THE AFFINE YOKONUMA–HECKE ALGEBRA
AND THE PRO-p-IWAHORI–HECKE ALGEBRA

Maria Chlouveraki, Vincent Sécherre

To cite this version:

Maria Chlouveraki, Vincent Sécherre. THE AFFINE YOKONUMA–HECKE ALGEBRA AND

HAL Id: hal-01143597
https://hal.archives-ouvertes.fr/hal-01143597
Submitted on 18 Apr 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE AFFINE YOKONUMA–HECKE ALGEBRA
AND THE PRO-p-IWAHORI–HECKE ALGEBRA

MARIA CHLOUVERAKI AND VINCENT SÉCHERRE

Abstract. We prove that the affine Yokonuma–Hecke algebra defined by Chlouveraki and Poulain d’Andecy
is a particular case of the pro-p-Iwahori–Hecke algebra defined by Vignéras.

1. Introduction

A family of complex algebras \(Y^{\text{aff}}_{d,n}(q) \), called affine Yokonuma–Hecke algebras, has been defined and studied
by Chlouveraki and Poulain d’Andecy in [ChPo2]. The existence of these algebras has been first mentioned
by Juyumaya and Lambropoulou in [JuLa1]. These algebras, which generalise both affine Hecke algebras
of type \(A \) and Yokonuma–Hecke algebras [Yo], are used to determine the representations of Yokonuma–
Hecke algebras [ChPo1] and construct invariants for framed and classical knots in the solid torus [ChPo2].

Moreover, when \(q^2 \) is a power of a prime number \(p \) and \(d = q^2 - 1 \), one can verify that the affine Yokonuma–
Hecke algebra \(Y^{\text{aff}}_{d,n}(q) \) is isomorphic to the convolution algebra of complex valued and compac-
tly supported functions on the group \(\text{GL}_n(F) \), with \(F \) a suitable \(p \)-adic field, that are bi-invariant under the pro-p-radical
of an Iwahori subgroup (see [Vi1]). It is natural to ask whether there is a family of algebras that generalises,
in a similar way, affine Hecke algebras in arbitrary type.

In a recent series of preprints [Vi2, Vi3, Vi4], Vignéras introduced and studied a large family of algebras,
called pro-p-Iwahori–Hecke algebras. They generalise convolution algebras of compactly supported functions
on a \(p \)-adic connected reductive group that are bi-invariant under the pro-p-radical of an Iwahori subgroup,
which play an important role in the \(p \)-modular representation theory of \(p \)-adic reductive groups (see [AHHV]
for instance).

In this note, we show that the algebra \(Y^{\text{aff}}_{d,n}(q) \) of Chlouveraki and Poulain d’Andecy is a pro-p-Iwahori–
Hecke algebra in the sense of Vignéras [Vi2].

2. The affine Yokonuma–Hecke algebra

Let \(d, n \in \mathbb{Z}_{>0} \). Let \(q \) be an indeterminate and set \(\mathcal{R} := \mathbb{C}[q, q^{-1}] \). We denote by \(Y^{\text{aff}}_{d,n}(q) \) the associative
algebra over \(\mathcal{R} \) generated by elements

\[t_1, \ldots, t_n, g_1, \ldots, g_{n-1}, X_1, X_1^{-1} \]

subject to the following defining relations:

\begin{align*}
(\text{br1}) & \quad g_i g_j = g_j g_i & \text{for all } i, j = 1, \ldots, n-1 \text{ such that } |i - j| > 1, \\
(\text{br2}) & \quad g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1} & \text{for all } i = 1, \ldots, n-2, \\
(\text{fr1}) & \quad t_i t_j = t_j t_i & \text{for all } i, j = 1, \ldots, n, \\
(\text{fr2}) & \quad g_i t_j = t_{s(i)} g_i & \text{for all } i = 1, \ldots, n-1 \text{ and } j = 1, \ldots, n, \\
(\text{aff1}) & \quad X_1 g_1 X_1 g_1 = g_1 X_1 g_1 X_1 & \text{for all } i = 1, \ldots, n, \\
(\text{aff2}) & \quad X_1 g_i = g_i X_1 & \text{for all } i = 2, \ldots, n-1, \\
(\text{aff3}) & \quad X_1 t_j = t_j X_1 & \text{for all } j = 1, \ldots, n, \\
(\text{quad}) & \quad g_i^2 = 1 + (q - q^{-1}) e_i g_i & \text{for all } i = 1, \ldots, n-1,
\end{align*}

