 min at 

92°C, 35 cycles of 1 min at 92°C, 1.5 min at 55°C and 1 min at 72°C, and 1 cycle of 9 min at 

72°C. A portion of the dsrA gene was amplified using the DSR1F+ and DSR-R primers 

(Kondo et al., 2004) with the following reaction conditions: 1 cycle of 5 min at 94°C, 35 cycles 

of 30 s at 94°C, 30 s at 54°C and 2.5 min at 72°C, and 1 cycle of 8 min at 72°C. For all 

functional genes, two rounds with the previous reaction conditions were required to obtain 

visible amplification products. An aliquot (5 µL) of three pooled PCR products of the primary 

amplification was used as template for the second amplification round. 

CM-DGGE analysis 

In order to obtain the general archaeal 16S rRNA gene diversity associated with the 

hydrothermal environment and to compare it with the seawater diversity, a preliminary CM-

DGGE analysis was performed as described elsewhere (Roussel et al., 2009b). 
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After amplification of the nested PCR products, using two different fluorescent reverse 

labelled (Cy3 or Cy5) primers from total DNA from either a hydrothermal sample or seawater, 

these were pooled and loaded into the same lane. Archaeal 16S rRNA gene amplification 

was performed with primers Saf-PARCH 519r, labelled with either Cy3 (hydrothermal 

samples) or Cy5 (seawater), following touchdown PCR protocol as previously described 

(Nicol et al., 2003). All manipulations were performed in the dark. The PCR products were 

analyzed by DGGE using a DCode Universal Mutation Detection System
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® (BioRad™) on a 1 

mm thick (16 × 16 cm) 8% (w/v) polyacrylamide gel (acrylamide/bisacrylamide, 40%, 37.5:1, 

BioRad™) with a denaturant gradient between 30 and 70% prepared with 1 × TAE buffer (pH 

8, 40 mM Tris Base, 20 mM acetic acid, 1 mM EDTA, MP Biomedicals™) and poured with a 

"Gradient maker" (Hoefer SG30®). Electrophoresis was carried in 1 × TAE buffer at 60°C for 

330 min at 200 V (initially at 80 V for 10 min). The gel was scanned using a Phospho 

fluorimager Typhoon 9400® (Amersham Biosciences™). 

Cloning and sequencing 

Fourteen 16S rRNA gene, one dsrA gene, four mcrA gene, and eight pmoA gene clone 

libraries were constructed. To minimize PCR bias (Polz & Cavanaugh, 1998), five 

independent PCR products were pooled, purified (QIAquick PCR purification Kit; Qiagen™), 

and cloned into Escherichia coli (XL10-Gold; Stratagene™) using the pGEM-T Easy vector 

system I (Promega™) following the manufacturer’s instructions. Positive transformants were 

screened by PCR amplification of the insert using the vector-specific M13 primers. Plasmid 

extraction, purification and sequencing of the insert were carried out by the sequencing 

Ouest-Genepole platform® of Roscoff Marine laboratory (France). 

Phylogenetic analysis and statistical analyses 

Chimeras (Cole et al., 2003) were excluded from the clone libraries and a total of 759 

sequences (including those from the 16S rRNA gene and functional genes) were used for 

further phylogenetical analysis. The phylogenetic placement was carried out using NCBI 
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BLAST search program within GenBank (http://www.ncbi.nlm.nih.gov/blast) (Altschul et al., 

1990). The 16S rRNA gene sequences (~553 bases) were then edited in the BioEdit 7.0.5.3 

program (Hall, 1999) and aligned using CLUSTALW (Thompson et al., 1994). The 

phylogenetic trees were constructed by the PHYLO_WIN program (http:// pbil.univ-lyon1.fr/) 

(Galtier et al., 1996) with Neighbour-Joining method (Saitou & Nei, 1987) and Jukes and 

Cantor correction. The nonchimeric mcrA (~0.76 kb), pmoA (~0.51 kb) and dsrA (~0.22 kb) 

sequences were translated into amino acids using BioEdit and then aligned using 

CLUSTALW,
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 and the PHYLO_WIN program with Neighbour-Joining algorithm, and PAM 

distance (Dayhoff et al., 1978) was then used for phylogenetic tree construction. For the 

entire phylogenetic reconstruction, the robustness of inferred topology was tested by 

bootstrap resampling (1000), values over 50% are shown on the trees. The richness from the 

clone libraries was estimated, with the rarefaction curves at 99%, 97% and 95% sequence 

identity levels, using the DOTUR program (Schloss & Handelsman, 2005). Operational 

taxonomic units (OTUs), using a 95% or 97% sequence similarity, were generated with the 

SON program (Schloss & Handelsman, 2006), and the percentage of coverage (Cx) of the 

clone libraries was calculated by Good’s method (Good, 1953) as described by Singleton 

and colleagues (Singleton et al., 2001). Statistical estimators, the significance of population 

differentiation among clone libraries (FST) (Martin, 2002), and the exact tests of population 

genetic differentiation (Raymond & Rousset, 1995), were calculated using Arlequin 3.11 

(Excoffier et al., 2005). 

Nucleotide sequence accession numbers 

The sequences are available from GenBank database under the following accession 

numbers and names: 16S rRNA gene (FN650174 to FN650288), mcrA gene (FN650315 to 

FN650322), dsrA (FN650289 to FN650291) and pmoA (FN650292 to FN650314). 
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Results 241 
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Site description 

A total of 15 samples encompassing fluids, chimney fragments and sediments, were 

retrieved from three Atlantic ultramafic-hosted hydrothermal sites: Rainbow, Lost City and 

Ashadze (Fig. 1). The dilution of the hydrothermal fluid sample was estimated according to 

pH measurements. Overall, the three sites had much higher hydrogen (<16 mM) and 

abiogenic methane (<2.5 mM) concentrations than the MAR basaltic-hosted hydrothermal 

sites (Charlou et al., 2010). 

