E. Galinski, Osmoadaptation in Bacteria, Adv. Microb. Physiol, vol.37, issue.08, pp.273-328, 1995.
DOI : 10.1016/S0065-2911(08)60148-4

M. Roeßler and V. Müller, Osmoadaptation in bacteria and archaea: common principles and differences, Environmental Microbiology, vol.217, issue.12, pp.743-754, 2001.
DOI : 10.1016/S0378-1097(99)00122-6

A. Ventosa, J. Nieto, and O. A. , Biology of moderately halophilic aerobic bacteria, Microbiol. Mol. Biol. Rev, vol.62, pp.504-544, 1998.

A. Casanueva, M. Tuffin, C. Craig, and D. Cowan, Molecular adaptations to psychrophily: the impact of ???omic??? technologies, Trends in Microbiology, vol.18, issue.8, pp.374-381, 2010.
DOI : 10.1016/j.tim.2010.05.002

M. Smiddy, R. Sleator, M. Patterson, C. Hill, and A. Kelly, Role for Compatible Solutes Glycine Betaine and L-Carnitine in Listerial Barotolerance, Applied and Environmental Microbiology, vol.70, issue.12, pp.7555-75577555, 2004.
DOI : 10.1128/AEM.70.12.7555-7557.2004

J. Imhoff and F. Rodriguez-valera, Betaine is the main compatible solute of halophilic eubacteria, J. Bacteriol, vol.160, pp.478-479, 1984.

G. King, Methanogenesis from methylated amines in a hypersaline algal mat, Appl. Environ. Microbiol, vol.54, pp.130-136, 1988.

G. King, Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments, Appl. Environ. Microbiol, vol.48, pp.719-725, 1984.

S. Mouné, N. Manac-'h, A. Hirschler, P. Caumette, J. Willison et al., Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter, International Journal of Systematic Bacteriology, vol.49, issue.1, pp.103-11200207713, 1999.
DOI : 10.1099/00207713-49-1-103

E. Naumann, H. Hippe, and G. Gottschalk, Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes-Methanosarcina barkeri coculture, Appl. Environ. Microbiol, vol.45, pp.474-483, 1983.

R. Oremland, L. Marsh, and S. Polcin, Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments, Nature, vol.41, issue.5853, pp.143-145, 1982.
DOI : 10.1038/296143a0

A. Watkins, E. Roussel, G. Webster, R. Parkes, and H. Sass, Choline and N,N-Dimethylethanolamine as Direct Substrates for Methanogens, Applied and Environmental Microbiology, vol.78, issue.23, pp.8298-830301941, 2012.
DOI : 10.1128/AEM.01941-12

URL : https://hal.archives-ouvertes.fr/hal-01145265

H. Hippe, D. Caspari, K. Fiebig, and G. Gottschalk, Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri., Proceedings of the National Academy of Sciences, vol.76, issue.1, pp.494-498, 1979.
DOI : 10.1073/pnas.76.1.494

W. Sprenger, M. Van-belzen, J. Rosenberg, J. Hackstein, and J. Keltjens, Methanomicrococcus blatticola gen. nov., sp nov., a methanoland methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana, Int. J. Syst. Evol. Microbiol, vol.50, 1989.

K. Tanaka, Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen, Journal of Fermentation and Bioengineering, vol.78, issue.5, pp.386-3880922, 1994.
DOI : 10.1016/0922-338X(94)90287-9

R. Parkes, H. Sass, G. Webster, A. Watkins, A. Weightman et al., Methods for studying methanogens and methanogenesis in marine sediments, Handbook of hydrocarbon and lipid microbiology, pp.3799-3827, 2010.

J. Süß, B. Engelen, H. Cypionka, and H. Sass, Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods, FEMS Microbiol. Ecol, vol.51, pp.109-121, 2004.