2010 Mathematics Subject Classification. 20C08.
We are grateful to Guillaume Pouchin for his remarks and always helpful explanations. We would also like to thank Loïc
Poulain d’Andecy for our fruitful discussions on the topics of this paper.
The affine braid group B_{aff}^n was called in [ChPo1] the affine Yokonuma–Hecke algebra and was studied in [ChPo2], together with its cyclotomic quotients. This algebra is isomorphic to the modular framisation of the affine Hecke algebra; see definition in [JuLa2, Section 6] and Remark 1 in [ChPo1]. For $d = 1$, $Y_{d,n}^{aff}(q)$ is the standard affine Hecke algebra of type A.

Remark 2.3. Relations (fr1), (fr2), (aff1) and (aff2) are the defining relations of the affine braid group B_{aff}^n. Adding relations (fr1), (fr2) and (aff3) yields the definition of the extended affine braid group or framed affine braid group $\mathbb{Z}^n \rtimes B_{aff}^n$, with the t_j’s being interpreted as the “elementary framings” (framing 1 on the jth strand). The quotient of $\mathbb{Z}^n \rtimes B_{aff}^n$ over the relations (fr3) is the modular framed affine braid group $(\mathbb{Z}/d\mathbb{Z})^n \rtimes B_{aff}^n$ (the framing of each braid strand is regarded modulo d). Thus, the affine Yokonuma–Hecke algebra $Y_{d,n}^{aff}(q)$ can be obtained as the quotient of the group algebra $\mathcal{R}[(\mathbb{Z}/d\mathbb{Z})^n \rtimes B_{aff}^n]$ over the quadratic relation (quad).

Note that, for all $i = 1, \ldots, n - 1$, the elements e_i are idempotents, and we have $g_i e_i = e_i g_i$. Moreover, the elements g_i are invertible, with

$$g_i^{-1} = g_i - (q - q^{-1}) e_i \quad \text{for all } i = 1, \ldots, n - 1. \quad (2.4)$$

Now, for $i, l = 1, \ldots, n$, we set

$$e_{i,l} := \frac{1}{d} \sum_{k=0}^{d-1} t_i^k t_l^{-k} \quad (2.5)$$

The elements $e_{i,l}$ are idempotents. We also have $e_{i,i} = 1$, $e_{i,l+1} = e_i$ and $e_{i,l} = e_{i,l}$. Moreover, it is easy to check that

$$t_j e_{i,l} = s_{i,j}(j) e_{i,l} = e_{i,l} t_j e_{i,l} \quad \text{for all } j = 1, \ldots, n, \quad (2.6)$$

where $s_{i,l}$ denotes the transposition (i,l).

We define inductively elements X_2, \ldots, X_n of $Y_{d,n}^{aff}(q)$ by

$$X_{i+1} := g_i X_i g_i \quad \text{for } i = 1, \ldots, n - 1. \quad (2.7)$$

We have that the elements $t_1, \ldots, t_n, X_2^{\pm 1}, \ldots, X_n^{\pm 1}$ form a commutative family [ChPo1, Proposition 1]. Moreover, in [ChPo1, Lemma 1], it is proved that, for any $i \in \{1, \ldots, n\}$, we have

$$g_i X_i = X_i g_i \quad \text{and} \quad g_i X_i^{-1} = X_i^{-1} g_i \quad \text{for } j = 1, \ldots, n - 1 \text{ such that } j \not= i - 1, i. \quad (2.8)$$