All the hydrothermal fluid samples from the Rainbow site were retrieved from the “thermitière” 

chimney group (Fig. 1e), except the “PP27 swarm” sample which was obtained in close 

proximity to a shrimp swarm on the side of the PP27 chimney. The “thermitière” chimney 

group was composed of both diffuse and black smoker venting. The Rainbow sediment 

samples were retrieved nearby the hydrothermal chimneys and were predominantly made of 

pelagic sediment (98% calcite) with a small amount of hematite, indicating a small 

hydrothermal contribution (Fig. 1d). For this study, the maximum temperature measured at 

Rainbow was 324°C, and the less diluted hydrothermal fluid analyzed had a pH of 3.40 (Fig. 

2b), and high concentrations of hydrogen (>10 mM), carbon dioxide (17 mM), iron (>17 mM) 

and methane (>1mM) (Charlou et al., 2010). 

The Lost City fluid samples were obtained from one of the hottest venting areas of this site, 

which was located above a flange (Fig. 1c). To date, Lost City is a unique off-axis 

hydrothermal site expulsing fluids with a high pH (~ 11), as opposed to the other known 

ultramafic environments that are acidic (Rainbow, Ashadze pH = ~ 3). The maximum 

temperature recorded at Lost City (93°C) was lower than for Rainbow and Ashadze. The less 

diluted hydrothermal fluid analyzed had a pH of 11.75 (Fig. 2a), and high concentrations of 

hydrogen (>7 mM) and methane (0.9 mM). 

Ashadze, a hydrothermal field that was recently explored for the first time during the French-

Russian Serpentine cruise (Fouquet et al., 2008), is one of the deepest active black smoker 
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fields discovered so far (4100 m depth). Ashadze is characterized by an ultramafic rock 

environment (Charlou et al., 2007; Fouquet et al., 2007; Fouquet et al., 2008). Several 

groups of active one to two meter high chimneys were observed at Ashadze 1 site. The fluid 

and chimney fragments were obtained from two different active chimneys in a unique group 

near the SE-2 marker (Fig. 1f). For this study, the maximum temperature measured at 

Ashadze was 353°C. The less diluted hydrothermal fluid analyzed had a pH of 4.02 (Fig. 2b), 

and high concentrations of hydrogen (>10 mM), carbon dioxide (>2.5 mM), iron (7.3 mM) and 

methane (>0.80 mM). 

Archaeal 16S rRNA gene analyses 

CM-DGGE. All the 16S rRNA gene PCR products from all the samples were screened by 

Co-Migration DGGE (CM-DGGE) prior cloning, in order to estimate the archaeal 

phylogenetic diversity of each hydrothermal sample and to compare it directly with the 

seawater diversity (Fig. 2a). Band pattern intensities from all Lost City samples, and from the 

less diluted hydrothermal fluids, were weaker than for all the other samples, suggesting a 

lower biomass and/or high concentration of PCR inhibitors (Fig. 2a). The archaeal seawater 

CM-DGGE band pattern was different from all the hydrothermal fluid and chimney band 

patterns (Fig. 2a), suggesting low levels of seawater contamination. The band patterns from 

hydrothermal samples were mostly composed of DGGE fragments with higher melting 

points, a probable consequence of higher GC content of the 16S rRNA gene. The high-GC 

content of these 16S rRNA gene sequences indicates that the Archaea could be 

hyper/thermophiles (Kimura et al., 2006), as also suggested by the several putative 

hyper/thermophilic lineages detected in the clone libraries from hydrothermal fluids and 

chimneys (Archaeoglobales, Methanococcales, Thermococcales, Methanopyrales, 

Desulfurococcales, Nanoarchaeota, DHVE; Fig. 2b). 

Clone libraries. After technical optimization and removal of soluble PCR inhibitors and in 

order to amplify sufficient PCR product for cloning, archaeal amplifiable DNA from all 

samples was retrieved by nested PCR. However, no sufficient amplified PCR product was 
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obtained for cloning from the less diluted fluid samples (pH 11.75) and from the chimney 

samples from Lost City. F
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ourteen different 16S rRNA gene clone libraries were constructed, 

representing a total of 610 sequences. The coverage values for the 16S rRNA gene clone 

libraries ranged from 68 to 97%, based on a 97% sequence similarity level (Fig. 2b). On the 

whole, rarefaction curves were asymptotic for all clone libraries, based on a 95% sequence 

similarity level, confirming sufficient sampling effort (Fig. S1). 

The overall archaeal diversity analyzed was similar to previous studies (e.g. Brazelton et al., 

2006; Flores et al., 2011) and very heterogeneously distributed between the sites (Lost City, 

Rainbow, and Ashadze) and between types of samples (seawater, hydrothermal fluid, 

chimney and sediment). The number of OTUs per clone library ranged from five to nineteen, 

based on a 95% genus level of phylotype differentiation (Schloss & Handelsman, 2004), and 

the Shannon-Wiener index of diversity ranged between 0.63 and 3.04 (Fig. 2b). The archaeal 

diversity indices of all the samples were in the same range, except for the fluid associated 

with Lost City which, as previously described (Schrenk et al., 2004), displayed the lowest 

detectable diversity (Fig. 2a and 2b). On average, the hydrothermal samples contained six 

different lineages, except for Lost City (Fig. 2a and 2b), which is also in agreement with most 

published studies on hydrothermal environments (e.g. Takai et al., 2001; Nercessian et al., 

2003; Schrenk et al., 2003; Schrenk et al., 2004; Takai et al., 2004b; Kormas et al., 2006; 

Page et al., 2008; Nunoura et al., 2010). All the 16S rRNA gene sequences obtained from 

the clone libraries were assigned to 95 OTUs, based on a 95% sequence similarity level, 

forming a total of 21 different phylogenetic lineages (Fig. 2b, 3a and 3b). On the whole, 16S 

rRNA gene sequences were related to Euryarchaeota (51%), Crenarchaeota (48%) and 

Nanoarchaeota (1%). The 16S rRNA gene clone libraries obtained from hydrothermal 

samples (fluid and chimney) were dominated by sequences related to Euryarchaeota (69%), 

whereas sequences related to Crenarchaeota were a majority in the sediment (92%) and 

seawater samples (70%) (Fig. 2b). Seven of the fifteen Euryarchaeota lineages detected had 

at least one known cultured representative, and six of these seven had known thermophilic 

Archaea (Halobacteriales, DHVE2, Archaeoglobales, Methanococcales, Thermococcales, 
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Methanopyrales). Although three of the five Crenarchaeota lineages detected had at least 

one cultured representative, only one was known to be thermopilic (Desulfurococcales). 

