
HAL Id: hal-01144971
https://hal.archives-ouvertes.fr/hal-01144971

Submitted on 23 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remediating Logical Attack Paths Using Information
System Simulated Topologies

François-Xavier Aguessy, Lucie Gaspard, Olivier Bettan, Vania Conan

To cite this version:
François-Xavier Aguessy, Lucie Gaspard, Olivier Bettan, Vania Conan. Remediating Logical Attack
Paths Using Information System Simulated Topologies. C

ESAR 2014, Nov 2014, Rennes, France. C

ESAR 2014, Détection et réaction face aux attaques informatiques, pp.187, 2014, C

ESAR 2014. <hal-01144971>

https://hal.archives-ouvertes.fr/hal-01144971
https://hal.archives-ouvertes.fr


Remediating Logical Attack Paths Using
Information System Simulated Topologies

Category: Specialized

François-Xavier Aguessy1,2, Lucie Gaspard1, Olivier Bettan1, and Vania
Conan1

francois-xavier.aguessy@thalesgroup.com

1 Thales Group, 4 avenue des Louvresses, 92622 Gennevilliers, France
2 Telecom SudParis, 9 rue Charles Fourier, 91011 Evry, France

Abstract. With the increase of attacks and Information Systems get-
ting ever more complex, security operators need tools to help them pro-
tecting critical assets. An attack graph is a model to assess the level of
security of an Information System, but it can be used to compute actions
that mitigate the modeled threats. In this paper we present a method to
remediate the most relevant attack paths extracted from a logical attack
graph. In order to help an operator to choose between several remediation
candidates, we rank them according to a cost of remediation combining
operational and impact costs. We implement this method using MulVAL
attack graphs and several publicly available sets of data.

Keywords: logical attack paths, remediation candidates, MulVAL at-
tack graph, simulated topology, remediation costs, remediation database.

1 Introduction

Due to the increase in the number and complexity of attacks, any Information
System (IS) is vulnerable. Accurately assessing the risk is necessary but can be
difficult. An attack graph is a risk analysis model regrouping all the paths an
attacker may follow. It is composed of nodes, representing the actions possible
for an attacker. Nodes are linked together with edges, representing dependencies
between these actions. The main attack paths can be extracted from this graph
in accordance to the IS priorities. In this paper we do not take into account the
probability of occurrence of the attack path nor the damages it can do on the
IS, but rather focus on the computation of remediations to an attack path.

A remediation aims at protecting the IS against an attack path by preventing
its fulfillment. The nodes of an attack path not having any incoming edge are
the starting points of attacks and are called preconditions. It is possible to offer
remediation actions to apply on preconditions to mitigate the vulnerabilities and
secure the targeted assets. In this paper, the definition of remediation encom-
pass a patch, a firewall rule or an Intrusion Prevention System rule. Other more
complex remediations such as access control or security policy management will



not be investigated here. The computation of filtering remediations has required
the use of an accurate simulation of the IS network topology. To be usable in an
operational environment, remediation candidates have to be ranked according
to their operational and impact costs depending on the monitored IS. The as-
sessment of the impact cost requires both the simulation of network flows and a
functional model describing the normal behavior of the IS, in order to determine
which nominal services may be disturbed by the deployment of a remediation.

The main contributions of this paper are (1) the design of a remediation
process correcting the relevant attack paths rather than the whole attack graph
generally too complex, (2) the method to remediate these paths based on the
correction of attack preconditions, ranking remediation candidates according to
a cost function considering both operational and impact costs, (3) the build of a
generic remediation database assigning vulnerabilities with their remediations.

This paper is organized as follows: in Section 2, we briefly describe the state
of the art. Section 3 formally defines the attack path and its main components.
Section 4 explains how to compute remediations for an attack path. Section 5
describes the ranking of remediation candidates according to their cost. Section 6
details an implementation of this method with the MulVAL attack graph engine
we use for the experiments of Section 7. Finally, in Section 8 we compare our
model with the related work, before concluding on our work.

2 State of the art

2.1 Topological and functional models of the Information System

An efficient security analysis needs an accurate topological model of the system
studied. Recent developments have shown that models of an IS can be created
automatically from network scans [16] [10]. It can also be created by importing
the configuration of network devices as it is done in some commercial solutions
[28]. The model should be as accurate as possible to be exploitable. Nevertheless,
its completeness is not guaranteed by the available technology.

The functional model of an IS is complementary to the topological one. It
contains the dependencies between components of the IS and can be used to
improve the automation of the deployment of remediations. In [33], Toth and
Kruegel present a dependency model that allow to determine the impact of reme-
diations on the whole system. In [14], Kheir et al. propose a framework modeling
dependencies which handles both confidentiality, integrity and availability.