Finally, using (2.1)(quad) and (2.4), it is easy to check that, for any $i \in \{1, \ldots, n\}$, we have

$$g_i X_i = X_i + (q - q^{-1}) e_i X_i + 1 \quad \text{and} \quad g_i X_{i+1} = X_i g_i + (q - q^{-1}) e_i X_{i+1}, \quad (2.9)$$

which in turn yields

$$g_i X_i^{-1} = X_i^{-1} g_i + (q - q^{-1}) e_i X_i^{-1} \quad \text{and} \quad g_i X_{i+1}^{-1} = X_i^{-1} g_i - (q - q^{-1}) e_i X_{i+1}^{-1}. \quad (2.10)$$

We can easily prove by induction, on $a, b \in \mathbb{Z}_{> 0}$, that the following equalities hold:

$$g_i X_i^a = X_i^a g_i - (q - q^{-1}) e_i \sum_{k=0}^{a-1} X_i^k X_i^{a-k} \quad \text{and} \quad g_i X_{i+1}^b = X_{i+1}^b g_i + (q - q^{-1}) e_i \sum_{k=0}^{b-1} X_i^k X_{i+1}^{b-k} \quad (2.11)$$

$$g_i X_i^{-a} = X_i^{-a} g_i + (q - q^{-1}) e_i \sum_{k=0}^{a-1} X_i^{-a+k} X_i^{-k} \quad \text{and} \quad g_i X_{i+1}^{-b} = X_{i+1}^{-b} g_i - (q - q^{-1}) e_i \sum_{k=0}^{b-1} X_i^{-b+k} X_{i+1}^{-k} \quad (2.12)$$

Note also that

$$g_i X_{i+1} X_{i+1} = g_i X_{i+1} X_{i+1} g_i = X_i X_{i+1} g_i = X_i X_{i+1} g_i \quad \text{and} \quad g_i X_i^{-1} X_{i+1}^{-1} = X_i^{-1} X_{i+1}^{-1} g_i. \quad (2.13)$$

The above formulas yield it turn the following lemma:
Lemma 2.14. We have the following identities satisfied in $Y_{d,n}^{\text{aff}}(q)$ ($i = 1, \ldots, n - 1$):

$$g_i X_i^a X_{i+1}^b = \begin{cases}
X_i^a X_{i+1}^b g_i - (q - q^{-1})e_i \sum_{k=0}^{a-b-1} X_i^{b+k} X_{i+1}^{a-k} & \text{if } a \geq b, \\
X_i^a X_{i+1}^b g_i + (q - q^{-1})e_i \sum_{k=0}^{b-a-1} X_i^{a+k} X_{i+1}^{b-k} & \text{if } a \leq b,
\end{cases} \quad a, b \in \mathbb{Z}.
$$

Let $w \in \mathfrak{S}_n$, where \mathfrak{S}_n is the symmetric group on n letters, and let $w = s_{i_1}s_{i_2}\ldots s_{i_r}$ be a reduced expression for w. Since the generators g_i of $Y_{d,n}^{\text{aff}}(q)$ satisfy the same braid relations, (br1) and (br2), as the generators of \mathfrak{S}_n, Matsumoto’s lemma implies that the element $g_w := g_{i_1}g_{i_2}\ldots g_{i_r}$ is well-defined, that is, it does not depend on the choice of the reduced expression for w. We then obtain an R-basis of $Y_{d,n}^{\text{aff}}(q)$ as follows:

Theorem 2.16. [ChPo2, Theorem 4.15] The set

$$\mathcal{B}_{d,n}^{\text{aff}} = \left\{ t_1^{a_1}\cdots t_n^{a_n} X_1^{b_1}\cdots X_n^{b_n} g_w \mid a_1, \ldots, a_n \in \mathbb{Z}/d\mathbb{Z}, \ b_1, \ldots, b_n \in \mathbb{Z}, \ w \in \mathfrak{S}_n \right\}$$

is an R-basis of $Y_{d,n}^{\text{aff}}(q)$.