Moreover, Marine Group I (MG-I) Archaea had the highest intra-lineage diversity 

representing 25 OTUs based on a 95% genus level of phylotype differentiation. 

Functional gene clone libraries 

Diversity of mcrA gene. The operon coding for the MCR-I, which includes McrA subunit, is 

found in all known methanogens (Reeve et al., 1997). Four mcrA clone libraries were 

obtained from sediment, fluid and chimney samples from Ashadze and Rainbow sites. 

Although detected by previous studies (Kelley et al., 2005), no mcrA gene sequences were 

detected from Lost City samples. The diversity of the four mcrA libraries was limited to 

sequences related to the H2/CO2 methanogens Methanopyrales and Methanococcales 

orders (Fig. 4a), congruently with the 16S rRNA gene clone libraries (Fig. 3a). mcrA gene 

sequences affiliated to Methanopyrales were only detected at Rainbow. Moreover, the mcrA 

gene sequences from Rainbow and Ashadze matched the two groups of uncultured 

methanogenic Archaea previously retrieved from Rainbow (Nercessian et al., 2005). 

Diversity of dsrA gene. Sequences coding for the dsrA gene were only retrieved from 

Ashadze chimney 1 (Fig. 4b). dsrA gene sequences were previously detected in chimney 

samples from Lost City (Gerasimchuk et al., 2010), and in sediments from Rainbow 

(Nercessian et al., 2005). All dsrA gene sequences detected from Ashadze site were all 

related to sequences from marine sediments and East-Pacific Rise hydrothermal vents, as a 

probable consequence of a lack of dsrA gene sequences from the MAR in the databases. 

dsrA gene sequences were mainly affiliated to sequences from the Desulfobulbaceae family 

(Fig. 4b). 

Diversity of pmoA gene. The pmoA gene was the most widespread functional gene detected, 

as a PCR amplification was obtained on eight out of the fifteen samples tested (Fig. 2b and 

4c). The phylogeny of the pmoA gene is usually poorly resolved, the bacterial pmoA gene 

being distantly related to the ammonia monooxygenase subunit A (amoA) (Holmes et al., 
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1995; Nicol & Schleper, 2006), as revealed by incongruence between tree topologies 

performed with different phylogenetic methods. However, two groups of pmoA sequences 

from Rainbow fluids and Ashadze chimney samples clustered (cluster pmoA 1 and cluster P-

A) with sequences related to thermophilic methylotrophs (Inagaki et al., 2003; Hirayama et 

al., 2007)(Fig. 4c). Moreover, pmoA gene sequences from sediments from Rainbow grouped 

into two major clusters (cluster pmoA 2 and pmoA 3). Sequences from cluster pmoA 2 did 

not have any closely related sequences (Fig. 4c). 

Community structures and distribution analyses 

Although the seawater and the Rainbow sediment CM-DGGE band patterns were quite 

similar (Fig. 2a), all the sediment clone library community structures were indistinguishable 

from the combined communities and significantly different (P <0.001) from the seawater (Fig. 

2b). Insignificant FST and P tests (P < 0.001), based on an analysis at a 97% sequence 

similarity level, suggested that community structures from all the Rainbow hydrothermal 

fluids and Ashadze chimney 1 clone libraries were similar and indistinguishable from the 

combined communities (Fig. 2b). However, although the archaeal community structures from 

all the Rainbow hydrothermal fluids were also from similar lineage distributions, all the 

Ashadze chimney and fluid samples had significantly different population structures (P 

<0.001; Fig. 2a and 2b). The archaeal diversity of all the other clone libraries was also 

significantly different from the seawater clone library (P < 0.001), showing that the 

hydrothermal vent archaeal communities are probably adapted to their environment. 

According to pH measurements, the archaeal diversity in the hydrothermal fluids was always 

the most reduced in the less diluted fluids (Fig. 2b). Moreover, a correlation was also 

observed between Methanococcales (P < 0.001) and Thermococcales (P < 0.05) lineages 

and the Rainbow fluids. Correlations were also shown between MG-I lineage and the 

hydrothermal sediments (P < 0.01), and between the unaffiliated Methanosarcinales cluster 

and the Lost City fluids (P < 0.0001). 
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High diversity of putative chemolithoautotrophs 

Overall, the analysis of the phylogenetic data showed a specific distribution of different 

putative metabolic processes over the different MAR ultramafic-hosted hydrothermal 

environments that were mainly dominated by putative chemolithoautotrophs. 

Putative ammonia-oxidizing Crenarchaeota. Marine Group I (MG-I) was the most ubiquitous 

lineage found in the MAR ultramafic-hosted hydrothermal environments, as sequences 

related to the MG-I Archaea were detected in the majority of clone libraries (93%). 

