The Replacement Bootstrap for Dependent Data

Amir Sani 1 Alessandro Lazaric 1 Daniil Ryabko 1
1 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : Applications that deal with time-series data often require evaluating complex statistics for which each time series is essentially one data point. When only a few time series are available, bootstrap methods are used to generate additional samples that can be used to evaluate empirically the statistic of interest. In this work a novel bootstrap method is proposed, which is shown to have some asymptotic consistency guarantees under the only assumption that the time series are stationary and ergodic. This contrasts previously available results that impose mixing or finite-memory assumptions on the data. Empirical evaluation on simulated and real data, using a practically relevant and complex extrema statistic is provided.
Type de document :
Communication dans un congrès
Proceedings of the IEEE International Symposium on Information Theory, Jun 2015, Hong Kong, Hong Kong SAR China. 2015
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01144547
Contributeur : Alessandro Lazaric <>
Soumis le : mardi 26 mai 2015 - 16:56:51
Dernière modification le : samedi 18 novembre 2017 - 01:04:39
Document(s) archivé(s) le : lundi 24 avril 2017 - 15:27:29

Fichier

rboot_ISIT_2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01144547, version 1

Citation

Amir Sani, Alessandro Lazaric, Daniil Ryabko. The Replacement Bootstrap for Dependent Data. Proceedings of the IEEE International Symposium on Information Theory, Jun 2015, Hong Kong, Hong Kong SAR China. 2015. 〈hal-01144547〉

Partager

Métriques

Consultations de la notice

372

Téléchargements de fichiers

237