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Gauge Invariant Framework for Shape
Analysis of Surfaces

Alice Barbara Tumpach, Hassen Drira, Mohamed Daoudi, Senior, IEEE ,
and Anuj Srivastava, Senior, IEEE

Abstract—This paper describes a novel framework for computing geodesic paths in shape spaces of spherical surfaces under
an elastic Riemannian metric. The novelty lies in defining this Riemannian metric directly on the quotient (shape) space, rather
than inheriting it from pre-shape space, and using it to formulate a path energy that measures only the normal components of
velocities along the path. In other words, this paper defines and solves for geodesics directly on the shape space and avoids
complications resulting from the quotient operation. This comprehensive framework is invariant to arbitrary parameterizations
of surfaces along paths, a phenomenon termed as gauge invariance. Additionally, this paper makes the link between different
elastic metrics used in the computer science literature on one hand, and the mathematical literature on the other hand, and
provides a geometrical interpretation of the terms involved. Examples using real and simulated 3D objects are provided to help
illustrate the main ideas.

Index Terms—3D surfaces, Riemannian metric, geodesics.

F

1 INTRODUCTION

In this paper we seek a framework for analysing
shapes of a certain class of 3D objects. Although the
general goal in shape analysis is to develop tools for
full statistical analysis – statistical averaging, finding
principal modes of variations in a population, and
shape classification, we restrict to more basic goals
of quantifying shape differences and generating
deformations. While there have been many efforts
in shape analysis of 3D objects, the problem is
far from solved and the current solutions face
many technical and practical issues. For instance,
many general techniques for shape analysis rely on
quantifying shape differences by spatially matching
geometric features across objects. Therefore, it
becomes important to establish a correspondence of
parts between objects, i.e. which part in one object
corresponds to which part in the other? This was an
important bottleneck in a majority of previous efforts
on 3D shape analysis where the correspondence (or
registration) of objects was either presumed or solved
as an independent pre-processing step. More recently,
there has been progress in establishing frameworks
that formulate the registration and comparison
problems jointly. These newer frameworks, using
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techniques from differential geometry, focus on shape
analysis of parameterized surfaces and treat the
problem of shape comparison as the problem of
computing geodesic paths in shape spaces under a
chosen metric. Here shapes are compared using a
Riemannian metric on a pre-shape space F consisting
of embeddings or immersions of a model manifold
(like the sphere, or the disc) into the 3D Euclidean
space R3. Two embeddings correspond to the same
shape in R3 if and only if they differ by an element
of a shape-preserving transformation group, such as
rigid motion, scaling, and reparameterization. The
shape space is therefore the quotient space of the
pre-shape space by these shape-preserving groups.
If the Riemannian metric on the pre-shape space
is preserved by the action of the shape-preserving
group then it induces a Riemannian metric on the
quotient space. The construction of geodesics in shape
space provide optimal deformations between surfaces
and is a very important tool in statistical analysis of
shapes. Interestingly, the problem of registration is
handled using parameterizations of surfaces such
that the points denoting the same parameter values
on two objects are considered registered.

While these geometric ideas are powerful and com-
prehensive, there are two important issues that one
needs to deal with: (1) the choice of Riemannian
metric to define geodesics, geodesic lengths, and the
eventual shape metric, and (2) the task of computing
geodesic paths between arbitrary shapes. In terms of
the first issue, the choice of a metric, an important re-
quirement is that the metric should be invariant to ac-
tion of the reparameterization group, to enable a well-
defined distance on the eventual quotient space or the
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Fig. 1. Two paths in F with the same sequence of shapes but with different reparameterizations between the corresponding shapes.

shape space of surfaces. There is a related requirement
for the shape analysis to be invariant to parameter-
izations of objects since parameterizations are only
artificial impositions designed to help navigate along
objects. The physical intuition we have is that shape
tools, such as the deformation (path or geodesic)
from one shape to another, are physical processes
that are independent of the way surfaces may be
parameterized. These dual requirements rule out the
use of commonly-used quantities such as the L2 norm
on the space F directly. In terms of the second issue,
the lack of standard metrics makes it complicated to
compute geodesic paths even when the underlying
manifold is a vector space, and one needs numerical
algorithms for approximating geodesic paths. Next,
we present a summary of the past work on these two
issues and outline motivations for the current paper.

1.1 Motivation and Past Work
Our goal is to develop tools for analyzing shapes
of two-dimensional surfaces with certain local con-
straints (smoothness, no-holes, etc). The main diffi-
culty in comparing shapes of such surfaces is that
there is no preferred parameterization that can be
used for registering and comparing features across
surfaces. Since the shape of a surface is invariant to
its parameterization, one would like an approach that
yields the same result irrespective of the parameteri-
zation.

Furthermore, we are not only interested in the com-
parison and matching of two shapes, but also in the
deformation processes that may transform one shape
into another, i.e. metamorphosis. To be physically
meaningful, the evolution from one shape to another
should be independent of the way surfaces may be
parameterized. Our approach to shape analysis pre-
sented in this paper was therefore initiated by the
following question : What is the natural framework where
one can measure deformations of shapes independently
of the way shapes are parameterized? As a motivating
example, the sequence of shapes displayed in Fig. 1

(bottom) denotes a path where a horse is transformed
into a jumping cat. During the transformation process,
only the change of shape, drawn in the bottom line
as a sequence of blue surfaces, is relevant to us. How
the surfaces may be parameterized during the meta-
morphosis has no importance in our context. To em-
phasize this idea, two paths of parameterized surfaces
corresponding to the same transformation process are
displayed in the top two rows. We would like a
framework where the physical quantities measured
on the path of shapes, such as its length or its energy,
are independent of the parameterizations of surfaces
along the transformation process. In particular, in Fig.
1, the two paths of parameterized surfaces corre-
sponding to the same transformation process should
have the same length. Note that the surfaces along the
second path are obtained by applying to the surfaces
along the first path a different reparameterization at each
time step.

Let us emphasize that we are not only interested
in how far the horse and the jumping cat are from
each other, in other words in a quantity like a distance
measuring the minimal cost needed to deform the
horse into a cat. But, given a metamorphosis between
these two shapes, we are also interested in measuring
its length on one hand, and its energy on the other
hand, independently of the parameterizations of the
transformation process that may have been used to
create this metamorphosis. Recall that the length of a
path is the integral of the norm velocity function with
respect to time and has the dimension of a distance.
The energy is the integral of the square of the norm
velocity function with respect to time, hence has the
dimension of the square of a distance divided by time.

Let us now summarize past work on related sub-
jects. The initial set of papers developed algorithms
for geodesic deformations between surfaces while
using the given registration of points. They compute
geodesics between shapes, under isometric deforma-
tions, while assuming the registration (or parameter-
ization) as given. Windheuser et al. [1] proposed to
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find a geometrically consistent matching of 3D shapes
which minimizes an elastic deformation energy but
use a linear interpolation between registered pairs
of points in R3 to compute geodesic paths. Another
paper by Kilian et al. [2] represents parameterized
surfaces by discrete triangulated meshes, assumes a
Riemannian metric on the space of such meshes, and
computes geodesic paths between given meshes. The
main limitation here is that it assumes the corre-
spondence between points across meshes. That is, we
need to know beforehand which point on one mesh
matches with which point on the second mesh. The
same limitation holds for the paper by Heeren et al.
[3] also. In contrast, we would like to remove the repa-
rameterization variability so that different surfaces
with the same shape but different parameterizations
have zero distance between them.