Interestingly, the archaeal community structure of the seawater clone library was dominated 

by sequences related to MG-I (41%) and Marine Group II (48%), but was significantly 

different from all the other clone libraries (P < 0.001). Congruently, Takai and colleagues 

showed that the highest proportion of MG-I members in a hydrothermal environment from the 

Central Indian Ridge, was found in the seawater adjacent to the hydrothermal emissions 

(Takai et al., 2004c). MG-I sequences also dominated the sediment 16S rRNA gene clone 

libraries (≥ 86%), as commonly found in marine surface sediments (Inagaki et al., 2001; 

Teske & Sorensen, 2008; Roussel et al., 2009b). The highest diversity indices were also 

observed in these sediment samples, as a consequence of the very high intra-phylum 

diversity observed within the MG-I. However, all the MG-I 16S rRNA gene sequences from 

the sediment clustered in phylogenetic groups different from the seawater MG-I, suggesting 

that specific MG-I communities could be associated with sedimentary environmental 

conditions (Roussel et al., 2009b). Moreover, the G + C content of all the MG-I sequences 

ranged between 48% to 52%, in opposition to the high-GC content of the 16S rRNA gene 

sequences from hydrothermal fluids or chimneys, thus supporting the hypothesis that these 

MG-I Archaea are probably adapted to the cooler ecological niches of the hydrothermal 

environments (Kimura et al., 2006; Ehrhardt et al., 2007). Several studies also showed that 

specific phylogenetic groups of MG-I Archaea appear to be endemic to basaltic crust 
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environments (Ehrhardt et al., 2007; Mason et al., 2007; Mason et al., 2009). Some of these 

specific subclades of MG-I Archaea could therefore be adapted to various environments as 

they were also detected in aerobic and anaerobic basalt enrichment cultures and sediment 

slurries (Mason et al., 2007; Webster et al., 2010). Hence, as the MG-I Archaea were 

widespread in our hydrothermal fluid and chimney clone libraries, their presence could be the 

result of the mixing of ambient seawater with cool niche water in the rocks of the 

hydrothermal system. 

MG-1 Archaea, regularly described as aerobic autotrophic ammonia oxidizers (Francis et al., 

2005; Konneke et al., 2005; Hallam et al., 2006), are commonly found in seawater and 

marine sediments, forming several phylogenetic clusters with several cultured relatives (e.g. 

Preston et al., 1996; Konneke et al., 2005). Moreover, based on the analysis of the first 

sequenced genome of a cultured relative (Cenarchaeum symbiosum), the MG-1 were 

proposed as a novel archaeal phylum named Thaumarchaeota (Brochier-Armanet et al., 

2008). Interestingly, moderate thermophilic ammonia-oxidizing crenarchaeotes were recently 

isolated from hot springs (de la Torre et al., 2008; Hatzenpichler et al., 2008) and may also 

play a major role in the nitrogen cycle in these environments (Zhang et al., 2008; Wang et al., 

2009). High ammonium concentration and removal rates were previously measured from a 

Pacific hydrothermal system (Lam et al., 2008), and a thermophilic origin for anaerobic 

ammonium oxidation was also suggested (Canfield et al., 2006). Hence, according to their 

widespread dissemination in hydrothermal systems, as shown in several studies, and due to 

the high mixing processes occurring in these dynamic systems (e.g. Takai et al., 2004c), 

MG-I may also play a role in ammonium oxidation in hydrothermal systems as previously 

suggested for marine basalts (Mason et al., 2007; Mason et al., 2009). 

Putative hydrogen-oxidizing chemolithoautotrophs. All the ultramafic hydrothermal fluids from 

Rainbow, Ashadze and Lost city were highly enriched in abiogenic methane and hydrogen as 

a result of serpentinization reactions between ultramafic rocks and seawater (Holm & 

Charlou, 2001; Charlou et al., 2002; Allen & Seyfried, 2004). Moreover, McCollom showed 
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that ultramafic-hosted hydrothermal systems could theoretically provide twice as much 

chemical energy as comparable basaltic-hosted systems (McCollom, 2007). More than half 

of the archaeal lineages detected from Rainbow, Ashadze and Lost City were related to 

known cultured species, two thirds of which were involved in hydrogen or methane cycling 

processes, supporting the theory that these ecosystems could be mainly fuelled by 

hydrothermal fluids highly enriched in hydrogen and methane. 

Methanogenesis was the most common putative hydrogen-oxidizing metabolism detected 

among ultramafic hydrothermal fluids and chimney samples. Indeed, among all archaeal 

lineages in the hydrothermal samples, Methanococcales was the most widespread, as it was 

detected in a majority of the clone libraries (78%) obtained from hydrothermal fluids or 

chimney samples. Interestingly, all the sequences related to Methanococcales from Rainbow 

and Ashadze grouped with sequences previously detected at Rainbow (Nercessian et al., 

2005), suggesting that these could be long-term stabilized population in these chemically 

slow evolving environments (Charlou et al., 2002). Methanococcales Archaea are strictly 

anaerobic autotrophic methanogens, using hydrogen and carbon dioxide or formate as 

energy sources (Whitman et al., 2001). Strains affiliated to Methanocaldococcus infernus 

were successfully cultured from hydrothermal chimney samples from Rainbow and Ashadze 

(Jeanthon C. and L’Haridon S. personal communication, respectively). Moreover, the 

methanogenic potential of Methanococcales at Rainbow and Ashadze was also confirmed by 

the detection of mcrA genes related to Methanothermococcus thermolithotrophicus (> 97% 

similarity) and Methanocaldococcus infernus (> 97%). Although hyperthermophilic or 

thermophilic members of the Methanococcales are commonly cultured and detected with 

molecular tools from marine hydrothermal vent systems (e.g. Kelley et al., 2002; Nercessian 

et al., 2003; Schrenk et al., 2003; Takai et al., 2004a; Perner et al., 2007; Page et al., 2008), 

Schrenk and colleagues reported that Methanococcales encompassed a low proportion 

(<5%) of the hydrothermal prokaryotic communities associated with the walls of a sulphide 

chimney, whereas on different hydrothermal sites Takai and colleagues reported proportions 
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up to 76.5% (Schrenk et al., 2003; Takai et al., 2004a). These differences could be linked to 

environmental factors such as the high hydrogen production from these ultramafic systems, 

which fuel these communities. 