For $d = 1$, $\mathcal{B}_{1,n}^{\text{aff}}$ is the standard Bernstein basis of the affine Hecke algebra $Y_{1,n}^{\text{aff}}(q)$ of type A.

3. The pro-p-Iwahori–Hecke algebra

Let Λ denote the abelian group \mathbb{Z}^n. For $\lambda = (\lambda_1, \ldots, \lambda_n), \lambda' = (\lambda_1', \ldots, \lambda'_{n}) \in \Lambda$, we have $\lambda + \lambda' = \lambda' + \lambda$. We denote by $\lambda \cdot \lambda'$ the dot product of λ and λ', that is, the integer $\sum_{i=1}^n \lambda_i \lambda_i'$. We set $e_i := (0, 0, \ldots, 0, 1, -1, 0, \ldots, 0) \in \Lambda$, where 1 is in the i-th position and -1 is in the $(i+1)$-th position, for $i = 1, \ldots, n - 1$.

Let W be the extended affine Weyl group $\Lambda \rtimes \mathfrak{S}_n$ of type A. For all $\sigma \in \mathfrak{S}_n$ and $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Lambda$, we set

$$\sigma(\lambda) := \sigma \lambda \sigma^{-1} = (\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(n)}).$$

Now, the symmetric group \mathfrak{S}_n is generated by the set $S = \{s_1, \ldots, s_{n-1}\}$, where s_i denotes the transposition $(i, i+1)$. We set

$$\gamma := s_{n-1}s_{n-2}\ldots s_2s_1 \in \mathfrak{S}_n \quad \text{and} \quad h := (0,0,\ldots,0,1) \in W.$$

Note that we have $hs_ih^{-1} = s_{i-1}$ for all $i = 2, \ldots, n - 1$. Set $s_0 := hs_1h^{-1} \in W$. Then the set $S^0 = S \cup \{s_0\}$ is a generating set of the affine Weyl group W^{aff} of type A and we have $W = (h) \rtimes W^{\text{aff}}$. Moreover, we can extend the length function ℓ of W^{aff} to W by setting $\ell(h^k w^{\text{aff}}) = \ell(w^{\text{aff}})$ for all $w^{\text{aff}} \in W^{\text{aff}}, k \in \mathbb{Z}$.

Let T be a (finite) abelian group such that \mathfrak{S}_n acts on T. Like above, for all $\sigma \in \mathfrak{S}_n$ and $t \in T$, we set $\sigma(t) := \sigma \sigma^{-1}$.

We consider the semi-direct product $\widetilde{W} := (T \rtimes \Lambda) \rtimes \mathfrak{S}_n$. Every element of \widetilde{W} can be written in the form $t \lambda \sigma$, with $t \in T, \lambda \in \Lambda, \sigma \in \mathfrak{S}_n$. Note that t and λ commute with each other. We set $\tilde{\mathfrak{S}} := T \times \Lambda$ and $\tilde{\mathfrak{S}}_n := T \rtimes \mathfrak{S}_n$. We have $\widetilde{W} = \tilde{\mathfrak{S}} \tilde{\mathfrak{S}}_n$, with $\tilde{\mathfrak{S}} \cap \tilde{\mathfrak{S}}_n = T$. Like above, for all $\sigma \in \mathfrak{S}_n$ and $\nu \in \tilde{\mathfrak{S}}$, we set $\sigma(\nu) := \sigma \nu \sigma^{-1}$. We also set $\tilde{S} := \{ts | s \in S, t \in T\}$ and $\tilde{S}^{\text{aff}} := \{ts | s \in S^{\text{aff}}, t \in T\}$. Finally, we can extend the length function ℓ of W to \widetilde{W} by setting $\ell(tw) = \ell(w)$ for all $w \in W, t \in T$.

Theorem 3.1. [Vi2, Theorem 2.4] Let R be a ring and let $(q_s,c_s)_{s \in \tilde{S}^{\text{aff}}} \in R \times R[T]$ be such that

(a) $q_s = q_{ts}$ and $c_s = tc_s$ for all $t \in T$.
(b) $q_s = q_{ts'}$ and $c_s = wc_{s'}w^{-1}$ if $s' = ws^{-1}$ for some $w \in \widetilde{W}$.