Motivated by progress in shape analysis of curves
[4], [5], Kurtek et al. [6], [7] introduced a new rep-
resentation, termed a q-map of surfaces such that the
L2 distance in this representation space is invariant
to simultaneous reparameterizations of surfaces. For
convenience of the reader, we recall the definition of
the q-map but we will not use it in the present paper.
Let f : S2 → R3 denote a smooth parameterized
surface and F be the set of such surfaces. Then, this
q-map is given by f 7→ q where q(s) =

√
r(s)f(s) and

r(s) is the area multiplication factor of f at s ∈ S2.
They defined a Riemannian metric on the space of
parameterized surfaces by pulling back L2 metric un-
der the q-map, and used a path-straightening algorithm
to compute geodesic paths between given surfaces in
a pre-shape space. This path-straightening is an iter-
ative algorithm that updates an arbitrary initial path
using the gradient of the energy function mentioned
above, until the path converges to a geodesic. The
energy gradient is approximated numerically using
an (approximate) finite basis for F . To remove the
effects of original parameterizations, and to obtain
geodesics in the shape space, they solve for an optimal
reparameterization of one of the surfaces, under the
same energy. There are several other papers, including
[8], that focus exclusively on the task of finding
optimal correspondence between 3D objects, either
using physically-motivated energies or Riemannian
metrics. Due to the use of gradient-based searches,
these methods and previously mentioned papers do
not guarantee a global solution, either for geodesics or
for registration. In path-staightening, however, it can
be shown that a path that is a local minimum of the
path energy is a geodesic path, albeit not the short-
est geodesic. To our knowledge, very few methods
guarantee a globally-optimal solution to the problem
of finding geodesics in shapes spaces of surfaces. Al-
though paper [6] was the first to provide a geometric
framework for joint registration-comparison problem,
the Riemannian metric used there has a limitation that
it was not translation invariant.

To handle the translation issue mentioned above,
Jermyn et al. [9] introduced a comprehensive Rieman-
nian metric that has several improvements, including
the fact that it was translation invariant and allows
some physical interpretations in its use. This metric,
given later in Eqn. (7), has terms that can be inter-
preted as measurements of bending, stretching, and
changes in local curvatures of surfaces. (We elaborate
on this topic later in Section 3.4.) It has been termed
an elastic metric because it is invariant to reparame-
terizations and the physical interpretations associated
with it. Although [9] introduced this metric, it did
not use the full metric to compute geodesic paths.
Instead, it defined a new map, termed the square-
root normal field, given by q(s) =

√
r(s)nf (s) where

nf (s) denotes the unit normal to the surface at the
point s ∈ S2. The square-root normal field has the
property that the last two terms of the elastic metric
transform to the L2 metric under the map f 7→ q, for
some weighting of last two terms in the metric. The
first term of the metric is discarded in this analysis.
The transformation to L2 metric is useful since one can
apply some common tools from Hilbert space analysis
to this problem, including the optimization over the
reparameterization group for optimal registration, but
this mapping f 7→ q is not onto and, hence, not invert-
ible. The optimization step is challenging because the
reparameterization group is an infinite-dimensional
Fréchet Lie group, and the exponential map is not a
local diffeomorphism. Since the first term of the elastic
metric introduced in [9] is not used by Jermyn et al., it
can result in zero shape distance between two surfaces
that actually have different shapes. For example, a
thin-tall cylinder and a fat-short cylinder, with same
surface areas and unit normals, will have zero shape
difference under this framework.

Another line of work in shape analysis comes from
Michor et al. [10], Bauer et al. [11], [12], [13] and
Fuchs et al. [14] (see also [15] for an overview of a lot
of mathematical results in this area). Different types
of metrics have been studied : Sobolev metrics in
[13], curvature weighted metrics in [11], almost local
metrics in [12], metrics mesuring the deformations of
the interiors of shapes in [14]. Let us mention that the
first two terms of the metric we use in the present
paper fit in the general study laid out in [13], and are
related to the metrics studied in [16], [17], [18] (in a
sense that we will make clear in section 3.4). In this
set of papers, the idea is to replace the problem of
solving the geodesic equation on shape space by the
equivalent problem of solving the equation for hori-
zontal geodesics in the pre-shape space. A geodesic
in pre-shape space is horizontal if it is orthogonal to
the orbits of the reparameterization group. One task
in this strategy is therefore to compute the horizontal
space on which the quotient map is an isometry, or
equivalently solve a minimization problem for the
infinitesimal energy. Depending on the Riemannian
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metric on the pre-shape space, this task may be com-
putationally trivial or extremely difficult to implement
(for metrics used in [11] and [12] it is just the space of
normal vector fields, but for metrics used in [13] and
[14] it involves the inversion of a pseudo-differential
operator). Another main contribution of these authors
is to give sufficient conditions under which the Rie-
mannian metric induced on shape space separates
points, i.e. gives a non-zero geodesic distance between
pairs of different shapes (a condition that is necessary
to make shape comparison). It is worth noting that, in
this infinite-dimensional context, vanishing geodesic
distance is a common phenomenon (as was first high-
lighted in [10]). For the metric we use, non-vanishing
geodesic distance is guaranteed by the non-vanishing
geodesic distance on the space of Riemannian metrics
proved in [19] (at least on pairs of shapes inducing
different pull-back metrics on the sphere, which is
what we are interested in practice).

To summarize, the past approaches involving Rie-
mannian geometry have tended to perform shape
analysis in two steps. First, they select a representation
space, or a pre-shape space, for objects of interest –
curves [4], [5], [20] and surfaces [7], [9], [11], [12], [13]
– and impose a Riemannian structure on it ensuring
that the actions of shape-preserving groups are by
isometries. Next, they inherit this metric to the quo-
tient space of the pre-shape space modulo the requi-
site groups, called the shape space, and seek geodesics
between objects in this shape space. The task of inher-
iting Riemannian metrics to quotient spaces is compli-
cated because reparameterization groups are Fréchet
Lie groups and the process of inheriting a metric
requires closed orbits, as can be seen in [21], [4], [20],
[13], etc. Even though endowing shape space with a
Riemannian metric (with positive distance function)
seems to be a good approach, inducing this metric by
a Riemannian metric on pre-shape space leads to diffi-
culties that one would like to avoid (recall that we are
only interested in shapes and not in the way they are
parameterized). We will pursue a different strategy
where the Riemannian metric is directly imposed on
the quotient space, thus avoiding the need to satisfy
conditions for inheriting metrics from the pre-shape
space or computing an abstract horizontal space. Mo-
tivated by an easy implementation of the metrics, we
take the point of view where the space of interest is
the space of normal vector fields (in contrast with the
horizontal space of a Riemannian submersion). Let us
emphasise that there is no restriction in doing so : any
Riemannian metric on shape space can by expressed
as a metric defined on normal vector fields.

1.2 Goals and Contributions

Now we present the goals and contributions of this
paper, and start by revisiting the question: What should
be a good Riemannian metric on shape space ? A good

Riemannian metric on shape space should be such
that : (1) it induces a positive distance function on
shape space, i.e. the infimum of the lengths of paths
connecting two different shapes should be non-zero ;
(2) the distance between two shapes should be inde-
pendent of the way the two shapes are parameter-
ized ; and, (3) the length of a path of shapes should
be independent of the way shapes along the path are
parameterized. The last point should be thought of
as the natural generalization of the fact that, on a
finite-dimensional Riemannian manifold, the length
of a curve is independent of the way the curve is
parameterized. It should be true for any path (not only
for geodesics), and is called gauge invariance. Indeed
the use of parameterized surfaces in order to measure
the deformation of a shape can be compared to the use
of a gauge. Let us comment on Fig. 1 in order to il-
lustrate this idea. Each column depicts an orbit under
the reparameterization group for the corresponding
surface, the surfaces in a given orbit correspond to
the same shape but with different parameterizations.
A path of shapes can be lifted in many ways to a path
of parameterized surfaces. In Fig. 1 two lifts of the
bottom line path are depicted. The first path connects
parameterized surfaces with different ”heights” in the
fibers. This is made to emphasize that the variations
of the ”height” (i.e. of the parameterization) in the
fibers should not influence the value of the length of
the path of shapes.