Moreover, putative hyperthermopilic methanogens were also represented by 

Methanopyrales. Methanopyrales were rarely detected on the MAR by molecular methods 

(Flores et al., 2011), probably as a consequence of technical biases or of the restricted 

number of microbial studies of the MAR, though the first isolated member originates from a 

hydrothermal system north of Iceland (Kurr et al., 1991). Sequences related to 

Methanopyrales were rarely detected elsewhere (Nercessian, 2003; Takai et al., 2004a; 

Ehrhardt et al., 2007; Page et al., 2008). However, in this study, eighteen sequences related 

to Methanopyrus kandleri (>96% similarity) were detected from Rainbow and Ashadze fluids. 

Interestingly, Takai and colleagues also reported recently an isolate related to Methanopyrus 

kandleri capable of methanogenesis with H2/CO2 under elevated hydrostatic pressures and at 

122°C (Takai et al., 2008). As mcrA gene sequences related to Methanopyrus kandleri (88% 

similarity) were also detected at Rainbow and as strains affiliated to Methanopyrales were 

successfully cultured from Rainbow and Ashadze (Jeanthon and L’Haridon personal 

communication, respectively), the Methanopyrales detected were probably capable of 

methanogenesis, thus supporting the hypothesis that these sites may harbour large 

methanogenic communities. 

Archaeoglobales, another putative hydrogen-oxidizing archaeal lineage, was also found to be 

widespread among hydrothermal samples from Rainbow and Ashadze. 16S rRNA gene 

sequences closely related (> 96% similarity) to members of genus Archaeoglobus, 

Geoglobus and Ferroglobus, were retrieved from Rainbow and Ashadze. Interestingly, a new 

dissimilatory Fe(III)-reducing Archaeoglobaceae was also isolated from Ashadze and 

reported as growing autotrophically on hydrogen (Slobodkina et al., 2009). As several 

Archaeoglobales are also iron-cycling Archaea (e.g. Kashefi et al., 2002), the high 

concentrations of iron (> 3 mM) released by acidic ultramafic-hosted hydrothermal 

environments could possibly fuel specific members of these Archaeoglobaceae communities. 
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Putative sulphur-cycling and methane-oxidizing communities. Members of the 

Archaeoglobales lineage also belong to the hyperthermophilic sulfate-reducing Archaea 

(Miroshnichenko & Bonch-Osmolovskaya, 2006). Interestingly, putative sulphur-cycling 

Archaea related to Thermococcales and Archaeoglobales lineages were detected in more 

than half of the clone libraries (56%) obtained from hydrothermal samples (fluid or chimney) 

and were always detected together, suggesting they could require similar environmental 

conditions. However, contrary to all Rainbow hydrothermal fluid samples, Thermococcales 

and Archaeoglobales at Ashadze were only detected from the Ashadze chimney 1 samples, 

suggesting that all hydrothermal vents from Ashadze site did not share optimal conditions for 

putative sulphur-cycling microorganisms. Interestingly, the first obligate piezophilic 

hyperthermophilic microorganism, Pyrococcus CH1, was also recently isolated from the 

Ashadze chimney 1 (Zeng et al., 2009). Members of the Thermococcales order are mainly 

characterized as thermophilic to hyperthermophilic anaerobic heterotrophs that ferment 

peptides and sugars, and their growth can also be stimulated by sulphur reduction 

(Miroshnichenko & Bonch-Osmolovskaya, 2006; Zeng et al., 2009). However, some 

members of the Thermococcales were also able to grow on acetate-utilising Fe(III) (Summit 

& Baross, 2001) or capable of lithotrophic growth on carbon monoxide coupled with 

hydrogen production (Sokolova et al., 2004), thus matching the environmental conditions of 

ultramafic-hosted hydrothermal systems. It has also been suggested that Thermococcales 

and hyper/thermophilic members of the Methanococcales order could inhabit sub-seafloor 

ecosystems (Summit & Baross, 1998; Summit & Baross, 2001; Kelley et al., 2002; Takai et 

al., 2004a), and could be part of a hydrogen-driven subsurface lithoautotrophic microbial 

ecosystem (Nealson et al., 2005). 

Within methane cycling communities associated with Rainbow, putative methanotrophic 

ANME-2 sequences were detected, suggesting occurrence of anaerobic methane oxidation 

communities associated with anoxic habitats below 90°C (Kallmeyer & Boetius, 2004). 

Interestingly, dsrA gene sequences detected at Ashadze clustered with sequences 
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previously detected in methane-rich hydrothermal systems and related to the 

Desulfobulbaceae family (Teske et al., 2002; Nercessian et al., 2005), indicating that these 

putative sulfate-reducing bacteria could be linked to these specific environmental conditions. 

Besides, some members of Desulfobulbaceae can live syntrophically with ANME-3 members 

(Niemann et al., 2006). However, although 16S rRNA gene sequences related to ANME-2 

Archaea were detected, no ANME-3 Archaea were found. Nevertheless, the most 

widespread functional gene (pmoA) detected in ultramafic-hosted hydrothermal 

environments remained related to methanotrophic communities as a probable consequence 

of the high methane concentration prevailing in these ultramafic-hosted hydrothermal 

systems. Methanotrophic bacteria were also previously detected in Bathymodiolus species 

and among the gill chamber of Rimicaris exoculata at the Rainbow hydrothermal field 

(Duperron et al., 2006; Zbinden et al., 2008), suggesting that these symbionts could also be 

present in seawater. However, no known sequences related to symbionts were detected in 

the seawater, as a possible consequence of low cell concentrations or of a technical bias. 

Moreover, the phylogenetic distribution of the pmoA gene was related to the habitat, 

suggesting that different methanotrophic communities were specifically adapted to different 

ecological niches (e.g. sediments and fluid/seawater mixing zones). 

Specific distribution and ecological niches 

The different environmental conditions (temperature, pH, hydrostatic pressure, metabolic 

substrates) at the different MAR ultramafic-hosted hydrothermal sites generate diverse 

microbial ecological niches (hydrothermal fluid, chimney, sediment, and seawater) that seem 

to strongly select for specific communities. 

