Vertical versus horizontal Poincar\'e inequalities on the Heisenberg group

Abstract : Let $\H= < a,b | a[a,b]=[a,b]a \wedge b[a,b]=[a,b]b>$ be the discrete Heisenberg group, equipped with the left-invariant word metric $d_W(\cdot,\cdot)$ associated to the generating set ${a,b,a^{-1},b^{-1}}$. Letting $B_n= {x\in \H: d_W(x,e_\H)\le n}$ denote the corresponding closed ball of radius $n\in \N$, and writing $c=[a,b]=aba^{-1}b^{-1}$, we prove that if $(X,|\cdot|_X)$ is a Banach space whose modulus of uniform convexity has power type $q\in [2,\infty)$ then there exists $K\in (0,\infty)$ such that every $f:\H\to X$ satisfies {multline*} \sum_{k=1}^{n^2}\sum_{x\in B_n}\frac{|f(xc^k)-f(x)|_X^q}{k^{1+q/2}}\le K\sum_{x\in B_{21n}} \Big(|f(xa)-f(x)|^q_X+\|f(xb)-f(x)\|^q_X\Big). {multline*} It follows that for every $n\in \N$ the bi-Lipschitz distortion of every $f:B_n\to X$ is at least a constant multiple of $(\log n)^{1/q}$, an asymptotically optimal estimate as $n\to\infty$.
Type de document :
Article dans une revue
Israel Journal of Mathematics, The Hebrew University Magnes Press, 2014, 203 (1), pp.309-339. 〈http://link.springer.com/article/10.1007/s11856-014-1088-x〉. 〈10.1007/s11856-014-1088-x〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01144788
Contributeur : Vincent Lafforgue <>
Soumis le : mercredi 22 avril 2015 - 16:37:22
Dernière modification le : jeudi 3 mai 2018 - 15:32:07

Lien texte intégral

Identifiants

Collections

Citation

Vincent Lafforgue, Assaf Naor. Vertical versus horizontal Poincar\'e inequalities on the Heisenberg group. Israel Journal of Mathematics, The Hebrew University Magnes Press, 2014, 203 (1), pp.309-339. 〈http://link.springer.com/article/10.1007/s11856-014-1088-x〉. 〈10.1007/s11856-014-1088-x〉. 〈hal-01144788〉

Partager

Métriques

Consultations de la notice

89