2.2 Attack graphs and attack paths

Attack graphs are a model regrouping all the steps an attacker may follow in an
IS during an attack. It has been first introduced by Phillips and Swiler in [25]. It
has been widely used ever since, thus many heterogeneous models are now behind
the name attack graph. Generally, vertices (also called nodes in the literature)
represent opportunities in an IS or actions that can be done by an attacker,



and edges (also called arcs in the literature) represent the dependency relations
between the opportunities and/or actions. An attack graph can be built using
information about the potential exploits that can be carried out on a network
and using existing vulnerabilities databases [19] [20]. A summary of the state of
the art on the early papers about attack graphs (from 2002 to 2005) has been
done by Lippmann and Ingols in [17]; a more recent by Kordy et al. in [15].

MulVAL, The Multi-host, Multi-stage Vulnerability Analysis Language tool
is an open-source attack graph engine created by Ou et al. [24]. It uses Datalog, a
logic programming language, in order to generate an attack graph in which nodes
are related to each other with logical relations (OR or AND). The other two
main attack graph engines are commercial products: Cauldron [11] (originally
presented by Jajodia et al. in [12]) and Artz’s NetSPA [3].

An attack graph contains targets and multiple paths to reach them. Such at-
tack paths can be extracted from the graph using different algorithms, according
to the needs. Swiler et al. describe in [31] shortest paths algorithms used to find
the most likely or lowest cost attack paths. In [26], Sawilla and Ou present a gen-
eralization of Google’s Page-Rank algorithm to identify the most critical attack
nodes. An attack path extraction and scoring function has also been presented
by Bettan et al. in PoSecCo, a FP7 European Research project [4].

2.3 Selecting remediations

Remediations to an attack can be regrouped in three types: corrective, active and
passive. The first one is the correction of the exploitable vulnerability. This is
generally implemented by patch management software. The technology is quite
mature (several tools exist, vendors regularly propose patches for their software)
but it suffers from limitations detailed by Cavusoglu et al. in [5]. The most
important is that patch deployment still requires human intervention: each patch
must be tested on all platforms to prevent conflicts or regressions before being
applied. The active remediations regroup those that prevent the exploitation of
a vulnerability that still exists after the deployment. This is for example the
case of simple filtering by a firewall or an Intrusion Prevention System (IPS).
An IPS blocks flows that has been flagged as abnormal thanks to a signature
or due to its statistical behavior [30]. More generally, an Intrusion Response
System (IRS) is a system that provides other types of responses to a detection.
This is a currently active research topic and many papers treat this subject, as
summarized by Shameli-Sendi et al. in [27]. Finally, the passive remediations
regroup the detection of the exploitation of a vulnerability and its report. This
is a last resort but is widely used, as it can help security operators to know what
happened in their IS. A system that only provides passive responses (alerts,
reports, logs...) is generally called Intrusion Detection System (IDS) [34].

Some papers propose techniques to compute or select remediations using
attack graphs. In [6], Cuppens et al. describe how the LAMBDA language, that
has been used to model attacks, can also be used to model counter-measures and
using the concept of anti-correlation allow to compute the appropriate counter-
measures for an attack. In [35], Wang et al. base their analysis on the initial



conditions of an attack graph to compute all hardening options for a network.
This approach has been improved by Albanese et al. in [2] with a near-optimal
algorithm more efficient and cost-sensitive. In [23], Noel and Jajodia describe
several methods to prioritize the deployment of patches depending on an attack
graph. In [9], Ingols et al. explain how they represent three types of counter-
measures (Firewall rules, IPSs and proxy firewall) in the NetSPA attack graph.
Attack graphs are also used by Noel and Jajodia [22] to compute the optimal
locations to deploy IDSs in an IS: they allow to minimize the cost of sensors
while keeping a complete coverage of potential attack paths.

2.4 Ranking remediations

There are sometimes several remediations that could be deployed for a detection.
Thus, they should be ranked to select the most appropriate one. Generally, this
evaluation contains an estimation of the impact of a remediation and thus rely
on a functional model as presented above. The ranking method presented by
Toth and Kruegel in [33] first uses an algorithm that evaluates the impact of the
remediations. Then, it advises to select the remediation with minimal negative
effect on legitimate users. In [14], Kheir et al. present how to compute an in-
dex called RORI which represents a return on investment of a remediation. It is
based on a dependency graph where are propagated the levels of Confidentiality,
Integrity and Availability of assets. This index can then be used to rank reme-
diations. An other parameter that can be taken into account when selecting a
remediation is the impact of such counter-measure against the success likelihood
of the attack. This kind of approach has been presented by Kanoun et al. in [13],
where they implement a model based on dynamic Markov Models to assess the
success likelihood of attacks. This model allow to select the most appropriate
counter-measures to prevent an attacker from reaching its objectives.

Selecting a remediation among many brings challenges to overcome because
it needs the knowledge of many parameters (costs parameters, functional and
topological models) and how to combine them. It also requires assumptions re-
garding the coverage of the remediations on the attack.

3 Attack paths and preconditions

3.1 Attack path representation

Definition 1. A logical attack graph G is a directed AND-OR graph repre-
sented by G(V,A) where:

– V is a set of vertices that describe logical facts. Each vertex could be an AND
(respectively an OR) vertex, meaning that this vertex needs the conjunction
(resp. the disjunction) of its incoming arcs to be true.

– A is a set of directed arcs that represent a logical dependency from the child
vertex to the parent one.