The main contributions of this paper are following:

• The proposed method achieves gauge invariance,
i.e. the lengths of paths (geodesics or otherwise)
measured under this metric are invariant to arbi-
trary reparameterizations of shapes along these
paths (in particular, the two paths in Fig.1 have
the same length).

• It uses an elastic metric that accounts for any
deformation of patches to define and compute
geodesic paths between given objects in the shape
space, and it presents a geometric interpretation
of the different terms involved in this metric.

• By defining a metric directly in the shape space, it
avoids the optimization step over the reparame-
terization group and difficult mathematical issues
arising from inheriting a metric from pre-shape
space.

Note that the third point leads to more efficient Algo-
rithms in cases where one only needs a shape geodesic
and not the optimal registration between surfaces.
It provides the same geodesic path despite arbitrary
initial parameterizations (or registrations) of given
surfaces, and saves the computational cost of finding
a registration. This fact is also a source of limitation
in the situation where one needs a registration. If one
wants to use geodesic lengths for comparing shapes,
then a registration is not needed. However, if one
wants to study statistical summaries of deformation
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fields, then a registration will be needed.
The rest of this paper is organized as follows.

Section 2 describes the mathematical representation
of embedded surfaces and establishes mathematical
setup. Section 3 is devoted to the description of gauge
invariance and to the definition of the Riemannian
metric involved in this paper. The geodesic computa-
tion is described in Section 4 and Section 5 presents
the experimental results.

2 MATHEMATICAL SETUP

2.1 Notation
We will represent a shape S with an embedding f :
S2 → R3 such that the image f(S2) is S. The function
f is also called a parameterization of the surface S.

We will use local coordinates (u, v) on the sphere.
For the theoretical framework, any coordinates on the
sphere are suitable, but in the application we use
spherical coordinates : u stands for the polar angle
and ranges from 0 to π, and v denotes azimuthal angle
and ranges from 0 to 2π.

Recall that a map f : S2 → R3 is an embedding when:
for any point (u, v) ∈ S2, (1) f is smooth, in particular
the derivatives fu and fv of f with respect to u and v
are well-defined, (2) f is an immersion, i.e. the cross
product fu×fv never vanishes and allows us to define
the normal (resp. tangent) space to the surface f(S2)
at a point f(u, v) as the subspace of R3 which is
generated by (resp. orthogonal to) fu × fv , and (3)
f is an homeomorphism onto its image, i.e. points
on f(S2) that look close in R3 are images of close
points in S2. If f is an embedding, then the surface
f(S2) is naturally oriented by the frame {fu, fv}, or
equivalently by the normal vector field fu × fv .

We define the space of all such surfaces as

F := {f : S2 → R3, f is an embedding}.

It is often called the pre-shape space since objects with
same shape but different orientations or parameteri-
zations may correspond to different points in F . The
set F is itself a manifold, as an open subset of the
linear space C∞(S2,R3) of smooth functions from S2

to R3 (see Theorem 3.1 in [15] and the references
therein). The tangent space to F at f , denoted by TfF ,
is therefore just C∞(S2,R3).

The shape-preserving transformations of 3D object
can be expressed as group actions on F : The group
R+ with multiplication operation acts on F by scaling :
(β, f) 7→ βf , for β ∈ R+ and f ∈ F . The group R3 with
addition as group operation acts on F , by translations :
(v, f) 7→ f+v, for v ∈ R3 and f ∈ F . The group SO(3)
with matrix multiplication as group operation acts on
F , by rotations : (O, f) 7→ Of , for O ∈ SO(3) and
f ∈ F . Finally, the group Γ := Diff+(S2) consisting of
diffeomorphisms which preserve the orientation of S2

acts also on F , by reparameterization : (γ, f) 7→ f ◦γ−1,
for γ ∈ Diff+(S2) and f ∈ F . The use of γ−1, instead

of γ, ensures that the action is from left and, since
the action of SO(3) is also from left, one can form
a joint action of G := Diff+(S2) × SO(3) o R3 on F .
In this paper, the translation group is taken care of
by using translation-independant metric (the elastic
metric) and, when needed, the scaling is taken care
of by rescaling the surfaces to have unit surface area.
Therefore, in the following we will focus only on the
reparameterization group Γ and on the rotation group
SO(3).

2.2 Shape Space as quotient space

Since we are only interested in shapes of surfaces, we
would like to identify surfaces that can be related
through a shape-preserving transformation. This is
accomplished using the notion of group action and
orbits under those group actions.

Given a group G acting on F , the elements in F
obtained by following a fix parameterized surface
f ∈ F when acted on by all elements of G is called
the G-orbit of f or the equivalence class of f under the
action of G, and will be denoted by [f ]. In particular,
when G is the reparameterization group, the orbit of
f ∈ F is characterized by the surface f(S2) = S,
i.e. the elements in [f ] = {f ◦ γ−1 for γ ∈ Γ} are all
possible parameterizations of S. For instance in Fig. 1,
the first column contains some parameterized horses
that are elements of the same orbit. The set of orbits
of F under a group G is called the quotient space and
will be denoted by F/G. The quotient space of interest
in this paper is called shape space and is defined as
follows.

Definition 1: The shape space S is the set of ori-
ented surfaces in R3, which are diffeomorphic to S2,
modulo translation and rotation. It is isomorphic to
the quotient space of the pre-shape space F by the
shape-preserving group G := Diff+(S2)×SO(3)oR3 :
S = F/G.

It is important to note that the shape space S = F/G
is a smooth manifold and the canonical projection
Π : F → F/G, f 7→ [f ] is a submersion (see for
instance [22] and [23]). This submersion is useful in
establishing the notion of a vertical space that will be
needed a little later. By definition, the vertical space
of a submersion is the kernel space of its differential.
When the submersion is a quotient map by a group
action, the vertical space is the tangent space to the
orbit (the terminology comes from the fact that the
orbits are usually depicted as vertical fibers over a
base manifold which is the quotient space, see Fig.1).
In the case of the submersion Π̃ : F 7→ F/Diff+(S2),
the vertical space takes a very natural, intuitive form.

Proposition 1: The vertical space V er(f) of Π̃ at
some embedding f ∈ F is the space of vector fields
which are tangent to the shape f(S2), or equivalently
the space of vector fields such that the dot product
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with the unit normal vector field nf := fu×fv
‖fu×fv‖ :

S2 → R3 vanishes :

V er(f) = {δf : S2 → R3|δf(s) · nf (s) = 0,∀s ∈ S2}.

Remark 2: A canonical complement to this vertical
space (consisting of tangent vector fields) is given by
the space of vector fields normal to the surface f(S2)
denoted by Nor. This is the sub-bundle of the tangent
bundle TF defined by

Nor(f) = {δf : S2 → R3|δf(s)× nf (s) = 0,∀s ∈ S2}.