T. Lyimo, A. Pol, M. Jetten, . Op, and H. Camp, strain, FEMS Microbiology Letters, vol.291, issue.2, pp.247-253, 2009.
DOI : 10.1111/j.1574-6968.2008.01464.x

G. Powell, Interpreting gas kinetics of batch cultures, Biotechnology Letters, vol.137, issue.7, pp.437-440, 1983.
DOI : 10.1007/BF00132224

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-2540003, 1976.
DOI : 10.1016/0003-2697(76)90527-3

G. Webster, A. Blazejak, B. Cragg, A. Schippers, H. Sass et al., Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307), Environmental Microbiology, vol.59, issue.1, pp.239-257, 2009.
DOI : 10.1111/j.1462-2920.2008.01759.x

J. Zhang and Y. Zhu, Determination of betaine, choline and trimethylamine in feed additive by ion-exchange liquid chromatography/non-suppressed conductivity detection, Journal of Chromatography A, vol.1170, issue.1-2, pp.114-117, 2007.
DOI : 10.1016/j.chroma.2007.09.014

J. Heijthuijsen and T. Hansen, Betaine fermentation and oxidation by marine Desulfuromonas strains, Appl. Environ. Microbiol, vol.55, pp.965-969, 1989.

J. Paterek and P. Smith, Methanohalophilus mahii gen. nov., sp. nov., a Methylotrophic Halophilic Methanogen, International Journal of Systematic Bacteriology, vol.38, issue.1, pp.122-123, 1988.
DOI : 10.1099/00207713-38-1-122

M. Seidel, J. Graue, B. Engelen, J. Köster, H. Sass et al., Advection and diffusion determine vertical distribution of microbial communities in intertidal sediments as revealed by combined biogeochemical and molecular biological analysis, Organic Geochemistry, vol.52, pp.114-129, 2012.
DOI : 10.1016/j.orggeochem.2012.08.015

J. Heijthuijsen and T. Hansen, Anaerobic degradation of betaine by marine Desulfobacterium strains, Archives of Microbiology, vol.150, issue.4, pp.393-396, 1989.
DOI : 10.1007/BF00425179

B. Schink, V. Thiemann, H. Laue, and M. Friedrich, Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate, Archives of Microbiology, vol.177, issue.5, pp.381-391, 2002.
DOI : 10.1007/s00203-002-0402-x

M. Van-der-maarel, M. Jansen, R. Haanstra, W. Meijer, and T. Hansen, Demethylation of dimethylsulfoniopropionate to 3-S- methylmercaptopropionate by marine sulfate-reducing bacteria, Appl. Environ. Microbiol, vol.62, pp.3978-3984, 1996.

E. Müller, K. Fahlbusch, R. Walther, and G. Gottschalk, Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum, Appl. Environ. Microbiol, vol.42, pp.439-445, 1981.

B. Möller, R. Oßmer, B. Howard, G. Gottschalk, and H. Hippe, Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov., Archives of Microbiology, vol.87, issue.4, pp.388-396, 1984.
DOI : 10.1007/BF00408385

J. Menaia, J. Duarte, and D. Boone, Osmotic adaptation of moderately halophilic methanogenic Archaeobacteria, and detection of cytosolicN,N-dimethylglycine, Experientia, vol.293, issue.12, pp.1047-1054, 1993.
DOI : 10.1007/BF01929912

D. Robertson, D. Noll, M. Roberts, J. Menaia, and D. Boone, Detection of the osmoregulator betaine in methanogens, Appl. Environ. Microbiol, vol.56, pp.563-565, 1990.

K. Sowers and R. Gunsalus, Halotolerance in Methanosarcina spp.: role of N ? -acetyl--lysine, -glutamate, glycine betaine and K as compatible solutes for osmotic adaptation, Appl. Environ. Microbiol, vol.61, pp.4382-4388, 1995.

D. Archer, Detection and quantitation of methanogens by enzymelinked immunosorbent assay, Appl. Environ. Microbiol, vol.48, pp.797-801, 1984.

M. Jankowski, C. Henry, L. Broadbelt, and V. Hatzimanikatis, Group Contribution Method for Thermodynamic Analysis of Complex Metabolic Networks, Biophysical Journal, vol.95, issue.3, pp.1487-1499, 2008.
DOI : 10.1529/biophysj.107.124784