In an attack graph as defined above, it is possible to choose attack targets.
These are the vertices describing important final steps for an attacker. Based
on these targets can be built attack paths using a bottom-up approach from
the target to the upper preconditions of the attack graph. They can be ranked
according to their impact and probability of occurrence, but this is a full-fledged
subject that has been, for example, described in [4] or [26].

Definition 2. An attack path is an acyclic and logically valid subgraph of an
attack graph with one target and several preconditions.

Definition 3. The target of an attack path is the vertex whose outdegree is 0,
deg+(v) = 0 (no outgoing arcs).

Definition 4. A precondition in an attack path is a vertex whose indegree is
0, deg−(v) = 0 (no incoming arcs).

Definition 5. A subgraph S of an attack graph G is logically valid if S con-
tains at least one vertex and for each vertex v ∈ S, v ∈ G and
if deg−G(v) > 0 (more than one incoming arc in G):

– if v is an AND, all the parents and incoming arcs of v in G are in S,
– if v is an OR, at least one parent of v and its incoming arc in G is in S.

An attack path may have several intermediate goals but has only one main
goal: the target of the attack path. It contains one, several or all the possible
paths in the attack graph allowing to compromise this target.

3.2 Remediations can be applied only on preconditions

Proposing remediations to an attack path is searching the means to prevent
the attacks and protect its target. An attack path is a logical graph: a fact
is true if and only if the conjunction or disjunction of its parents is also true.
As a precondition does not have any parent, it is not deducted from any other
vertex. So, they are the first conditions from which all other vertices are deducted
and thus the only vertices where can be applied remediations. This is the basic
assumption on which we will build our remediation method.

Sufficient preconditions The attack path contains one target that should be
protected by the remediations. As the attack path is an AND-OR graph, it is
possible to compute all conjunctions of to-be-remediated preconditions, sufficient
to protect the target. This logical expression SP can be represented with a set
of disjunctions containing conjunctions as following:

SP =
∨
i

SPi =
∨
i

∧
j

SPi,j (1)

where
∨

is logical OR,
∧

is logical AND, SPi is a conjunction of preconditions
sufficient to protect the target (i indexing the conjunction of preconditions) and
SPi,j is a precondition to remediate (j indexing the preconditions).



Fig. 1. Recursive algorithm computing the conjunctions of sufficient preconditions

1: function computeSP(Vertex v) . Returns the list SP to delete the vertex v
2: if v is a precondition then . v has no parent
3: return [[v]] . it is the only precondition
4: else if v is an AND then
5: res←[[]]
6: for each parent p of v do
7: res← res;computeSP(p)
8: end for
9: return res .

∨
p∈{parents of v}

computeSP(p)

10: else if v is an OR then
11: res←computeSP(first parent of v)
12: for each other parents p of v do
13: res←conjunctionOfSets(res,computeSP(p))
14: end for
15: return res .

∧
p∈{parents of v}

computeSP(p)

16: end if
17: end function
18: function conjunctionOfSets(A, B) . Makes the conjunction of sets A and B
19: result← [[]] . A and B are Or/And sets: A =

∨
i

Ai, Ai =
∧
k

Ai,k

20: for i = 1 to size(B) do
21: buildingResult← A
22: for j = 1 to size(buildingResult) do
23: buildingResult[j]← buildingResult[j];B[i]
24: end for
25: result← result; buildingResult
26: end for
27: return result . (

∨
i

Ai) ∧ (
∨
j

Bj) =
∨
i,j

(Ai ∧Bj)

28: end function

In fact, computing SP is identical to find all the conjunctions of preconditions
sufficient to delete the target vertex according to the AND/OR formalism.

Definition 6. A conjunction of precondition SPi is sufficient to delete the
target t of an attack path AP if the deletion of each precondition SPi,j ∈ SPi

and its propagation in AP implies that henceforth t /∈ AP .

The recursive algorithm that computes SP can be found in Figure 1. It should
be called on the target of the attack path and will go up recursively along the
arcs. All conjunctions of preconditions computed with this algorithm allow to
prevent the access to the target, if remediated. Of course all preconditions can not
be remediated. If this is the case in a conjunction, the entire set of preconditions
will not be usable to successfully protect the target of the attack path.



Fig. 2. Remediation process based on attack paths

Attack 
Graph 
Engine

Extraction of 
attack paths 
and scoring Sufficient 

preconditions 
algorithm

Remediation of 
preconditions

Remediation 
candidates 
algorithm Operational 

cost
computation 

Impact cost
computation

Remediation 
candidates 

ranking

Network 
simulation

Topological 
model

Functional model

Attack 
graph

Attack 
paths

RA

SP

RC

Ranked 
remediation 
candidates

Remediation database

4 Remediation of an attack path

A diagram summarizing the remediation process can be found in Figure 2.

4.1 Remediate a precondition

A precondition contains a logical fact describing what can be used by an attacker.
We detail real preconditions and their remediations in Subsection 6.3, but will
first describe two general methodologies that can be applied to preconditions.