Any tangent vector δf ∈ TfF admits a unique de-
composition δf = δfT + δf⊥ into its tangential part
δfT ∈ V er(f) and its normal part δf⊥ ∈ Nor(f).
Specifically, the normal part is given by:

δf⊥ = (δf · nf )nf . (1)

See Fig. 2 for an illustration of this decomposition.
Generally speaking, one has TF = V er ⊕ Nor as
a direct sum of smooth fiber bundles over F . This
decomposition is preserved by the action of the repa-
rameterization group Γ, i.e. (δf ◦ γ)

T
= δfT ◦ γ and

(δf ◦ γ)
⊥

= δf⊥ ◦ γ (for a proof of this statement, see
Section 1 of the Supplementary Material).

The interest in splitting a perturbation δf into its
normal and vertical components comes from the fact
that the vertical component δfT ∈ V er(f) can only
lead to a shape-preserving transformations of the
surface f(S2). Thus, in the process of deforming one
shape into another (for instance along a geodesic
path) and quantifying shape differences between them
using geodesic lengths, we are not interested in mea-
suring deformations that are in V er(f). An important
novelty of this paper is that the eventual Riemannian
metric is imposed only on the δf⊥ components of the
perturbations, and that the δfT components have a
zero contribution to the metric.

3 GAUGE INVARIANCE AND RIEMANNIAN
METRIC

As mentioned earlier, another important goal of this
paper is in developing a framework that is gauge
invariant. To appreciate the utility of this framework,
we first provide a precise definition and then motivate
its use in shape analysis.

3.1 Defining Gauge Invariance
The gauge invariance relates to the parameterization
of surfaces along a path in F and, thus, the mathe-
matical objects of importance in this section are paths
Ψ : [0, 1] 7→ F . The set of such paths is the smooth
manifold P := C∞([0, 1],F).

An element of P can be thought of as a meta-
morphosis from the initial shape to the final shape.
For instance, Fig. 1 shows two elements in P as two
different deformations from a parameterized horse

to a parameterized cat. To have a picture in mind,
consider the upper path Ψ : t 7→ Ψ(t) in P : at
each time step t ∈ [0, 1], Ψ(t) is a parameterized
shape, i.e. a map from our model manifold S2 into
R3. The map Ψ(0) is the parameterization of our initial
parameterized shape chosen to be a horse and Ψ(1) is
the parameterization of our final parameterized shape
which, in this case, is a cat.

The definition of length of the path t 7→ Ψ(t)
requires specification of a metric on F . Given such
a metric ((·, ·)), one can define the length as:

L[Ψ] =

∫ 1

0

((Ψt(t),Ψt(t)))
1
2

Ψ(t)dt, (2)

where Ψt(t) = dΨ
dt (t) is the velocity vector of the

path t 7→ Ψ(t), i.e. an infinitesimal deformation of
the parameterized shape Ψ(t). The geodesic distance
between two shapes f1 and f2 is then defined by

d(f1, f2) = inf
Ψ:[0,1]→F|Ψ(0)=f1,Ψ(1)=f2

L[Ψ], (3)

where the infimum is taken over all paths connecting
shape f1 and shape f2.

We would like the length L[Ψ], for any path Ψ, to
match the length of the path t 7→ Ψ(t) ◦ γ(t), where
t 7→ γ(t) is any time-dependent reparameterization of
S2 :

L[Ψ] = L[Ψ̃], where Ψ̃(t) = Ψ(t) ◦ γ(t). (4)

More formally, set Γ = Diff+(S2) and define the group
G := C∞([0, 1],Γ), of time-dependant reparameteriza-
tions that acts on P according to

G × P −→ P
(t 7→ γ(t), t 7→ Ψ(t)) 7−→ (t 7→ Ψ(t) ◦ γ(t)).

The group G is called the gauge group, and one says
that G acts by gauge transformations. We are looking for
a framework where the length of a path is invariant
to gauge transformations, i.e. satisfies Eqn. (4). One
should distinguish these transformations from tempo-
ral reparameterizations of the path Ψ itself. A gauge
transformation changes spatial reparameterization of
surfaces, while preserving shapes, along the path,
while a temporal reparameterization changes the time
it takes to reach each shape along the path.

To build a gauge invariant framework, the basic
idea is as follows: take any Γ-invariant Riemannian
metric 〈〈·, ·〉〉 on the pre-shape space, and ignore the
direction tangent to the reparameterization orbit. (An
example of Γ-invariant Riemannian metric is the elas-
tic metric defined in Eqn. (7) as it is shown in Section
2 of the Supplementary Material). More precisely, let
〈〈·, ·〉〉 be a Riemannian metric on pre-shape space F
which is preserved by the action of the group of
reparameterizations Γ, that is:

〈〈δf1 ◦ γ, δf2 ◦ γ〉〉f◦γ = 〈〈δf1, δf2〉〉f , (5)
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for any f ∈ F , for any δf1, δf2 ∈ TfF and any γ ∈ Γ.
Given a Γ-invariant sub-bundle H of TF such that

H(f)⊕ V er(f) = TfF , (6)

denote by pH : TfF → H(f) the projection onto H(f)
with respect to the direct sum decomposition given
in Eqn. (6). This means that any element δf ∈ TfF

= +

Normal vector !eld Tangent vector !eldGiven vector !eld

H(f)

0

δf

PH(δf)

δf-PH(δf)

(a)

(b)

Fig. 2. a. Direct sum decomposition H(f) ⊕ V er(f) = TfF . b. Vector
field decomposition into tangent and normal directions

admits a unique decomposition into the sum of an
element pH(δf) in H(f) and an element in V er(f).
We illustrate this decomposition of vector spaces in
Fig. 2.a, while the particular case when H is the space
of normal vector fields Nor is shown in Fig. 2.b.

Proposition 3: The non-negative semi-definite inner
product on pre-shape space defined by

((δf1, δf2))f := 〈〈pH(δf1), pH(δf2)〉〉f

satisfies the gauge invariance condition given in
Eqn. (4) and induces a Riemannian metric on quotient
space S such that the quotient map is an isometry
between H(f) and the tangent space T[f ]S.

3.2 Distinction between Gauge Invariant Frame-
work and Quotient Riemannian Framework
In practice the subbundle H has to be chosen in order
to make the implementation easy. A natural choice
of subbundle H is the normal bundle Nor which
is preserved by the action of the reparameterization
group Γ (for a proof of this statement, see Section 1
of the Supplementary Material). We have used this
subbundle in the present paper. Another requirement
is that the chosen Riemannian metric has to be Γ-
invariant. This is the case for the elastic metric de-
fined in next section as we show in Section 2 of
the Supplementary Material. We will therefore apply
the idea of gauge invariance to the concrete example
of the elastic metric and the normal bundle Nor in
the remainder of this paper. It is worth noting that

the Riemannian metric on shape space obtained by
restricting a Riemannian metric on preshape space
to the normal bundle Nor differs in general from
the quotient Riemannian metric. In fact, the quotient
metric coincides with the restriction to the subbundle
Nor if and only if the Horizontal subbundle defined
by Hor(f) = Ker(dπ)⊥ is the normal bundle. This is
not the case for the elastic metric. We also remark that
the present gauge invariant framework has been used
implicitly in [11], Section 6, and [12], Section 11, in the
case where the horizontal bundle coincides with the
normal bundle.

3.3 Elastic Riemannian Metric

Next, we will choose a Riemmanian metric on F that
will enable a gauge-invariant analysis as stated above.
We will use the elastic Riemannian metric proposed
by Jermyn et al [9] and given in Eqns. (7) and (8).
However, before we use this metric we motivate its
use by making a connection between the space of
parameterized surfaces F and the space of metrics
on a domain, and we will provide some geometrical
interpretation of terms in that elastic metric. The space
of positive-definite Riemannian metrics on S2 will
be denoted by Met(S2). Consider a parameterized
surface f : S2 → R3. Denote by g = f∗ḡ the pull-
back of the Euclidian metric ḡ of R3 and by nf the
unit normal vector field (Gauss map) on S = f(S2).

