T. Aullo, A. Ranchou-peyruse, B. Ollivier, and M. Magot, Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments, Frontiers in Microbiology, vol.4, p.362, 2013.
DOI : 10.3389/fmicb.2013.00362

S. Barnes, S. Bradbrook, B. Cragg, J. Marchesi, A. Weightman et al., Isolation of sulfate???reducing bacteria from deep sediment layers of the pacific ocean, Geomicrobiology Journal, vol.10, issue.2, pp.67-83, 1998.
DOI : 10.2973/odp.proc.ir.146-1.1994

E. Blochl, R. R. Burggraf, S. Hafenbradl, D. Jannasch, H. Stetter et al., Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C, Extremophiles, vol.1, pp.14-21, 1997.

R. Cano and M. Borucki, Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber, Science, vol.268, issue.5213, pp.1060-1064, 1995.
DOI : 10.1126/science.7538699

J. Cowen, S. Giovannoni, F. Kenig, H. Johnson, D. Butterfield et al., Fluids from Aging Ocean Crust That Support Microbial Life, Science, vol.299, issue.5603, pp.120-123, 2003.
DOI : 10.1126/science.1075653

D. Hondt, S. Jorgensen, B. Miller, D. Batzke, A. Blake et al., Distributions of Microbial Activities in Deep Subseafloor Sediments, Science, vol.306, issue.5705, pp.2216-2221, 2004.
DOI : 10.1126/science.1101155

S. Daumas, R. Cordruwisch, and J. Garcia, Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water, Antonie van Leeuwenhoek, vol.134, issue.2, pp.165-178, 1988.
DOI : 10.1007/BF00419203

J. De-rezende, K. Kjeldsen, C. Hubert, K. Finster, A. Loy et al., Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years, The ISME Journal, vol.64, issue.1, pp.72-84, 2013.
DOI : 10.1128/JB.187.6.2203-2208.2005

A. Dhillon, A. Teske, J. Dillon, D. Stahl, and M. Sogin, Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin, Applied and Environmental Microbiology, vol.69, issue.5, pp.2765-2772, 2003.
DOI : 10.1128/AEM.69.5.2765-2772.2003

M. Fardeau, B. Ollivier, B. Patel, P. Dwivedi, M. Ragot et al., Isolation and Characterization of a Thermophilic Sulfate-Reducing Bacterium, Desulfotomaculum thermosapovorans sp. nov., International Journal of Systematic Bacteriology, vol.45, issue.2, pp.218-221, 1995.
DOI : 10.1099/00207713-45-2-218

J. Fichtel, J. Koster, J. Rullkotter, and H. Sass, Spore dipicolinic acid contents used for estimating the number of endospores in sediments, FEMS Microbiology Ecology, vol.61, issue.3, pp.522-532, 2007.
DOI : 10.1111/j.1574-6941.2007.00354.x

J. Fichtel, J. Koster, J. Rullkotter, and H. Sass, High Variations in Endospore Numbers within Tidal Flat Sediments Revealed by Quantification of Dipicolinic Acid, Geomicrobiology Journal, vol.5, issue.7-8, pp.371-380, 2008.
DOI : 10.1128/AEM.72.4.2756-2764.2006

A. Gerasimchuka, A. Shatalovb, A. Novikovb, O. Butorovaa, N. Pimenovc et al., The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning, Microbiology, vol.79, issue.1, pp.96-105, 2010.
DOI : 10.1134/S0026261710010133

S. Ghosh, P. Zhang, Y. Li, and P. Setlow, Superdormant Spores of Bacillus Species Have Elevated Wet-Heat Resistance and Temperature Requirements for Heat Activation, Journal of Bacteriology, vol.191, issue.18, pp.5584-5591, 2009.
DOI : 10.1128/JB.00736-09

X. Gong, Z. Liu, P. Guo, C. Chi, C. J. Wang et al., Bacteria in Crude Oil Survived Autoclaving and Stimulated Differentially by Exogenous Bacteria, PLoS ONE, vol.7, issue.9, p.40842, 2012.
DOI : 10.1371/journal.pone.0040842.s002

T. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp Ser, vol.41, pp.95-98, 1999.