Simple remediations to preconditions The first case appearing when remediating
a precondition is a simple remediation that can be applied to negate this pre-
condition. This usually corresponds to the first type of remediation presented
in the state of the art. You need a database that makes the link between the
precondition (eg: the vulnerability) and how you can remediate it (eg: a patch).

Remediations using the network topology Some remediations require more ad-
vanced techniques. This is the case of those which try to prevent the exploitation
of a vulnerability. It corresponds to the second type of remediation of the state
of the art. Computing such remediations requires an accurate knowledge of the
flows exchanged on the network and thus need to simulate the network topology.

4.2 Remediation candidates for an attack path

Each remediation potentially contains several elementary actions. More formally,
for each attack path, we have succeeded to compute:

– A disjunction of conjunctions of sufficient preconditions to remediate, in
order to protect the target of the attack path: SP

– A disjunction of conjunctions of remediation actions sufficient to prevent
a precondition p:

RA(p) =
∨
i

RAi(p) =
∨
i

∧
j

RAi,j(p) (2)

where RAi(p) is a conjunction of remediation actions allowing to prevent the
precondition p (i indexing each conjunction) and RAi,j(p) is a remediation
action (j indexing each action of the conjunction) each remediation action
RAi,j is constituted of the tuple (action to apply, machine to deploy it).



Fig. 3. Algorithm computing the remediation candidates

1: function computeCandidates(SP , RA) . Returns all remediation candidates
protecting an attack path.

2: res←[[]]
3: for SPi in SP do
4: res← res ; computeRemedsToPreconds(SPi, 1, RA)
5: end for
6: return res
7: end function
8: function computeRemedsToPreconds(SPi, j, RA) . Returns all conjunctions

of actions allowing to remediate the preconditions of SPi starting from j.
9: SPi,j ← SPi[j] . jth precondition to remediate

10: RAj ← RA[SPi,j ] . Remediations of jth precond
11: if empty(RAj) then . jth precondition can not be remediated
12: return [[]]
13: else
14: if j=size(SPi) then . Terminaison of recursion
15: return RAj

16: else
17: RAj+1..n ←computeRemedsToPreconds(SPi, j + 1, RA)
18: return conjunctionOfSets(RAj , RAj+1..n)
19: end if
20: end if
21: end function

We need to combine SP and RA to compute a disjunction of remediation
candidates containing the actions that allow to protect the target:

RC =
∨
i

RCi =
∨
i

∧
j

RCi,j (3)

where RCi is a remediation candidate (i indexing the number of candidates) and
RCi,j is a remediation action (j indexing the number of actions in the candidate).

An algorithm computing such remediation candidates is shown in Figure 3.

5 Costs of remediations

The last essential point for our remediation method is to estimate the cost of
a candidate. This will help an operator to choose between several candidates
remediating the same attack path. We have identified two principal sources of
cost that must be considered: the operational and the impact costs.

5.1 Operational cost

The first important cost for an operator deploying a remediation is the opera-
tional cost (OC). It represents the difficulty to implement the remediation on



the assets and to maintain it. For each remediation action RCi,j that should be
applied, we identified four categories in which this cost can be split.

1. Remediation cost (RC): This is the cost of the input necessary to apply
the remediation, for example, the price of a patch or of a signature.

2. Deployment costs (DC): This is the cost representing the workload to
apply the remediation on the concerned machine.

3. Test costs (TC): This is the cost to test that all important features of the
Information System are still working as expected, after the deployment.

4. Maintenance costs (MC): This is the cost per year of the maintenance
induced by the remediation. It reflects for example the increase of CPU,
memory, storage and treatment of logs that will be induced.

These elements can be expressed in a monetary unit and we detail in Sub-
section 6.5 how to compute them. The operational cost of a remediation action
is the sum of all these elements as shown in Equation 4.

OC(RCi,j) = RC + DC + TC + MC (4)

To simplify the estimation of the operational costs of a candidate containing
several remediation actions, we made the assumption that these actions are
independent. This assumption has been introduced and justified by Gonzalez-
Granadillo et al. in [8] as Axiom 1. This is moreover the most common case,
as the remediation actions are usually deployed on different machines or are of
different types. With this assumption, the operational cost of a candidate is the
sum of the operational costs of its actions, as shown in Equation 5.

OC(RCi) =
∑
j

OC(RCi,j) (5)

5.2 Impact cost

We propose here a basic impact cost (IC) function that measures the loss due
to the unavailability of services after the deployment of a remediation. This
function uses a list of (1) dependencies of business applications toward services,
(2) services toward network accesses and (3) interdependencies between services.
In addition to this are added cost values related to the temporary and permanent
unavailability (UC) of business applications.

Thanks to those parameters, we can compute the cost of unavailability of
all business applications before (on the real system) and after (on a simulated
system) deploying a candidate RCi, by checking recursively that the services
dependencies are verified as shown in Equation 6.

IC(RCi) =
∑

ba∈businessApp

isImpactedBy(RCi, ba) ∗ UC(ba) (6)

The impact cost is certainly the most important part to take into account
when deploying a remediation but it is perhaps also the most difficult to quantify,



as it is hard to estimate the cost if a business application is unavailable and to
know which applications will be disrupted by a remediation candidate. It is
therefore very important to provide security operators with indications about
such a cost, to help them choose at best the remediation to deploy.

