Geometrizing the minimal representations of even orthogonal groups

Abstract : Let X be a smooth projective curve. Write Bun_{SO_{2n}} for the moduli stack of SO_{2n}-torsors on X. We give a geometric interpretation of the automorphic function f on Bun_{SO_{2n}} corresponding to the minimal representation. Namely, we construct a perverse sheaf K on Bun_{SO_{2n}} such that f should be equal to the trace of Frobenius of K plus some constant function. We also calculate K explicitely for curves of genus zero and one. The construction of K is based on some explicit geometric formulas for the Fourier coefficients of f on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Vincent Lafforgue <>
Soumis le : mercredi 22 avril 2015 - 14:01:06
Dernière modification le : mercredi 3 octobre 2018 - 11:57:57

Lien texte intégral



Vincent Lafforgue, Sergey Lysenko. Geometrizing the minimal representations of even orthogonal groups. Representation Theory, 2013, 17, pp.263-325. 〈〉. 〈10.1090/S1088-4165-2013-00431-4〉. 〈hal-01144678〉



Consultations de la notice