C. Hubert, C. Arnosti, V. Bruchert, A. Loy, V. Vandieken et al., Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature, Environmental Microbiology, vol.62, issue.4, pp.1089-1104, 2010.
DOI : 10.1111/j.1462-2920.2010.02161.x

C. Hubert, A. Loy, M. Nickel, C. Arnosti, C. Baranyi et al., A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed, Science, vol.325, issue.5947, pp.1541-1544, 2009.
DOI : 10.1126/science.1174012

F. Inagaki, M. Suzuki, K. Takai, H. Oida, T. Sakamoto et al., Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk, Applied and Environmental Microbiology, vol.69, issue.12, pp.7224-7235, 2003.
DOI : 10.1128/AEM.69.12.7224-7235.2003

M. Isaksen, F. Bak, and B. Jørgensen, Thermophilic sulfate-reducing bacteria in cold marine sediment, FEMS Microbiology Ecology, vol.14, issue.1, pp.1-8, 1994.
DOI : 10.1111/j.1574-6941.1994.tb00084.x

B. Kopke, R. Wilms, B. Engelen, H. Cypionka, and H. Sass, Microbial Diversity in Coastal Subsurface Sediments: a Cultivation Approach Using Various Electron Acceptors and Substrate Gradients, Applied and Environmental Microbiology, vol.71, issue.12, pp.7819-7830, 2005.
DOI : 10.1128/AEM.71.12.7819-7830.2005

D. Lane, 16S/23S rRNA sequencing, Nucleic Acid Techniques in Bacterial Systematics, pp.115-175, 1991.

M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. Mcgettigan et al., Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

B. Lomstein, A. Langerhuus, D. Hondt, S. Jorgensen, B. Spivack et al., Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment, Nature, vol.201, issue.7392, pp.101-104, 2012.
DOI : 10.1038/nature10905

A. Muller, J. De-rezende, C. Hubert, K. Kjeldsen, I. Lagkouvardos et al., Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents, The ISME Journal, vol.301, issue.6, pp.1153-1165, 2014.
DOI : 10.1038/ismej.2013.225

T. Nakagawa, S. Hanada, A. Maruyama, K. Marumo, T. Urabe et al., Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan), FEMS Microbiology Ecology, vol.41, issue.3, pp.199-209, 2002.
DOI : 10.1111/j.1574-6941.2002.tb00981.x

T. Nazina, A. Ivanova, L. Kanchaveli, and E. Rozanova, A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kutznetsovii sp, nov. Mikrobiologiya (Translated), vol.57, pp.823-827, 1989.

W. Nicholson, N. Munakata, G. Horneck, H. Melosh, and P. Setlow, Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments, Microbiology and Molecular Biology Reviews, vol.64, issue.3, pp.548-572, 2000.
DOI : 10.1128/MMBR.64.3.548-572.2000

R. Nilsen, T. Torsvik, and L. T. , Desulfotomaculum thermocisternum sp. nov., a Sulfate Reducer Isolated from a Hot North Sea Oil Reservoir, International Journal of Systematic Bacteriology, vol.46, issue.2, pp.397-402, 1996.
DOI : 10.1099/00207713-46-2-397

O. Sullivan, L. Webster, G. Fry, J. Parkes, R. Weightman et al., Modified linker-PCR primers facilitate complete sequencing of DGGE DNA fragments, 2008.

R. Parkes, C. Linnane, G. Webster, H. Sass, A. Weightman et al., Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity, Geology, vol.39, issue.3, pp.219-222, 2011.
DOI : 10.1130/G31598.1

R. Parkes, B. Cragg, E. Roussel, G. Webster, A. Weightman et al., A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions, Marine Geology, vol.352, pp.409-425, 2014.
DOI : 10.1016/j.margeo.2014.02.009

URL : https://hal.archives-ouvertes.fr/hal-01145015

R. Parkes, B. Cragg, and P. Wellsbury, Recent studies on bacterial populations and processes in subseafloor sediments: A review, Hydrogeology Journal, vol.8, issue.1, pp.11-28, 2000.
DOI : 10.1007/PL00010971

R. Parkes, H. Sass, G. Webster, A. Watkins, A. Weightman et al., Methods for studying methanogens and methanogenesis in marine sediments Handbook of Hydrocarbon and Lipid Microbiology, pp.3801-3826, 2009.

K. Reineke, A. Mathys, V. Heinz, and D. Knorr, Mechanisms of endospore inactivation under high pressure, Trends in Microbiology, vol.21, issue.6, pp.296-304, 2013.
DOI : 10.1016/j.tim.2013.03.001

J. Rosnes, T. Torsvik, and T. Lein, Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters, Appl Environ Microbiol, vol.57, pp.2302-2307, 1991.