5.3 Ranking remediation candidates

These costs allow us to attach a global cost C to a candidate as shown below:

C(RCi) = OC(RCi) + IC(RCi) (7)

The candidate cost function can be considered as a ranking function taking
as input an unsorted set of remediation candidates and that outputs a set of the
same candidates sorted according to their cost. This allow a security operator
to select one of the candidates that has the lowest cost.

As the remediation candidates cost function is only used to compare candi-
dates with each other, even if the cost parameters are not assigned exactly, it
does not change significantly the order between them. Thus, the details of the
cost models parameters are not required, but only need to represent a tendency,
in order to conserve the ranking between candidates. This assumption has also
already been justified by Gonzalez-Granadillo et al. in [8].

6 Implementation

6.1 Simulation of the network topology

As we need a simulated network topology representing the target IS, we created
a network simulator that accurately reproduces simple network behaviors of
hosts: we are able to simulate exchanges between hosts, calculate routes, test if
a packet can pass firewall rules, etc. We designed a pivot file in which we put
the topological information needed by the simulator. We also created connectors
to automatically build such a file. The first connector we built was a python
server that gathered the topological information collected by agents deployed on
Linux machines into the pivot format. The second connector was built for the
European Research Project PoSecCo [1], where we had an ontology containing
the network topology. We thus implemented a connector that was querying in
the ontology for the information needed.

6.2 Generation of attack paths

We use the open source attack graph engine MulVAL [24]. It requires three types
of inputs: topological, filtering and vulnerabilities information. We combine our
simulated topology with a vulnerability scan (of Nessus [32]) by merging the
information about services and their vulnerabilities extracted from the scanner
report into our topology. MulVAL inputs are stored in a file using the Datalog
language. It outputs an XML file containing the logical attack graph computed
thanks to its engine from which the attack paths are extracted.



Table 1. Main MulVAL preconditions and their remediations

Preconditions Description Possible remediations

hacl(src, dst, port, portocol) The host src has access to dst on
port using protocol

Deploy a firewall rule

vulExists(host, vulID, program) program on host has a vulnera-
bility vulID

Apply a patch or deploy a Snort
rule

networkServiceInfo(host, pro-
gram, protocol, port, user)

program on host launched as
user open port using protocol

Stop this network service

hasAccount(user, host, account) user has account on host Disable this account

6.3 Preconditions in MulVAL and their remediations

The main preconditions proposed by MulVAL to model attacks and their reme-
diations can be seen in Table 1. We will focus here only on three relevant types
of remediation for an enterprise: applying a patch, deploying a rule on an IPS
(preventing vulExists()) and deploying a firewall rule (preventing hacl()).

Application of a patch In order to propose the right patch to a vulnerability,
we use the parameter in the fact of the precondition vulExists containing the
identifier of a vulnerability, generally a CVE (Common Vulnerabilities and Ex-
posures) [20]. We use this identifier to look for known patches in the remediation
database we describe in Subsection 6.4.

Deployment of a firewall rule To compute the firewall rule that should be de-
ployed, we use all the parameters of the fact hacl(src, dst, port, protocol). This
precondition explains the network access the attacker needs for his attack. So, it
should be negated by the rule to deploy, which should have the following form:

DROP FROM s r c TO dst : port USING pro to co l

It can be generated according to the type of firewall aimed. For example, we
propose an automatic generation of iptables [18] firewall rules.

The last problem we need to deal with for the firewall rules proposal is
where it should be deployed. We use here the topology simulation presented in
Section 4.1 to determine the route followed by packets between src and dest:port.
We then deduce on which machine the firewall rule can be deployed.

Deployment of an IPS rule The last type or remediation we will detail is the
deployment of IPS rules for Snort [29] which prevent the exploitation of a vul-
nerability. For each vulExists related to an hacl, we can know (1) The Snort rules
that may exist to prevent the exploitation of the vulnerability by searching its
identifier in the remediation database presented in Subsection 6.4, and (2) the
network routes that may be used by the attacker to exploit this vulnerability,
by using the simulation of the network and a deduction process similar to the
calculation of the firewall rules. On each route, we must have an IPS host where
we can deploy the rule. Otherwise, the remediation is not possible. The rules we
propose here must be used with Snort in inline mode and they begin with the
drop keyword, meaning that we use it as an IPS.



6.4 Filling the remediation database

One challenge of the proposition of remediation is the ability to build automat-
ically a remediation database. We will describe here how we overcome it.

Database model We use a relational model stored in a SQLite file. We choose
to use a model similar to the one used in the National Vulnerability Database
[21] to represent vulnerabilities. Then, we added two tables corresponding
to the types of remediations. In order to have a N-to-N association with the
vulnerabilities, we also add a join table for each kind of remediation.

Patches We used the NVD [21] to find the links toward patches that correct
vulnerabilities. Among the attributes related to a CVE, a reference can point
to a website describing how to patch the vulnerability. So, we parse the
dumps of the NVD, extract the links toward patches and store it in the
database. Around 20% of the CVE have a ”PATCH” reference attached.