Then the free R-module $\mathcal{H}_R(q_s,c_s)$ of basis $(T_w)_{w \in \tilde{W}}$ has a unique R-algebra structure satisfying:

- The braid relations: $T_w T_{w'} = T_{ww'}$ if $w, w' \in \tilde{W}$, $\ell(w) + \ell(w') = \ell(ww')$.
- The quadratic relations: $T_s^2 = q_s c_s^2 + c_s T_s$ for $s \in \tilde{S}^{\text{aff}}$.

3
Thus, if \((q_s)_{s \in \mathbb{N}} \) are taken to be indeterminates satisfying (a) and (b) above, \(R := R[q^{1/2}, q^{-1/2}] \) and \((c_s)_{s \in \mathbb{N}} \), then \(H_{\mathbb{R}}(q_s, c_s) \) is called the \textit{generic pro-p-Iwahori–Hecke algebra} of \(\tilde{W} \). Note that, in this case, since \(q_s \) is invertible for all \(s \in \mathbb{N} \), \(T_s \) is invertible in \(H_{\mathbb{R}}(q_s, c_s) \), with
\[
T_s^{-1} = q_s^{-1} s^{-2} (T_s - c_s).
\]

We deduce that every element \(T_w \), for \(w \in \tilde{W} \), is invertible in \(H_{\mathbb{R}}(q_s, c_s) \). Note that any pro-p-Iwahori–Hecke algebra of \(\tilde{W} \) can be obtained from the generic pro-p-Iwahori–Hecke algebra \(H_{\mathbb{R}}(q_s, c_s) \) with a specialisation of parameters. Further, by replacing the generators \(T_s \) by \(T_s := q_s^{-1/2} T_s \), the quadratic relations become
\[
T_s^2 = s^2 + q_s^{-1/2} c_s T_s \quad \text{for all } s \in \mathbb{N}.
\]

Thus, if \((q_s^{1/2})_{s \in \mathbb{N}} \) are chosen so that they also satisfy conditions (a) and (b) of Theorem 3.1, we obtain an isomorphism between \(H_{\mathbb{R}}(q_s, c_s) \) and \(H_{\mathbb{R}}(1, q_s^{-1/2}, c_s) \). Therefore, from now on, without loss of generality, we will assume that \(q_s = 1 \) for all \(s \in \mathbb{N} \). Then \(R = R_c \). We now have the following Bernstein presentation of \(H(1, c_s) \).

Theorem 3.3. [Vi2, Theorem 2.10] The \textit{R-algebra} \(H(1, c_s) \) is isomorphic to the free \(R \)-module of basis \(\langle E(w) \rangle_{w \in \tilde{W}} \) endowed with the unique \(R \)-algebra structure satisfying:

- **Braid relations:** \(E(w)E(w') = E(w'w) \) for \(w, w' \in \tilde{S}_n \), \(\ell(w) + \ell(w') = \ell(w'w) \).
- **Quadratic relations:** \(E(s)^2 = s^2 + c_s E(s) \) for \(s \in \tilde{S} \).
- **Product relations:** \(E(\nu)E(w) = E(\nu w) \) for \(\nu \in \tilde{A} \), \(w \in \tilde{W} \).
- **Bernstein relations:** For \(s = ts_i \in \tilde{S} \) \((t \in T, i = 1, \ldots, n-1)\) and \(\nu = \tau \lambda \in \tilde{A} \) \((\tau \in T, \lambda \in \Lambda)\),
\[
E(s(\nu))E(s) - E(s)E(\nu) = \begin{cases} 0 & \text{if } s_i(\lambda) = \lambda, \\ \epsilon_i(\lambda) c_s \sum_{t=0}^{[\epsilon_i(\lambda)]-1} E(\tau \mu_i(k,l)) & \text{if } s_i(\lambda) \neq \lambda, \end{cases}
\]
where \(\epsilon_i(\lambda) = \text{sign}(\varepsilon, \tau, \lambda) \in \{1, -1\} \) and
\[
\mu_i(k,l) = \begin{cases} \lambda & \text{if } \epsilon_i(\lambda) = -1 \\ s_i(\lambda) & \text{if } \epsilon_i(\lambda) = 1. \end{cases}
\]