Site specific phylotypes. Although molecular techniques (PCR and cloning) used to build 

clone libraries are known to be inherently biased (Suzuki & Giovannoni, 1996; von 

Wintzingerode et al., 1997; Polz & Cavanaugh, 1998; Nocker et al., 2007), we assumed that 

the biases were equal for all samples as they were analyzed under the same strict conditions 

(storage, DNA extraction, PCR amplification, cloning, sequencing) (von Wintzingerode et al., 
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1997). However, comparisons of population structures from other studies using different 

experimental conditions remain unreliable. For example, archaeal diversity from Rainbow 

chimneys as described by Flores and colleagues (2011) was much higher than that 

described by Voordeckers and colleagues (2008), suggesting either spatial and temporal 

heterogeneity or a technical bias. Interestingly, archaeal diversity observed from the Rainbow 

fluids in the present study was similar to that from the chimneys analysed using 

pyrosequencing reported by Flores and colleagues (2011). The present study also shows 

that some communities seemed to be site-specific and specifically adapted to different 

ecological niches (e.g. sediments and fluid/seawater mixing zones). 

Sequences related to Nanoarchaeota, for example, were only detected in the Rainbow 

hydrothermal system, showing that the nanoarchaeal habitat extends to at least one of the 

deep hot marine hydrothermal systems of the MAR. The recently discovered novel 

Nanoarchaeota phylum has shown a wide distribution in high temperature ecosystems (Hohn 

et al., 2002; Huber et al., 2002), and may represent pioneering communities in deep-sea 

hydrothermal vents (McCliment et al., 2006). Nanoarchaeota could also represent a fast-

evolving euryarchaeal lineage related to Thermococcales (Brochier et al., 2005). Moreover, 

the nano-sized Nanoarchaeota were previously described to have a symbiotic relationship 

with Ignicoccus hospitalis, a member of the Desulfurococcales order isolated from the 

Kolbeinsey Ridge, north of Iceland (Paper et al., 2007). Interestingly, 16S rRNA gene 

sequences with 94% similarity to the hyperthermophilic chemolithoautotrophic suphur and 

hydrogen-utilizing Ignicoccus hospitalis, were also retrieved exclusively from the same 

Rainbow hydrothermal fluids, suggesting that a similar symbiotic relationship could also 

occur between the Nanoarchaeota and specific Desulfurococcales from Rainbow. 

Differences between the composition of archaeal communities associated with the two 

hydrothermal chimneys from Ashadze could be probably linked to environmental factors as 

the Ashadze chimney 3 has a higher copper concentration than chimney 1 (Charlou JL., 

Donval JP. and Konn C., unpublished). Moreover, 16S rRNA gene sequences related to 
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Halobacteriales were only detected from Ashadze, which is to date the deepest known 

hydrothermal site. The highest similarity with a cultured relative was Natronomonas 

pharaonis (98%), an extremely halo-alkaliphilic archaeon. The occurrence of halotolerant 

prokaryotes in hydrothermal environments, growing at higher NaCl concentrations than most 

marine microorganisms, was previously reported (Takai et al., 2001). Due to phase 

separation it is admitted that venting of a condensed vapor phase with low salinity will 

generate a high salinity phase at depth. This phase may be venting later or be trapped in the 

subsurface environments. In addition some authors have suggested a double diffusive 

hydrothermal system where brines are trapped in the deepest part of the system and 

exchange only heat with the upper convective system (Bischoff & Rosenbauer, 1989; 

Fouquet et al., 1993). If partially cooled, this deep high salinity reservoir may constitute an 

extensive location for halotolerant prokaryotes. Hence, it was also suggested that these 

communities could be associated with a sub-vent ecosystem, as well as with hydrothermal 

chimneys (Kaye & Baross, 2000; Takai et al., 2001). 

As previously described, the off-axis Lost City hydrothermal system is remarkable by its 

geological, geochemical and biological settings (Kelley et al., 2005). The archaeal diversity 

associated with hot and very alkaline Lost City hydrothermal fluid was limited to unaffiliated 

Methanosarcinales and to MG-I sequences. The detected unaffiliated Methanosarcinales 

sequences matched the Lost City Methanosarcinales cluster (99% similarity) described by 

Schrenk and colleagues (Schrenk et al., 2004), suggesting that these Archaea were involved 

in methane cycling processes (Schrenk et al., 2004; Boetius, 2005). However, no mcrA gene 

sequences were detected at Lost City, as a likely consequence of low cell densities in the 

Lost City fluids (Brazelton et al., 2006). Members of the Lost City uncultured 

Methanosarcinales cluster are probably endemic communities associated to cooler (<95°C) 

and very alkaline habitats as they were not detected from any other hydrothermal sites. The 

occurrence of molecular genetic evidences in hot and very alkaline fluids also suggests that 

the Lost City Methanosarcinales have physiological potentials beyond the capacities of any 

known cultured isolates (Mesbah & Wiegel, 2008). 
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Specific ecological niches. To summarize, besides some specific Archaea that seemed 

endemic to some hydrothermal sites, the distribution of archaeal phylotypes and putative 

metabolic processes was linked to different microbial niches (seawater, sediments, 

macrofaunal communities, hydrothermal chimneys and fluids, Fig. 5). The cold and 

oxygenated seawater (< 10°C) overlaying the hydrothermal systems probably represented 

one of the largest microbial niches, and was characterized only by marine group lineages, 

some of which could be aerobic ammonia oxidizers. These psychrophilic seawater 

communities surrounding hydrothermal vents are most likely to benefit from high ammonium 

inputs from the chemolithotrophic primary producer associated with the hydrothermal 

structures. Another large ecological niche is probably the cold (< 10°C) and porous 

sediments surrounding the hydrothermal systems, which may represent a stable environment 

and suitable substrate for selection of specific seawater phylotypes (MG-I) and for 

colonization by specific psychrophilic unaffiliated Euryarchaeota and methylotrophic bacteria. 