Snort rules In the standard format of a Snort rule, there is an option ”refer-
ence” which often contains a CVE. In the freely available database of rules
provided by Sourcefire [29], nearly 50% of the rules are related to a CVE.

6.5 Providing the costs parameters

Operational cost Operational costs depends highly on the company and on
the remediation. So, we choose in our prototype to assign parameters per
types of remediation. Generally the difference of operational cost between
remediations of the same type is low, but it may be also possible to add the
cost parameters into the remediation database, in order to be able to attach
to each remediation specific operational cost parameters.

Impact cost The description of dependencies used for impact cost is also to-
tally dependent on the IS and has to be provided by the security operator. To
describe these dependencies, we use an XML file in which the dependencies
relations are described according to a dependency graph.

7 Experiments and results

In order to validate the whole remediation method described in this paper, we
applied it on several test topologies. We implemented it on the use-cases of the
European Research Project PoSeCo [4]. But before detailing this test-bed and
our experiments on it, we will present a simpler scenario implementing the main
concepts. We will end with a discussion about the complexity of our approach.

7.1 Simple experiment scenario

Network topology and attack scenario The first scenario we implement
rely on a topology that we deployed on virtual machines. It contains 5 Linux-
based hosts: a web server, a database server, an administration machine inside



a LAN, a firewall that protects the LAN and the servers from the Internet, and
the attacker’s machine that is on the Internet. We configure the firewall in such
a way that the web server is the only service that is accessible from the Internet
and the LAN. The web server needs the database server to work properly and has
a full access to it. The enterprise has two business applications using the IT: an
Extranet which is rarely used and an Intranet which is used for all employees and
is thus much more critical. The database server contains also some confidential
information that the company wants to protect.

When the web server is exploited, the attacker can access the database server
and with an other exploit can try to gain access to all the data it contains. This
is the attack path that will be described in the rest of this scenario.

Generation of the attack path and proposition of remediations To
collect the topological information, we use the python agents described in Sub-
section 6.1. We generate MulVAL inputs and launch the attack graph engine,
then extract the attack paths and select the one presented above. It chains the
exploitation of two vulnerabilities: the first one CVE-2004-1315 is on the web
server, the second one, CVE-2012-3951, is on the database server.

We use our prototype to visualize the attack path to correct and the remedi-
ation candidates. We present here the four most relevant candidates, ranked by
cost. We also explain for each candidate why its cost is low, medium or high.

1. The first candidate is the deployment on the firewall of the Snort rule
sid:12610 that allows to block the exploitation of the first vulnerability. This
remediation has a lot of advantages, because it doesn’t interrupt any gen-
uine service, is not too much expensive (deployment can be nearly fully
automated), and blocks successfully the attack. This candidate has no im-
pact cost, a low operational cost and thus a very low global cost, that is why
this is the first one to be proposed.

2. The second one is the proposal of a patch to the first vulnerability. As the
first one, it doesn’t have any impact on normal service, but has much more
operational cost, because deploying a patch need human intervention. So,
this candidate has a low global cost and thus is the second one to be proposed.

3. The third one is a firewall rule that blocks all the traffic from the Internet to
the web server on http port. It has a low operational cost, because it can be
automatized, but has a medium impact because it cuts the access from the
Internet to the web server, even if it keeps all the accesses from the LAN. So
this candidate has a medium global cost and thus is the third to be proposed.

4. The last one is a firewall rule that blocks all the traffic to the web server on
http port. It has also a low operational cost, but has a huge impact because it
cuts also all the accesses for the employees of the LAN to the web server. So
this candidate has a high global cost and thus is the last one to be proposed.

7.2 Results on PoSecCo’s testbed

We will now present the results of this method applied on the testbed of the
FP7 European Research Project PoSecCo [1].



The main use case in which the PoSecCo prototypes have been tested has
two main business services: a broadcaster Internet distribution and a corporate
streaming service. These services have several security requirements and run
on a testbed that has been deployed during the project, on which prototypes
have been tested. It contains around twenty machines (some are representing
server farms) and eight routers. All the topological information needed for our
prototype are collected from an ontology and the attack paths extracted are
ranked according to their impact on security requirements.

On the twenty machines and eight routers, there are more than a thousand
vulnerabilities in total. It was chosen for this project that there will be one
attack path per target, gathering the relevant ways to compromise it. Thus,
after establishing a list of five hosts to protect in priority, the operator has five
attack paths to assess and correct. These attack paths contain between thirty
and hundreds of nodes, the possible remediations are computed in a few seconds.
Due to project limitations, only two types of remediations are proposed: patches
and firewall rules. For each attack path, many candidates are proposed (up to a
hundred), and are ranked according to their operational and impact cost. The
first candidates (lower cost) offer the best compromise between efficiency and
cost and should be the best option for a security operator.