Remark 3.4. Note that, in the above presentation, we take \(E(s) = T_s \) for all \(s \in \tilde{S} \) (in particular, \(E(\nu) = \tau \) for all \(\nu \in T \)).

4. **Main result**

Let \(q \) be an indeterminate. Our aim in this section will be to show that the affine Yokonuma–Hecke algebra \(Y_{\mathbb{R}}^q(q) \) is isomorphic to the pro-p-Iwahori–Hecke algebra \(H_R(q_s, c_s) \) of \(\tilde{W} \) when we take

- \(T = (\mathbb{Z}/d\mathbb{Z})^n \times \mathbb{A}_n \) \(= \{ t_1, \ldots, t_n \mid t_i^d = 1, t_i t_j = t_j t_i \}, \) for all \(i, j = 1, \ldots, n \} ; \)
- \(R = \mathbb{R} = \mathbb{C}[q, q^{-1}] \); \)
- \(q_{ts_i} = 1 \) for all \(i = 0, 1, \ldots, n-1, t \in (\mathbb{Z}/d\mathbb{Z})^n ; \)
- \(c_{ts_i} = (q - q^{-1}) t e_i \) for all \(i = 0, 1, \ldots, n-1, t \in (\mathbb{Z}/d\mathbb{Z})^n \), where \(e_0 := e_{1,n} \).

We then have \(\tilde{W} = (\mathbb{Z}/d\mathbb{Z} \times \mathbb{Z})^n \times \mathbb{A}_n \) \(= \{ t \lambda \sigma \mid t \in (\mathbb{Z}/d\mathbb{Z})^n, \lambda \in \Lambda, \sigma \in \mathbb{A}_n \} \) The action of \(\mathbb{A}_n \) on \((\mathbb{Z}/d\mathbb{Z})^n \) is given by
\[
\sigma(t) = \sigma \tau \sigma^{-1} = t_\sigma(j) \quad \text{for all } \sigma \in \mathbb{A}_n, j = 1, \ldots, n. \]

The action of \(\mathbb{A}_n \) extends linearly to the group algebra \(\mathbb{R}[\mathbb{Z}/d\mathbb{Z}]^n \).

First we check that the assumptions (a) and (b) of Theorem 3.1 are satisfied in this case. Let \(s \in \mathbb{N} = \{ ts_i \mid i = 0, 1, \ldots, n-1, t \in (\mathbb{Z}/d\mathbb{Z})^n \} \). By definition, we have \(q_s = q_{ts} = 1 \) and \(c_{ts} = tc_s \) for all \(t \in (\mathbb{Z}/d\mathbb{Z})^n \).

Now, set \(\lambda_0 := (-1, 0, \ldots, 0, 1) \in \Lambda \) and \(\lambda_i := (0, 0, \ldots, 0, 0) \in \Lambda \) for all \(i = 1, \ldots, n-1. \)
Moreover, let σ_0 denote the transposition $(1,n) = s_{1,n}$ and σ_i denote the transposition $(i,i+1) = s_i$ for all $i = 0,1,\ldots,n-1$. We then have

$$s_i = \lambda_i \sigma_i \quad \text{for all } i = 0,1,\ldots,n-1.$$

So

$$S^\text{aff} = \{ t \lambda_i \sigma_i \mid i = 0,1,\ldots,n-1, t \in (\mathbb{Z}/d\mathbb{Z})^n \}.$$