The metric g and the normal vector field nf are
defined using derivatives of f according to:

g =
(
fu·fu fu·fv
fv·fu fv·fv

)
= Jac(f)T Jac(f),

= (E F
F G ) , Jac(f) = [fu fv], and

nf =
fu × fv
‖fu × fv‖

, ‖fu × fv‖ =
√

det g = |g| 12 ,

where fu and fv are the derivatives of f with respect
to the local coordinates (u, v) on the sphere. We
consider the following relationship between param-
eterized surfaces on one hand and the product space
of metrics and normals on the other :

Φ : F −→ Met(S2)× C∞(S2,S2)
f 7−→ (g, nf ).

It follows from the fundamental theorem of surface
theory (see Bonnet’s Theorem in [24] for the local
result, Theorem 3.8.8 in [25] or Theorem 2.8-1 in [26]
for the global result) that two parameterized surfaces
f1 and f2 having the same representation (g, n) differ
at most by a translation and rotation. This is an impor-
tant result, and implies that we can represent a surface
by its induced metric g = f∗ḡ and the unit normal
field n = nf , for the purpose of analyzing its shape.
We will not loose any information about the shape of
a surface f if we represent it by the pair (g, n). Let
δf1, δf2 denote two perturbations of a surface f , and
let (δg1, δn1) = Φ∗(δf1), (δg2, δn2) = Φ∗(δf2) denote



IEEE PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

the corresponding perturbations in (g, n) of f . The
expression for Φ∗ is given by:

δg = Jac(f)T Jac(δf) + (Jac(δf))T Jac(f)

=

(
2fu · δfu fu · δfv + fv · δfu

fu · δfv + fv · δfu 2fv · δfv

)
,

δn = −1

2
Tr(g−1δg)n+

1

|g| 12
(δfu × fv + fu × δfv) .

Then, by definition, the metric on F used in the
present paper measures these perturbations using the
expression

〈〈δf1, δf2〉〉f =

∫
S2
ds|g| 12

{
aTr(g−1δg1 g

−1δg2)

+
λ

2
Tr(g−1δg1) Tr(g−1δg2) +cδn1 · δn2} . (7)

The same metric (with a = 1) was introduced in [9],
Eqn. (2), and called “elastic metric”. A related metric
measuring the elastic deformation of the interiors of
shapes was used in [14] (see Eqn. (4) in [14]). The
metric given in Eqn. (7) can be decomposed into three
parts

〈〈δf1, δf2〉〉f =

∫
S2
ds|g| 12

{
aTr

(
(g−1δg1)0 (g−1δg2)0

)
+bTr(g−1δg1) Tr(g−1δg2) + cδn1 · δn2

}
, (8)

where b = λ+a
2 and where A0 is the traceless part

of a 2 × 2-matrix A defined as A0 = A − Tr(A)
2 I2×2.

The term multiplied by a measures area-preserving
changes in the induced metric g, the term multiplied
by b measures changes in the area of patches, and
the last term measures bending. Note that only the
relative weights b/a and c/a are meaningful.

Now we consider a key property of this metric
that relates to reparameterization of surfaces. Recall
that Γ := Diff+(S2) denotes the subgroup of Diff(S2)
consisting of diffeomorphisms γ which preserve the
orientation of S2, i.e. such that det Jac(γ) > 0. (Note
that for a diffeomorphism γ ∈ Diff(S2), since Jac(γ) is
invertible, the determinant of Jac(γ) never vanish. It
follows that either det Jac(γ)(s) > 0 for all s ∈ S2, or
det Jac(γ)(s) < 0 for all s ∈ S2.) It will be called the
group of orientation-preserving reparameterizations.
The group Γ = Diff+(S2) acts on Maps(S2,R3) by pre-
composition. That is, a surface f is reparameterized
by a γ ∈ Diff+(S2) according to f 7→ f ◦ γ−1. How
does the metric-normal representation (g, n) of that
surface change due to reparameterization? This rep-
resentation of the reparameterized surface is given by
(γ−1∗g, n ◦ γ−1). This representation is Γ-equivariant
for the actions introduced, i.e. if we reparameterize a
surface and then compute its (g, n) representation, or
if we compute (g, n) representation of a surface and
then reparameterize them according to (γ∗g, n◦γ), we
get the same result.

Proposition 4: The elastic metric is invariant to the
action of Diff+(S2).

Proof: Please refer to Section 2 of the Supplementary
Material.

Although this elastic metric has been introduced by
Jermyn et al. [9], it has not been used completely for
shape analysis of surfaces. Furthermore, we are going
to use it in a novel way – by restricting its evaluation
only to the normal vector fields on a surface (see next
section for a geometric expression of the resulting
metric on shape space).

Definition 2: For any two perturbations δf1, δf2 ∈
TfF define the pairing

((δf1, δf2))f =
〈〈
δf⊥1 , δf

⊥
2

〉〉
f
,

where δf⊥i is the normal component of δfi as defined
in Eqn. (1) and where 〈〈·, ·〉〉f is as given in Eqn. (8).

Remark 5: It follows from proposition 3, that ((·, ·))
satisfies the gauge-invariant condition L[Ψ] = L[Ψ̃],
where Ψ is any path of shapes, Ψ̃(t) = Ψ(t)◦γ(t) with
t 7→ γ(t) any time-dependant reparameterization, and
L[Ψ] is as specified in Eqn. (2).

3.4 Geometric expression of the elastic metric in
the normal direction
In this section, we will give some geometric inter-
pretation of the restriction of the elastic metric on
the space of normal vector fields introduced in the
previous section. Given a surface f parameterized by
(u, v), we will consider normal variations:

fε(u, v) = f(u, v) + εh(u, v)n(u, v),

where (u, v) ∈ S2, ε > 0, n(u, v) = nf (u, v) is the unit
normal to the surface f(S2) at f(u, v), and h : S2 →
R is a real function corresponding to the amplitude
of the normal vector field hnf . Let us compute the
first fundamental form gε of the surface parameterized
by fε, i.e. the metric induced on the parameterized
surface fε by the Euclidian metric of R3. We obtain

fε,u := ∂fε
∂u = fu + εhnu + εhun,

fε,v := ∂fε
∂v = fv + εhnv + εhvn.

(9)

Therefore

fε,u · fε,u = fu · fu + 2εhnu · fu + ε2
(
h2nu · nu + h2

u

)
,

where we have used that n · fu = 0 and nu · n = 0
since n · n = 1. Similarly

fε,v · fε,v = fv · fv + 2εhnv · fv + ε2
(
h2nv · nv + h2

v

)
,

and

fε,u·fε,v = fu·fv+εh (nu ·fv+fu ·nv)+ε2
(
h2nu ·nv+huhv

)
.

It follows that

gε = g + 2εh

(
nu · fu nu · fv
nv · fu nv · fv

)
+ε2h2

(
nu · nu nu · nv
nv · nu nv · nv

)
+ ε2

(
h2
u huhv

huhv h2
v

)
.
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Using the definition of the second fundamental form
II of the surface f(S2), we obtain

gε = g−2εhII+ε2h2IIg−1II+ε2
(
hu hv

)T (
hu hv

)
.

It follows that

g−1δg = −2hg−1II = −2hL, (10)

where L is called the shape operator. Recall that the
eigenvalues of L are the principal curvatures of the
surface f(S2), denoted by κ1 and κ2, which provide
local information about the surface: at a given point
on the surface, they measure the greatest and smallest
possible curvatures of a curve drawn on the surface
passing through this point. For instance, the vanishing
of the principal curvatures at one point of the surface
tells that the surface is flat near this point (i.e. looks
like a plane). The equality κ1 = κ2 = 1/R at one point
tells that the surface looks like a sphere of radius R
near this point. In other words, κ1 and κ2 are functions
on the surface that characterize how the surface is
locally curved.