During the project, the prototype implementing this approach was presented
to end-users that compared their risk analysis and its remediation, in anticipa-
tion of a change in the testbed topology, with and without the prototype. The
end-users, independent of the project, concluded that the scenario using this
methodology was much more efficient: it reduces the analysis from four hours
to twenty two minutes and could reduce the number of people needed for this
task from between three and six to only one. The result of this evaluation can
be found in PoSecCo’s Deliverable 1.7, in scenario SP06 [7].

7.3 Complexity

What must be well understood before talking about the complexity of our algo-
rithms is that in this paper, we propose remediations to attack paths and not to
a whole attack graph, we thus have smaller complexity issues. Indeed, an attack
graph is usually a large graph whereas, an attack path is smaller, because it
focuses only on the very impactive or the most likely ways to access a target.

The complexity of the algorithm computing the candidates is not very im-
pactive, because 1) it is linear in the number of conjunctions of precondition
and 2) the number of remediations for one precondition is generally low. The
algorithm computing SP depends highly on the structure of the input attack
path, especially on the number of parents of each vertex. In the best case (each
vertex has only one parent) this algorithm is linear in the number of vertices. In
the worst case (each vertex has several parents), the complexity is exponential in
the number of parents of OR vertices. This is the factor that most influence the
complexity. We made simulations on non-realistic graphs with different varying
parameters (number of parents, OR nodes, AND nodes, preconditions...) to val-
idate these results. Nevertheless, in practice on several real use cases, we found



that the number of parents for OR vertices in attack paths is generally low: an
average of 1.7 per OR vertex in attack paths produced by MulVAL. This can be
simply explained knowing that, in an attack path, as explained above, we only
have few different possibilities to compromise a target, alternatives creating dis-
junctions in the attack path. It implies that this methodology generally scales
well, if the attack paths treated are properly generated.

8 Related Work

The papers which describe the closest approach to our work are [35] and [2].
In [35], Wang et al. base their analysis on the preconditions of an attack graph
to compute ways to prevent attacks. But even when they evocate the cost to
choose one remediation solution rather than another, they do not present a
cost function to sort candidates as we did in this paper. In [2], Albanese et al.
extend [35] mainly by adding a cost model, similar to the one we present here,
and by improving the complexity of the algorithm to compute candidates. But
what distinguish our approach from both these ones is that we do not compute
remediations to an attack graph but to attack paths, meaning that our algorithms
are working with smaller inputs. We are convinced that it is much more sound
and efficient to correct only the paths that are significant rather than reasoning
on the global attack graph. This was assessed on realistic use-cases.

What is also original in our approach is that our remediation computation is
generic. In [23] and [22], Noel and Jajodia propose various types of remediations
to predefined types of attacks modeled by attack graphs. The method we present
here is more generic. Indeed, the expressiveness of logical attack graphs allows the
modeling of every attack described with AND/OR conditions and our method
applies to all of them, without the limitations identified in the related work.
Dealing with new attacks only imply to define remediation for potential new
kinds of preconditions. These remediations can be simple or may require network
topology simulation, as the ones presented in this paper.

Furthermore, several databases that contain remediations exist. However,
each database is dedicated to a type of remediation. For example, the NVD
contains information about patches [21] and Snort databases contain only Snort
rules [29]. In this paper, we design a remediation database and fill it using
several online available sets of data. This database contains different kinds of
remediations and can be extended to provide new types of remediations.

9 Conclusion

We present in this paper a method describing how to compute remediations for
scored attack paths extracted from an attack graph. Attack graphs have been
widely used for assessing the security level of an Information System, we chose
instead to use them in order to propose solutions to enhance this security level,
by computing remediations preventing attack paths in an Information System.
Using scored attack paths extracted from an attack graph allows us to remediate



only the very likely or impacting paths that lead to main assets which is much
more efficient than remediating the global attack graph.

We have stated that the only vertices on which we compute remediations,
within a logical attack path, are the preconditions. We have implemented al-
gorithms to cluster these nodes into conjunctions of sufficient preconditions to
be remediated, in order to protect the target of an attack path. Then, after
explaining how to compute remediation actions to prevent a precondition, we
detailed their combination with the sufficient conjunctions of preconditions to
determine the candidates. As the operator has to choose one remediation among
several candidates providing the same remediation objective, we assign to each
remediation a global cost combining operational and impact costs. To calculate
topological remediations to certain preconditions and to assess the effects of
remediations on the system, we have designed a simulated network topology.

Limitations of the logical model used for modeling attack graphs were de-
tailed during this study since this model is deterministic and not dynamic. Thus,
it has to be extended into a quantitative model to represent dynamic attacks and
to model them more accurately. However, this logical model has the advantage
to be efficiently generated and processed and is well suited to model potential
attacks. Future work will study the computation of more complex remediations
with the development of a more accurate cost function. A prerequisite will be a
better knowledge of the IS through new mining techniques.