The specific sedimentary microbial communities could be fuelled by the products from 

organic matter degradation, but also by methane seepage from these ultramafic systems. In 

contrast, the warm (~15°C) and relatively unstable mixing zones colonized by macrofaunal 

communities were probably the most metabolically active microbial niche benefiting from 

oxidized seawater compounds and from reduced compounds from the hydrothermal system. 

Mixing zones between the adjacent ecological niches also occur as a result of steep physico-

chemical gradients characterizing these dynamic hydrothermal environments, therefore 

resulting in exchanging microbial communities. Mesophilic to thermophilic methane-oxidizing 

bacteria could dominate the moderate oxic habitats in the mixing environment as revealed by 

the pmoA gene analyses. The detection of ANME-2 members suggests that moderate 

thermophilic (<90°C) anaerobic methanotrophs could occur in probably restricted anoxic 

habitats, as a consequence of the very steep oxygen and temperature gradients. 

Methanotrophic archaeal communities fuelled by hydrogen and carbon dioxide could 

probably dominate the more chemically reduced zones of this niche, which is closer to the 

hydrothermal chimney. The thermophilic communities composed of Methanococcales, 
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Methanopyrales, Thermococcales, Archaeoglobales, and Desulfurococcales were in all 

likelihood harboured by the hydrothermal chimneys and could mainly be composed of 

hydrogen-oxidizing members. Although hydrothermal fluids from ultramafic systems such as 

Rainbow do not have significant levels of hydrocarbons from biogenic origin, 

methanogenesis could still be the dominant archaeal metabolic process, as the high 

abiogenic methane concentration may mask the biogenic methane. Moreover, the 

hyper/thermophilic methanogen Methanococcales order and the Thermoccocales order could 

be typical members of the hot anaerobic microbial ecosystem that could extend below the 

Rainbow hydrothermal system seafloor. 
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Captions 
Fig. 1. (a) Location map of Atlantic ultramafic-hosted hydrothermal sites mentioned in this 

study. (b) Photograph of the sediment sampling at Lost City hydrothermal field. (c) 

Photograph of the fluid sampling using titanium syringe at Lost City hydrothermal field. (d). 

Photograph of the sediment sampling using push-core devices at Rainbow hydrothermal 

field. (e). Photograph of the fluid sampling using titanium syringe at Rainbow hydrothermal 

field. (f). Photograph of temperature measurements at Ashadze 1 hydrothermal field. 

Fig. 2. (a) Co-migration denaturant gradient gel electrophoresis (CM-DGGE) analysis of 

archaeal 16S rRNA genes from seawater (blue) compared to Rainbow, Ashadze and Lost 

City hydrothermal environments (red). The white arrows indicate the position of faint DGGE 

bands. PCR products were amplified with the Saf-PARCH 519r*Cy5 (blue) or Saf-PARCH 

519r*Cy3 (red) primer set and electrophoresis was performed using a gradient of 30–70% 

denaturant. (b) Distribution of the archaeal phylogenetic communities based on 16S rRNA 

gene from three ultramafic-hosted hydrothermal sites. The phylogenetic affiliation of each 

clone sequence was determined by similarity analysis. For each phylogenetic affiliation, the 

average G + C content of the detected 16S rRNA gene sequences is shown in brackets. The 

relative abundance of each phylotype was calculated and represented in a column diagram. 

Cx indicates coverage percentage for each clone library. OTU indicates the number of 

operational taxonomic units (95%) for each clone library. SW indicates the Shannon-Wiener 

index of diversity. dsr, pmo and mcr, respectively indicate positive amplification of the 

functional genes. ND: not determined. The asterisks indicate groups of clone libraries with 

insignificant (P < 0.001) differences between all the diversity indices (FST and the exact test 
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method). ANME-2: anaerobic methane oxidizers, DHVE2: Deep-sea Hydrothermal Vent 

Euryarchaeota, MBG-D: Marine Benthic Group D, MBG-A: Marine Benthic Group A, MG-1 (II, 

III, IV): Marine Group 1 (II, III, IV), MBG-E: Marine Benthic Group E, UHE-1: Unaffiliated 

Hydrothermal Euryarchaeota. 

Fig. 3. (a) Phylogenetic tree representing the Euryarchaeota 16S rRNA gene sequences. 

Each phylotype is represented by one sequence with ≥97% similarity grouping. The tree was 

constructed using the Neighbor-Joining method with Jukes and Cantor correction. Bootstrap 

values <50% are not shown. Circles symbolize Ashadze clone libraries. Triangles symbolize 

Rainbow clone libraries. Squares symbolize Lost City clone libraries. Underlined sequences: 

seawater clone library. ANME: anaerobic methane oxidizers, DHVE: Deep-sea Hydrothermal 

Vent Euryarchaeota, MBG-D: Marine Benthic Group D, MBG-E: Marine Benthic Group E, 

SAGMEG: South African Gold Mine Euryarchaeotic Group, UHE-1: Unaffiliated Hydrothermal 

Euryarchaeota. (b) Phylogenetic tree representing the Crenarchaeota 16S rRNA gene 

sequences. Each phylotype is represented by one sequence with ≥97% similarity grouping. 

The tree was constructed using the Neighbor-Joining method with Jukes and Cantor 

correction. Bootstrap values <50% are not shown. Circles symbolize Ashadze clone libraries. 

Triangles symbolize Rainbow clone libraries. Squares symbolize Lost City clone libraries. 

Underlined sequences: seawater clone library. MCG: Miscellaneous Crenarchaeotal Group, 

MBG-B: Marine Benthic Group B, MBG-A: Marine Benthic Group A. 

Fig. 4. Phylogenetic trees based on translated partial amino acid sequences of functional 

genes (mcrA, dsrA, pmoA). The trees were constructed using the Neighbor-Joining method 

using PAM distance (Dayhoff et al., 1978). Bootstrap values <50% are not shown. Circles 

symbolize Ashadze clone libraries. Triangles symbolize Rainbow clone libraries. Squares 

symbolize Lost City clone libraries. (a) mcrA gene. (b) dsrA gene. (c) pmoA gene. 