On the other hand, the variation δn of the normal
vector field satisfies δn · n = 0 since the norm of n
remains constant. Moreover n·fu = n·fv = 0, therefore
δn · fu = −n · δfu and δn · fv = −n · δfv . By Eqn. (9),
δfu = hnu + hun, hence δn · fu = −hu and similarly
δn · fv = −hv . Consequently δn = αfu + βfv where
( αβ ) = −g−1

(
hu
hv

)
. It follows that for two normal

vector fields hn and kn with h, k ∈ C∞(S2,R), one
has

δn1 · δn2 = ( hu hv ) g−1
(
ku
kv

)
. (11)

Using Eqn. (10) and Eqn. (11) the elastic metric re-
stricted to these normal fields is given by :

((hn, kn))f =
∫
S2 ds|g|

1
2

{
hk
(
2a(κ1 − κ2)2

+4b(κ1 + κ2)2
)
+ c ( hu hv ) g−1

(
ku
kv

)}
.(12)

This is the form used to define and compute geodesic
paths in the shape space S in this paper. The dif-
ference κ1 − κ2 in the first term has been called the
normal deformation of the surface in [27]. The sum
κ1 + κ2 is twice the mean curvature which measures
variations of the area of local patches. These two terms
are related to the shape index idx = 2

πarctanκ1+κ2

κ1−κ2

[28]. The last term in Eqn. (12) measures variations of
the normal vector field, i.e. bending.

4 GEODESIC COMPUTATION

Finding geodesics between two surfaces f1 and f2 un-
der invariant Riemannian metrics is a difficult prob-
lem. In the present case, analytical solutions are not
known and we will use a path-straightening approach
to find geodesics. This method has been used for
instance in [9] and [7]. The basic idea here is to connect
f1 and f2 by any initial path and then iteratively
straighten it until it becomes a geodesic. The update is
performed using the gradient of an energy function.

As mentioned earlier, this method only achieves a
local minimum of the energy function, resulting in a
geodesic path that may not be the shortest geodesic.

4.1 Removing rotations and translations
Since we are only interested in shapes of objects and
not in the way objects are oriented or placed in the
ambient space R3, we have to remove the actions
of the rotation and translation groups. In theory, we
could deal with them as we do with the group of
reparameterizations. However, since SO(3) o R3 is
just a 6-dimensional Lie group in comparison to the
infinite-dimensional Fréchet Lie group Diff+(S2), it
is more efficient to do the following. First find the
best translation and rotation that align the two objects
to be compared, and then find the geodesic between
them. To center an object we use Algorithm 3 given in
Section 3 of the Supplementary Material to compute
the center of mass and then subtract it from the
surface coordinates.

There are many ways to find the best rotation that
align two shapes. In the case of elongated objects
(which was the case in our applications), one can do
the following. Given two shapes S1 and S2, find the
best ellipsoids E1 and E2 that approximate the cloud
of points defining S1 and S2 respectively, and the
unitary matrices U1 and U2 that map the reference
axes to the axes of the ellipsoids (with decreasing
lengths). The unitary matrices U1 and U2 are uniquely
defined if the approximating ellipsoids are triaxial (i.e.
the lengths of their principal axes are distinct). Then,
we can apply the product matrix U2U

−1
1 on the shape

S1 to rotationally align with S2. If one encounters
a 180 degree flip, apply instead U2RU

−1
2 , where R

is the 180 degree rotation around the z-axis. As an
example, Fig. 3 shows two hands that have different
orientations in space, the corresponding ellipsoids,
and the hands after rotation (with a gap to separates
them in order to facilitate visualisation).

Fig. 3. Rotational alignment: two hands before and after the alignment,
respectively at the left and at the right. Each hand is approximated by an
ellipsoid. The rotation used apply the axis of one ellipsoid to the axis of the
other.

To find the best ellipsoid that approximate a surface
S and the corresponding rotation U , one can use a
singular value decomposition of STS. However, in
the case where the surface is the boundary of a 3D-
volume, it is more accurate to compute the mean
of STS over the inscribed volume. It has also a
more physical meaning since the resulting ellipsoid
is equivariant with respect to affine transformations
(see Section 3 of the Supplementary Material where
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the effect of the rotations of the initial surface on the
ellipsoid is illustrated (Fig. 2) and where detailed Al-
gorithms are presented). Moreover, the estimation of
ellipsoid for an inscribed volume is more stable under
reparameterizations. To illustrate this robustness we
show in Fig. 4 different parameterizations of a horse
(middle row) obtained by pre-composing a given
parameterization by a diffeomorphism of the sphere
(bottom row) and the resulting ellipsoid. The diffeor-
morphims used in this experiment are (from left to
right) ϕ1 = identity, ϕ2 = rotation of − 3π/4 around
x-axis, ϕ3 = Möbius transformation that maps z ∈
S2 ' C ∪ {∞} to φ3(z) = 0.4z + 0.5, ϕ4 = rotation
of −π/2 around x-axis composed with ϕ3.

Fig. 4. Robustness of the approximating ellipsoid of a surface with respect
to reparameterizations.

In the case where the approximating ellipsoids are
not triaxial, one has to use additional information
about the surfaces to align them properly (for in-
stance, one can use four points on each surface). This
case was not implemented in the present paper.

4.2 Computations of the energy

Let Ψ : [0, 1]→ F . The energy of the path Ψ is defined
to be:

E(Ψ(t)) =

∫ 1

0

〈〈
Ψ⊥t ,Ψ

⊥
t

〉〉
Ψ(t)

dt =

∫ 1

0

((Ψt,Ψt))Ψ(t) dt,

where 〈〈·, ·〉〉 is the elastic metric given in Eqn. (8),
Ψ⊥t = (Ψt · n)n is the normal component of the
deformation, and ((·, ·)) is the inner product presented
in Eqn. (12). We will present several numerical strate-
gies for approximating this energy and will compare
their computational costs in Table 1. This evaluation
uses a linear path connecting two concentric spheres
of radius R1 = 1 and R2 = 2.5, with constants
a = 1, λ = 0.125 and c = 0 for defining energy
(see Fig. 5). The theoretical value of the energy in
this case is given by Eth = 32π(a + λ)(R2 − R1)2

and measures exclusively the cost of changing the
area of the spheres (the first and third term of the
metric given in Eqn. (8) vanish in this experiment).
We expect that improvement in accuracy comes at an
increased computational cost, and this is indeed the

case in the results presented in the Table. Note that
a time-dependent rotation is applied on the path of
spheres, but the values of the energy is independant
of this rotation.

Fig. 5. Path connecting two concentric spheres used for computations in
Table 1.