Let $s,s' \in S^\text{aff}$ be conjugate in \tilde{W}. By definition, we have $q_s = q_{s'} = 1$. Now, let us write $s = t \lambda_i \sigma_i$ and $s' = t' \lambda_i' \sigma_i'$ for $i,i' \in \{ 0,1,\ldots,n-1 \}$ and $t,t' \in (\mathbb{Z}/d\mathbb{Z})^n$. Moreover, let $w \in \tilde{W}$ be such that $s' = wsw^{-1}$, and write $w = \tau \lambda \sigma$ with $\tau \in (\mathbb{Z}/d\mathbb{Z})^n$, $\lambda \in \Lambda$ and $\sigma \in \mathcal{S}_n$. Then

$$t' \lambda_i \sigma_i = (\tau \lambda \sigma)(t \lambda_i \sigma_i)(\sigma^{-1} \lambda^{-1} \tau^{-1}) = [\tau \sigma(t)(\sigma \sigma_i \sigma^{-1})(\tau^{-1})][\lambda \sigma(\lambda_i)(\sigma \sigma_i \sigma^{-1})(\lambda^{-1})][\sigma_i \sigma^{-1}].$$

We deduce that

$$\sigma_i = \sigma_i \sigma^{-1} \quad \text{and} \quad t' = \tau \sigma(t)(\sigma \sigma_i \sigma^{-1})(\tau^{-1}) = \tau \sigma(t) \sigma_i(t \sigma_i^{-1}).$$

By (2.6), we have

$$(4.1) \quad t' \sigma_i = \tau \sigma(t) \sigma_i \sigma^{-1} \quad \text{and} \quad t' = \tau \sigma(t)(\sigma \sigma_i \sigma^{-1})(\tau^{-1}) = \tau \sigma(t) \sigma_i(t \sigma_i^{-1}).$$

Furthermore, we have

$$\sigma_i \sigma(i) = \sigma_i(i) = \sigma(i+1) \quad \text{and} \quad \sigma_i \sigma(i+1) = \sigma_i(i+1) = \sigma(i),$$

where i and $i+1$ in the above equalities are considered modulo n if necessary. If $\sigma(i)$ is fixed by σ_i, then the first equality implies that $\sigma(i) = \sigma(i+1)$, which is absurd. Similarly, if $\sigma(i+1)$ is fixed by σ_i, then the second equality implies that $\sigma(i+1) = \sigma(i)$, which is absurd. We deduce that

$$\{ \sigma(i), \sigma(i+1) \} = \begin{cases} \{ i', i'+1 \} & \text{if } 1 \leq i' \leq n-1 ; \\ \{ 1,n \} & \text{if } i' = 0 ; \end{cases}$$

which in turn yields

$$(4.2) \quad we_i w^{-1} = \sigma(e_i) w w^{-1} = \sigma(e_i) = e_i.$$

Combining (4.1) and (4.2), we obtain

$$c_i = (q - q^{-1})t' \sigma_i = (q - q^{-1})\tau \sigma(t) w w^{-1} w e_i w^{-1} = w ((q - q^{-1})e_i) w^{-1} = wc_i w^{-1}.$$

Therefore, we can define the pro-p-Iwahori–Hecke algebra $\mathcal{H}_R(q,g,c)$ of \tilde{W}, which is the free \mathcal{R}-module of basis $(E(w))_{w \in \tilde{W}}$ endowed with the unique \mathcal{R}-algebra structure satisfying the relations described explicitly in the previous section.

Theorem 4.3. The \mathcal{R}-linear map $\varphi : Y^\text{aff}_{d,n}(q) \rightarrow \mathcal{H}_R(q,c)$ defined by

$$\varphi(t_1^{a_1} \cdots t_n^{a_n} X_1^{b_1} \cdots X_n^{b_n} g_w) = E(t_1^{a_1} \cdots t_n^{a_n} (b_1,\ldots,b_n)) w ,$$

for all $a_1,\ldots,a_n \in \mathbb{Z}/d\mathbb{Z}$, $b_1,\ldots,b_n \in \mathbb{Z}$, and $w \in \mathcal{S}_n$, is an \mathcal{R}-algebra isomorphism.

