Skip to Main content Skip to Navigation
Journal articles

Vertical versus horizontal Poincar\'e inequalities on the Heisenberg group

Abstract : Let $\H= < a,b | a[a,b]=[a,b]a \wedge b[a,b]=[a,b]b>$ be the discrete Heisenberg group, equipped with the left-invariant word metric $d_W(\cdot,\cdot)$ associated to the generating set ${a,b,a^{-1},b^{-1}}$. Letting $B_n= {x\in \H: d_W(x,e_\H)\le n}$ denote the corresponding closed ball of radius $n\in \N$, and writing $c=[a,b]=aba^{-1}b^{-1}$, we prove that if $(X,|\cdot|_X)$ is a Banach space whose modulus of uniform convexity has power type $q\in [2,\infty)$ then there exists $K\in (0,\infty)$ such that every $f:\H\to X$ satisfies {multline*} \sum_{k=1}^{n^2}\sum_{x\in B_n}\frac{|f(xc^k)-f(x)|_X^q}{k^{1+q/2}}\le K\sum_{x\in B_{21n}} \Big(|f(xa)-f(x)|^q_X+\|f(xb)-f(x)\|^q_X\Big). {multline*} It follows that for every $n\in \N$ the bi-Lipschitz distortion of every $f:B_n\to X$ is at least a constant multiple of $(\log n)^{1/q}$, an asymptotically optimal estimate as $n\to\infty$.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01144788
Contributor : Vincent Lafforgue <>
Submitted on : Wednesday, April 22, 2015 - 4:37:22 PM
Last modification on : Wednesday, April 8, 2020 - 9:16:08 AM

Links full text

Identifiers

Collections

Citation

Vincent Lafforgue, Assaf Naor. Vertical versus horizontal Poincar\'e inequalities on the Heisenberg group. Israël Journal of Mathematics, Hebrew University Magnes Press, 2014, 203 (1), pp.309-339. ⟨10.1007/s11856-014-1088-x⟩. ⟨hal-01144788⟩

Share

Metrics

Record views

139