One way to compute the energy of a path Ψ of
shapes is to express it using the coefficients of the
first fundamental form. Consider the mapping Ψ :
S2 × R→ R3 and define

E = Ψu ·Ψu, F = Ψu ·Ψv, G = Ψv ·Ψv, (13)

and their time derivatives

Ė = 2Ψ⊥tu ·Ψu, Ḟ = Ψ⊥tu ·Ψv + Ψu ·Ψ⊥tv, Ġ = 2Ψ⊥tv ·Ψv,

as well as the unit normal field n := nf = fu×fv
‖fu×fv‖

and the vector field w = Ψ⊥tu ×Ψv + Ψu ×Ψ⊥tv. Then,
the energy of a path Ψ decomposes into the sum of
four terms: E(Ψ(t)) = E1 + E2 + E3 + E4, where

E1 = a
∫ 1

0

∫
S2(EG− F 2)−3/2B dudv dt

with B = G2Ė2+2(EG+F 2)Ḟ 2+E2Ġ2

−4FGĖḞ+2F 2ĖĠ−4EFḞ Ġ ,

E2 =
(
λ
2 + c

4

)∫ 1

0

∫
S2(EG−F

2)−
3
2(GĖ−2FḞ+EĠ)2du dv dt ,

E3 = −c
∫ 1

0

∫
S2(GĖ − 2FḞ + EĠ)(n · w) du dv dt ,

E4 = c
∫ 1

0

∫
S2(EG− F 2)−

1
2 (w · w) du dv dt .

In the implementation of these formulas, we can reach
singularities on the boundary of the integration do-
main, which we can ignore. In the example involving
two concentric spheres, the total energy computed by
this method is labelled EI&II in Table 1.

Another way to compute the energy is based on
Eqn. (12) that expresses the elastic metric in terms of
principal curvatures. In terms of the coefficients of the
first fundamental form given in Eqn. (13) and of the
second fundamental given by

e = Ψuu · n = −Ψu · nu,
f = Ψuv · n = −Ψu · nv = −Ψv · nu,
g = Ψvv · n = −Ψv · nv,

the Gauss curvature K and the mean curvature H
have the following expressions

K =
eg − f2

EG− F 2
, H =

1

2

eG+ gE − 2fF

EG− F 2
,

and the principal curvatures are given by

κ1 = H +
√
H2 −K, κ2 = H −

√
H2 −K.

Again, in the implementation of these formulas, we
can get singularities for curvatures on the boundary,
but we can ignore them in computing the integral
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given in Eqn. (12). This corresponds to cutting a small
disc on the parameterized surface around the images
of the north and south poles.

In the example of the two concentric spheres, the
theoretical values of κ1 and κ2 is the constant function
equal to 1/R where R = R1 + t(R2−R1) is the radius
of the sphere along the path interpolating linearly
the sphere of radius R1 = 1 to the sphere of radius
R2 = 2.5. The total energy computed by this method
is labelled Ek1k2 in Table 1.

Fig. 6. From left to right: A hand with the tangent plane and normal at the
tip of the index finger; 3-neighborhood of the tip of the index finger; tip of the
index finger after rotation; a closeup; approximating second order polynomial.

To improve the computation of the curvatures and
therefore also of the energy, we can use polynomial
approximations of the surfaces. This procedure, lead-
ing to the computation of the principal curvatures,
is illustrated in Fig. 6. To compute the principal
curvatures at a given point of a surface, e.g. at the
tip of the index finger of the hand depicted in Fig. 6,
we first compute the normal at this point by aver-
aging the normals of the facets having this point as
vertex. A tangent plane is then defined as the plane
orthogonal to the normal passing through the point
under consideration. A neighborhood of the point is
isolated from the surface (we use a 3-neighborhood,
see second drawing in Fig. 6). We then apply a rigid
transformation to center the point at the origin and
to align the tangent plan with the xy-plane (see third
drawing, and a closeup in the fourth drawing). After
that, we use Algorithm 5 given in Section 5 of the
Supplementary Material to compute the second order
polynomial P (x, y) = a1x

2+a2y
2+a3xy+a4x+a5y+a6,

which minimizes the sum
∑
i(zi − P (xi, yi))

2 over
the points of the centered and rotated neighborhood.
Then, the Gauss curvature at that point is given by
K = 4a1a2 − a2

3, the mean curvature by H = a1 + a2,
and the principal curvatures by κ1 = a1+a2+

√
((a1−

a2)2 + a2
3) and κ2 = a1 + a2 −

√
((a1 − a2)2 + a2

3).
In the example of the two concentric spheres, the
total energy computed using the principal curvatures
obtained by this method is labelled EP in Table 1.

In order to show that the energy function of a
path of shapes is independent of the way the objects
are parameterized, we replace the integration over
the domain of parameterization by the integration
over the triangulated surfaces. This means that we
approximate the area elements of the surfaces by the
area of triangles whose vertices are given by the
parameterization. In this way, the parameterisation

Fig. 7. A path of zero energy connecting a hand and the same hand with
another parameterization.

Energy, 104 points per object Elapsed time for 104 points
EI&II = 246.2854 0.221726 seconds
Ek1k2

= 249.1969 0.862376 seconds
EP = 255.8288 1.238354 seconds
E∆ = 255.9043 9.738431 seconds

Energy for 4× 104 points Elapsed time for 4× 104 points
EI&II = 249.1503 0.978828 seconds
Ek1k2

= 251.8494 3.45599 seconds
EP = 254.7646 4.906798 seconds
E∆ = 254.7832 39.011899 seconds

TABLE 1
Computation of the energy of a path connecting two concentric spheres (Fig.

5) using different methods, and time needed for the computations. The

theoretical value of the energy is Eth = 254.4690. Here R1 = 1, R2 = 2.5,

λ = 0.125 and c = 0.

of surfaces is only used to define the surfaces, but
play no role at all in the computation of the energy
function. In the example of the two concentric spheres,
the total energy computed by this method is labelled
E∆ and given in Table 1. In Fig. 7, a path connecting a
hand to the same hand but with a different parameter-
ization is shown. The energy of this path, computed
with the constants a = 1, λ = c = 0.125, reads
E∆ = 0.4824, hence is close to 0. Now returning to Fig.
1, the energy of the lower path from a horse to a cat
computed with the same constants is E∆ = 227.4049,
its length is L[Ψ] = 14.9099, whereas the upper
path (obtained from the lower path by applying a
different reparameterization at each time step) has
an energy equal to E∆ = 225.5249 and a length of
L[Ψ] = 14.8802. Note that in this example, the colors
refer to the Euclidean distance to the point on the
surface corresponding to the image of the north pole
of the sphere (cold colors for small distances versus
hot colors for large distances). In particular, the north
and south poles do not correspond in these two paths.

4.3 Orthonormal Basis of Deformations
In this section, we define bases for representing per-
turbations of a path of surfaces. These basis elements
form possible directions for use in path-straightening
in Section 4.4. The first basis we used is a variation
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of the one given in [7]. We start with a basis B1 =
{Y ml , 1 ≤ l ≤ N,−l ≤ m ≤ l} of spherical harmonics
of degree less than N , available in Matlab as function
SPHARM (see [29] for more information on spherical
harmonics). We make three copies of this basis of R-
valued functions in order to obtain a basis B2 of the
space L2(S2,R3) of R3-valued functions. Similar to
Xie et al. [30], we demonstrate reconstruction of some
surfaces using the resulting basis, as the degree of
the spherical harmonics grows, in the Supplementary
Material (Fig. 5).

Next, we want to construct a basis of perturba-
tions of a path connecting two parameterized surfaces
f1 and f2. In order to apply the path-straightening
method as described in Section 4.4, we want the
perturbations to vanish at t = 0 and t = 1 so that
f1 and f2 remain fixed. Therefore, we want a basis of
L2(S2 × [0, 1],R3) with elements that have this prop-
erty. To ensure this, each element of B2 is multiplied
by a basis element of L2([0, 1],R) of the form Pj(t) =
1
4 sin(πjt), 1 ≤ j ≤ J . Unfortunately a major limitation
of the resulting L2 basis is that slowly- and rapidly-
oscillating harmonics have comparable amplitudes. In
the implementation of the path-straightening method,
this implies that the updated path can go out of the
open set of immersions.