Fig. 5. Hypothetical model (not to scale) of microbial ecological niches in acidic Atlantic 

ultramafic-hosted hydrothermal systems (Rainbow, Ashadze). Each ecological niche was 

described by its average temperature, potential electron donors and acceptors metabolized 
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by the microbial communities described in this study, and the distribution of these microbial 

communities. OM: Organic matter. *Lineage only detected from Ashadze. 

 

 

Supplementary material 

Fig. S1. Rarefaction curves for the 16S rRNA gene clone libraries from the Fairway and New 

Caledonia Basin sites (Schloss and Handelsman, 2005). The sequence identity levels are 

represented in brackets. 

 

 

 34



For Peer Review
-80 W -60 -40 -20 0

0

20

40 N

Rainbow

Lost City

Ashadze

Ba

b

c

def

Page 41 of 48

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Rainbow pH T°C

Cx
(%) dsr pmo mcrOTU SW

thermitière chimney C*

sea water

PP27 swarm*

thermitière diffusing chimney A*

thermitière diffusing chimney B*

7.84

7.38

6.34

5.8

6.04

11

13

154

315

>30087

85

80

72

68

Not Detectedthermitière chimney D - 3.40 324

X

X

X

X

- -

2.55

2.00

2.31

1.84

1.93

14

12

19

11

15

sediment top**

sediment middle**

sediment bottom**

81

82

80

X

X

X

X12

10

10

2.74

2.42

2.32

Ashadze pH T°C
Cx
(%) dsr pmo mcrOTU SW

Fluid chimney 1*

chimney 1

4.02 35397

69 -- X X X

X8

13

1.94

2.26

Fluid chimney 3

chimney 3

5.07 35083

84 --

14

7

2.17

1.70

sediment **

Fluide

Lost city
10.66

pH

93

T°C

88

Cx
(%)

72 --

dsr pmo mcr

X

OTU SW

5

16

0.63

3.04

(b)

Sediment
Fluid
Chimney

Rainbow Ashadze Lost City

21 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + 

2 + 

3 + 

4 + 

5 + 

6 + 

7 + 

8 + 

9 + 

10 + 

11  

12  

13  

14  

Rainbow, sediment top 

Rainbow, sediment middle 

Rainbow, sediment bottom 

Rainbow, PP27 swarm

Rainbow, thermitière diffusing chimney A 

Rainbow, thermitière diffusing chimney B 

chimney 3

Lost City, Fluid (pH 10.66) +

Lost City, Fluid (pH 11.75) +

Lost City, chimney +

Lost City, sediment +

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

Seawater

 

 

Ashadze, Fluid chimney 1 

Ashadze, chimney 1 

Ashadze, Fluid chimney 3 

Ashadze, 

(a)

 MBG-D (GC%: 56.7%)

 MG-III (GC%: 56.7%)

 MG-II (GC%: 55.0%)

 MG-IV (GC%: 55.5%)

 ANME-2 (GC%: 57.8%)

 Unaffiliated Methanosarcinales (GC%: 54.2%) 

 Nanoarchaeota (GC%: 63.0%) 

 Methanopyrales (GC%: 67.2%) 

 Thermococcales (GC%: 64.3%) 

 Methanococcales (GC%: 63.7%)

 Archaeoglobales (GC%: 65.1%)

 Desulfurococcales (GC%: 66.4%)

 MBG-E affilated (GC%: 62.3%)

 Unaffilialed Euryarchaeota Group (GC%: 51.3%)

 UHE-1 (GC%: 63.0%)

 DHVE2 (GC%: 62.6%)

 Halobacteriales (GC%: 59.5%)

 Unaffiliated Crenarchaeota (GC%: 63.0%)

 UIIa group (GC%: 63.1%)

 MBG-A (GC%: 55.5%)

 MG-1 (GC%: 50.8%)

NDND

NDND

NDND

Page 35 of 48

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 42 of 48

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 43 of 48

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 44 of 48

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 39 of 48

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

0 10 20 30 40 50

0

2

4

6

8

10

12

14

16

18

20 Achadze - fluid chimney 3

 

 99 %
 97 %
 94 %

0 20 40 60 80 100

0

5

10

15

20

25

30

35 Rainbow - fluid thermitière chimney C

 

 99 %
 97 %
 95 %

0 10 20 30 40 50

0

5

10

15

20 Lost City - fluide

 99 %
 97 %
 95 %

 

0 10 20 30 40 50

0

10

20

30 Rainbow - sea water

 99 %
 97 %
 94 %

0 10 20 30 40 50

0

2

4

6

8

10

12

14

16

18
Rainbow - fluid PP27 swarm

 99 %
 97 %
 95 %

0 10 20 30 40 50

0

5

10

15

20

25

30

Rainbow - sediment bottom

 99 %
 97 %
 95 %

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

Rainbow - sediment top

 99 %
 97 %
 95 %

0 10 20 30 40 50

0

5

10

15

20

25

Rainbow - fluid thermitière chimney A

 99 %
 97 %
 95 %

 

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35 Rainbow - sediment middle

 99 %
 97 %
 95 %

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

20 Achadze - fluid chimney 1

 100 %
 99 %
 98 %

0 5 10 15 20 25

0

2

4

6

8

10

12

14

Rainbow - fluid thermitière chimney B

 99 %
 98 %
 96 %

 

  

0 10 20 30 40 50

0

10

20

30

40

50 Lost City - sediment

 99 %
 97 %
 95 %

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

18

Achadze - chimney 1

 99 %
 97 %
 95 %

  

 

0 5 10 15 20 25 30 35 40

0

5

10

15

20 Achadze - chimney 3

 99 %
 97 %
 94 %

Rainbow Ashadze Lost City

Fig. S1. Rarefaction curves for the 16S rRNA gene clone libraries from the Fairway and New 
Caledonia Basin sites (Schloss and Handelsman, 2005). The sequence identity levels are 
represented in brackets.

Supplementary material

Page 40 of 48

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