H. Sass and H. Cypionka, Isolation of Sulfate-Reducing Bacteria from the Terrestrial Deep Subsurface and Description of Desulfovibrio cavernae sp. nov., Systematic and Applied Microbiology, vol.27, issue.5, pp.541-548, 2004.
DOI : 10.1078/0723202041748181

H. Sass, H. Rü-tters, R. Schledjewski, and E. Freese, The influence of seasonal changes on microbial communities in the Wadden Sea, Berichte Forschungszentrum Terramare, vol.12, pp.99-102, 2003.

P. Setlow, Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals, Journal of Applied Microbiology, vol.143, issue.3, pp.514-525, 2006.
DOI : 10.1111/j.1365-2672.2004.02236.x

P. Setlow, Germination of Spores of Bacillus Species: What We Know and Do Not Know, Journal of Bacteriology, vol.196, issue.7, pp.1297-1305, 2014.
DOI : 10.1128/JB.01455-13

E. Stackebrandt, C. Sproer, F. Rainey, J. Burghardt, O. Pauker et al., Phylogenetic Analysis of the Genus Desulfotomaculum: Evidence for the Misclassification of Desulfotomaculum guttoideum and Description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov., International Journal of Systematic Bacteriology, vol.47, issue.4, pp.1134-1139, 1997.
DOI : 10.1099/00207713-47-4-1134

J. Suss, B. Engelen, H. Cypionka, and H. Sass, Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods, FEMS Microbiol Ecol, vol.51, pp.109-121, 2004.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, issue.12, pp.2725-2729, 2013.
DOI : 10.1093/molbev/mst197

P. Thomas, Reemergence of covert bacteria Bacillus pumilus and Brevibacillus sp. in microbe-freed grape and watermelon stocks attributable to occasional autoclaving-defying residual spores from previous cycles, Plant Cell, Tissue and Organ Culture, vol.530, issue.2, pp.155-165, 2006.
DOI : 10.1007/s11240-006-9150-y

T. Tourova, B. Kuznetzov, E. Novikova, A. Poltaraus, and T. Nazina, Heterogeneity of the nucleotide sequences of the 16S rRNA genes of the type strain of Desulfotomaculum kuznetsovii, Microbiology, vol.70, issue.6, pp.678-684, 2001.
DOI : 10.1023/A:1013135831669

M. Visser, P. Worm, G. Muyzer, I. Pereira, P. Schaap et al., Genome analysis of Desulfotomaculum kuznetsovii strain 17T reveals a physiological similarity with Pelotomaculum thermopropionicum strain SIT., Standards in Genomic Sciences, vol.8, issue.1, pp.69-87, 2013.
DOI : 10.4056/sigs.3627141

R. Vreeland, W. Rosenzweig, and D. Powers, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal, Nature, vol.407, issue.6806, pp.897-900, 2000.
DOI : 10.1038/35038060

M. Wagner, A. Roger, J. Flax, G. Brusseau, and D. Stahl, Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration, J Bacteriol, vol.180, pp.2975-2982, 1998.

F. Wang, H. Zhou, J. Meng, X. Peng, L. Jiang et al., GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent, Proceedings of the National Academy of Sciences, vol.106, issue.12, pp.4840-4845, 2009.
DOI : 10.1073/pnas.0810418106

G. Webster, R. Parkes, B. Cragg, C. Newberry, A. Weightman et al., Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin, FEMS Microbiology Ecology, vol.58, issue.1, pp.65-85, 2006.
DOI : 10.1111/j.1574-6941.2006.00147.x

P. Wellsbury, R. Herbert, and R. Parkes, Bacterial [methyl-3H]thymidine incorporation in substrate-amended estuarine sediment slurries, FEMS Microbiology Ecology, vol.15, issue.3-4, pp.237-248, 1994.
DOI : 10.1111/j.1574-6941.1994.tb00247.x

F. Widdel and F. Bak, Gram-Negative Mesophilic Sulfate-Reducing Bacteria. The Prokaryotes, pp.3352-3378, 1992.

F. Widdel and N. Pfennig, A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans, Archives of Microbiology, vol.104, issue.1, pp.119-122, 1977.
DOI : 10.1007/BF00446665

A. Wilhelms, S. Larter, I. Head, P. Farrimond, R. Di-primio et al., Biodegradation of oil in uplifted basins prevented by deep-burial sterilization, Nature, vol.411, issue.6841, pp.1034-1037, 2001.
DOI : 10.1038/35082535

E. Wolin, M. Wolin, and R. Wolfe, Formation of Methane by Bacterial Extracts, J Biol Chem, vol.238, pp.2882-2886, 1963.

T. Wunderlin, T. Junier, L. Roussel-delif, N. Jeanneret, and P. Junier, Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments, Environ Microbiol Rep, vol.doi, pp.10-1111, 1279.