References

1. Posecco, http://www.posecco.eu
2. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-

ening using attack graphs. In: Dependable Systems and Networks (DSN), 2012
42nd Annual IEEE/IFIP International Conference on. pp. 1–12. IEEE (2012)

3. Artz, M.L.: NetSPA: A Network Security Planning Architecture. Ph.D. thesis,
Massachusetts Institute of Technology (2002)

4. Bettan, O., Ponta, S., Musaraj, K., Casalino, M.: D4.8 - prototype: Standardized
audit interface. Tech. rep., PoSecCo European Project from the 7th Framework
(project no. 257129) (2012)

5. Cavusoglu, H., Cavusoglu, H., Zhang, J.: Security patch management: Share the
burden or share the damage? Management Science 54(4), 657–670 (Apr 2008)

6. Cuppens, F., Autrel, F., Bouzida, Y., Garcia, J., Gombault, S., Sans, T.: Anti-
correlation as a criterion to select appropriate counter-measures in an intrusion
detection framework. In: Annales des télécommunications. vol. 61, pp. 197–217.
Springer (2006)

7. Demetz, L., Maier, R., Manhart, M., Plate, H., Fitz, M.: D1.7 - final project eval-
uation. Tech. rep., PoSecCo European Project from the 7th Framework (project
no. 257129) (2013)

8. Granadillo, G.G., Jacob, G., Debar, H., Coppolino, L.: Combination approach to
select optimal countermeasures based on the rori index. In: Second International
Conference on Innovative Computing Technology. pp. 38–45. IEEE (2012)

9. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern net-
work attacks and countermeasures using attack graphs. In: Annual Computer Se-
curity Applications Conference. pp. 117–126. IEEE (2009)

http://www.posecco.eu


10. Jajodia, S., Noel, S.: Advanced cyber attack modeling analysis and visualization.
Tech. rep., DTIC Document (2010)

11. Jajodia, S., Noel, S., Kalapa, P., Albanese, M., Williams, J.: Cauldron mission-
centric cyber situational awareness with defense in depth. In: Military Communi-
cations Conference. pp. 1339–1344 (2011)

12. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. Managing Cyber Threats pp. 247–266 (2005)

13. Kanoun, W., Dubus, S., Papillon, S., Cuppens-Boulahia, N., Cuppens, F.: Towards
dynamic risk management: Success likelihood of ongoing attacks. Bell Labs Tech-
nical Journal 17(3), 61–78 (2012)

14. Kheir, N., Debar, H., Cuppens-Boulahia, N., Cuppens, F., Viinikka, J.: Cost eval-
uation for intrusion response using dependency graphs. In: Network and Service
Security. pp. 1–6. IEEE (2009)

15. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. CoRR (Mar 2013)

16. Lagadec, P.: Visualisation et analyse de risque dynamique pour la cyber-défense.
SSTIC (2010)

17. Lippmann, R.P., Ingols, K.W.: An annotated review of past papers on attack
graphs. Tech. rep., DTIC Document (2005)

18. Netfilter: iptables, http://www.netfilter.org/projects/iptables/index.html
19. NIST: Capec, common attack pattern enumeration and classification, http://

capec.mitre.org/
20. NIST: Cve, common vulnerabilities and exposures, https://cve.mitre.org/
21. NIST: Nvd, national vulnerability database, https://nvd.nist.gov/
22. Noel, S., Jajodia, S.: Optimal ids sensor placement and alert prioritization using

attack graphs - springer. Journal of Network and Systems Management (2008)
23. Noel, S., Jajodia, S.: Proactive intrusion prevention and response via attack graphs.

Tech. rep., Addison-Wesley Professional (2009)
24. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security

analyzer. In: Proceedings of the 14th conference on USENIX Security Symposium-
Volume 14. pp. 8–8. USENIX Association (2005)

25. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: the 1998 workshop. pp. 71–79. ACM Press, New York, New York, USA (1998)

26. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack
graphs. Springer (2008)

27. Shameli-Sendi, A., Ezzati-Jivan, N., Jabbarifar, M.: Intrusion response systems:
survey and taxonomy. SIGMOD (2012)

28. Skybox security, i.: Skybox, http://www.skyboxsecurity.com/
29. Sourcefire: Snort, http://www.snort.org/
30. Stakhanova, N., Basu, S., Wong, J.: A taxonomy of intrusion response systems.

International Journal of Information and Computer Security 1(1), 169–184 (2007)
31. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph gener-

ation tool. In: DARPA Information Survivability Conference and Exposition. pp.
307–321. IEEE (2001)

32. Tenable: Nessus, http://www.tenable.com/products/nessus
33. Toth, T., Kruegel, C.: Evaluating the impact of automated intrusion response

mechanisms. In: CSAC. pp. 301–310. IEEE (2002)
34. Tucker, C.J., Furnell, S.M., Ghita, BV, Brooke, P.J.: A new taxonomy for compar-

ing intrusion detection systems. Internet Research 17(1), 88–98 (2007)
35. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack

graphs. Computer Communications 29(18), 3812–3824 (2006)

http://www.netfilter.org/projects/iptables/index.html
http://capec.mitre.org/
http://capec.mitre.org/
https://cve.mitre.org/
https://nvd.nist.gov/
http://www.skyboxsecurity.com/
http://www.snort.org/
http://www.tenable.com/products/nessus

	Remediating Logical Attack Paths Using Information System Simulated Topologies 