Proof. The map φ is obviously a bijective \mathcal{R}-linear map, so we just need to show that φ is an \mathcal{R}-algebra homomorphism. For this, it is enough to check that the defining relations (2.1) of $Y^\text{aff}_{d,n}(q)$ are satisfied by the images of its generators via φ, that is, the elements

$$\varphi(t_1),\ldots,\varphi(t_n), \varphi(g_1),\ldots,\varphi(g_{n-1}), \varphi(X_1), \varphi(X_1^{-1}).$$

First of all, note that $\varphi(X_1^{-1}) = E((-1,0,\ldots,0)) = E((1,0,\ldots,0))^{-1} = \varphi(X_1)^{-1}$, due to the product relations. The product relations also imply (aff3). Moreover, due to the braid relations, we have immediately that (br1), (br2), (fr1) and (fr3) are satisfied. We also obtain

$$\varphi(g_i) \varphi(t_j) = E(s_i) E(t_j) = E(s_i t_j) = E(t_{s_i(j)} s_i) = E(t_{s_i(j)}) E(s_i) = \varphi(t_{s_i(j)}) \varphi(g_i)$$

for all $i = 1,\ldots,n-1$ and $j = 1,\ldots,n$, so (fr2) holds.

Now, for $i = 1,\ldots,n-1$, we have

$$\varphi(g_i)^2 = E(s_i)^2 = s_i^2 + c_{s_i} E(s_i) = 1 + (q - q^{-1}) e_i E(s_i) = 1 + (q - q^{-1}) e_i \varphi(g_i),$$

so (quad) is satisfied by $\varphi(g_i)$. We will use the Bernstein relations for the remaining defining relations, (aff1) and (aff2).
First, note that \((1,0,\ldots,0)\) is fixed by the action of \(s_i\) for all \(i = 2,\ldots,n-1\). We thus obtain \(\varphi(X_1)\varphi(g_1) = E((1,0,\ldots,0))E(s_i) = E(s_i(1,0,\ldots,0)s_i^{-1})E(s_i) = E(s_iE((1,0,\ldots,0)) = \varphi(g_1)\varphi(X_1)\). This yields \((\text{aff}2)\).

Now, \((1,0,\ldots,0)\) is not fixed by the action of \(s_1\). By the Bernstein relations, we have \[E((0,1,\ldots,0))E(s_1) = E(s_1E((1,0,\ldots,0))) = c_{s_1}E((0,1,\ldots,0)),\]
and thus,
\[E(s_1)E((1,0,\ldots,0)) = E((0,1,\ldots,0))E(s_1) - c_{s_1}E((0,1,\ldots,0)) = E((0,1,\ldots,0))(E(s_1) - c_{s_1}).\]
By \((3.2)\) and Remark 3.4, we have that
\[E(s_1) - c_{s_1} = E(s_1)^{-1},\] and so
\[E(s_1)E((1,0,\ldots,0)) = E((0,1,\ldots,0))E(s_1)^{-1}.\]
We obtain
\[\varphi(X_1)\varphi(g_1)\varphi(X_1)\varphi(g_1) = E((1,0,\ldots,0))E(s_1)E((1,0,\ldots,0))E(s_1) = E((1,0,\ldots,0))E((0,1,\ldots,0))E(s_1)^{-1}E(s_1) = E((1,0,\ldots,0))E((0,1,\ldots,0)) = E((1,1,\ldots,0)).\]
And
\[\varphi(g_1)\varphi(X_1)\varphi(g_1)\varphi(X_1) = E(s_1)E((1,0,\ldots,0))E(s_1)E((1,0,\ldots,0)) = E((0,1,\ldots,0))E(s_1)^{-1}E(s_1)E((1,0,\ldots,0)) = E((0,1,\ldots,0))E((1,0,\ldots,0)) = E((1,1,\ldots,0)).\]
Thus, \((\text{aff}1)\) also holds, and \(\varphi\) is a bijective \(\mathcal{R}\)-algebra homomorphism, as required.

References