One possible way to counter this effect is to or-
thonormalize the L2-basis with respect to an H1-type
scalar product (i.e. that measures also the variation
of the derivatives). For this kind of scalar product,
an orthonormal basis consists of functions which
have controlled derivatives (hence can not oscillate to
much). This approach was also used in [7] where the
L2-basis is orthonormalized using the Gram-Schmidt
procedure with respect to the following scalar product

(B1, B2) =
∫ 1

0

∫
S2
(
B1 ·B2 +B1

t ·B2
t +B1

u ·B2
u

+B1
v ·B2

v +B1
t,u ·B2

t,u +B1
t,v ·B2

t,v

)
ds dt.

However, when increasing the degree of spherical
harmonics, the computational cost of generation of
an orthonormal basis using this scalar product is very
high. Therefore, we first orthonormalize the basis B2

with respect to the following inner product

(B1, B2) =
∫
S2
(
B1 ·B2 +B1

u ·B2
u +B1

v ·B2
v

)
ds, (14)

and then we multiply the resulting basis by the time-
dependant components Pj(t) = 1

4 sin(πjt), 1 ≤ j ≤ J .
The advantage of this method is that the Gram-
Schmidt procedure is applied to matrices of lower
dimensions (without the time dimension) and on a
smaller number of elements (by a factor J). The spatial
oscillations of the resulting basis elements are well
controlled by the presence of the spatial derivatives
Bu and Bv in the inner product given in Eqn. (14).

4.4 Path-straightening method
The path-straightening method is used to find criti-
cal points of the energy functional. Starting with an

arbitrary path, the method consists of iteratively de-
forming (or “straightening”) the path in the opposite
direction of the gradient, until the path converges
to a geodesic. The gradient of the path energy is
approximated using a basis B of possible perturba-
tions of a path of surfaces Ψ, as constructed in the
previous section. We first compute the directional
derivatives ∇EΨ(b) = d

dε (E(Ψ+εb))|ε=0 where b ranges
over B. This is done by fixing a small ε1 and ap-
proximating the directional derivative by ∇EΨ(b) '
(E(Ψ + ε1b)−E(Ψ))ε1

−1. Using the finite orthonormal
basis B, we obtain a numerical approximation of
the gradient: ∇EΨ =

∑
b∈B∇EΨ(b) b. In particular,

the norm of the gradient is approximately given by
‖∇EΨ‖2 =

∑
b∈B∇EΨ(b)2. The update of the path is

done by replacing Ψ by Ψ − ε2∇EΨ, where ε2 is a
small parameter that has to be ajusted empirically. The
method is detailed in Algorithm 1 below.

Input:
1) A path Ψ between two parameterized surfaces f1 and f2,
2) a basis of perturbation B.

Output:
1) The minimal energy needed to deform f1 into f2 given by the value

of the cost function E,
2) the geodesic path between f1 and f2.

Set ‖∇E‖2 = 1.
while ‖∇E‖2 > 10−3 do

2- Compute the energy E of the path Ψ according to Eqn.(8) or
Eqn. (12).
3- Set Ψupd = 0 and ‖∇E‖2 = 0.
for i← 1 to size(B) do

4- Add a perturbation to the current path Ψ: define
Ψ(i) = Ψ + ε1 B(i), where B(i) is the element of the
perturbation basis B of index i and ε1 > 0 is small.
5- Compute the energy E(i) of the perturbed path Ψ(i).
6- Compute the gradient of energy ∇E(i) in the direction
B(i) using the approximation ∇E(i) ∼ E(i)−E

ε1
.

7- Compute the updating path:
Ψupd ← Ψupd +∇E(i) · B(i).
8- Compute the squarred norm of the gradient of energy at
path Ψ: ‖∇E‖2 ← ‖∇E‖2 + (∇E(i))2.

end
10- Update the path: Ψ = Ψ− ε2Ψupd

end
Algorithm 1: Path-straightening method.

5 EXPERIMENTAL RESULTS

The 3D realistic models used in our experiments
are part of the TOSCA [31] dataset. Their spherical
parameterizations were initially implemented in [32].

5.1 Examples of geodesics obtained by path-
straightening
First we apply the path-straightening method to the
case where the surfaces at the extremes of the initial
path have the same shape, but different parameteri-
zations. More precisely, we consider the special case
where Ψ0(0) = f1, Ψ0(1) = f1 ◦ γ for some diffeo-
morphism γ and where we initialize the path with
piecewise linear interpolation to a different surface
f3 in the middle of the path, i.e. Ψ0( t2 ) = f3. This
situation is illustrated in Fig. 8. The proposed gauge-
invariant approach is expected to reach a path with
constant shape as a geodesic, despite the different
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shapes appearing in the initial path and the different
parameterization of shapes at the end points of the
path (to emphasize the differences in parameteriza-
tion, zoom-ins of these surfaces are also shown). Once
we have the geodesic path Ψ between the given
surfaces, the distance in the shape space between f1

and f1 ◦ γ, dΨ(f1, f2), is the length of Ψ as specified
in Eqn. (2). As expected, the resulting geodesic path,
shown in Fig. 8, is constant with the same shape
as the either end, and with dΨ(f1, f2) = 0. Using
path-straightening, we obtain a 99.28% decrease in the
energy function from the initial path to the final path.

In Fig. 9 we consider more challenging shapes.
The top two rows corresponds to the case where we
have Ψ0(0) = f1, Ψ0(1) = f1 (a cat) and where we
initialize the path with piecewise linear interpolation
to a horse in the middle of the path. The upper
row shows the initial path and the second row the
geodesic path. We can see that the geodesic path has
a constant shape throughout, as expected. We also
plot the evolution of the path energy on the right
during path-straightening. We can see that the energy
decreases until it reaches a relatively small value; the
theoretical minimum is, of course, zero for a contant
path. In the last two rows of Fig. 9, we consider the
case of two hands. We initialize the path with linear
interpolation (third row in Fig. 9), and the resulting
path is shown in the last rows of Fig. 9. The energy
evolution is shown on the right and we can see the
energy decreasing until it reaches a constant value;
thus, the final path is a geodesic. It can be seen that the
deformation along the geodesic path is more natural
than the original path.

Inital path

Geodesic path

Energy

Fig. 8. Illustration of initial path (upper row) and geodesic path in shape
space (middle row). The energy is reported in the buttom row. The surfaces at
the end points of the path have different parameterizations.

5.2 Classification of 3D shapes

As mentioned earlier, the geodesic paths provide us
with tools for comparing, and deforming parameter-
ized surfaces. We suggest a comparison of shapes
of 3D objects using geodesic distances between their
boundary surfaces in the shape space. This section
presents a specific application to illustrate that idea.
In this section, we study several shapes belonging to
four classes: horses, hands, cats and centaurs.

We begin by computing the pairwise geodesic dis-
tances between corresponding 3D surfaces. The dis-
tance matrix and the classification dendrogram are
shown in Fig. 10. In the distance matrix, we can
easily distinguish four classes corresponding to four
blue boxes. Actually the cold colors in the illustrated
matrix correspond to small values of distances versus
hot colors that correspond to greater distances. The
clustering obtained using the dendrogram (command
in matlab) can be interpreted by slicing the top of the
dendrogram by a horizontal line to split the shapes
into the desired number of classes, and then sliding
the horizontal line to the bottom in order to refine
the classification. The coarsest classification results by
slicing the dendrogram into two classes (by a hori-
zontal line close to the top), the shapes 4, 5 and 6 (the
hands) forms a first class and the remaining (horses,
cats and centaurs) are grouped together as a second
class. The next level in classification distinguishes the
shapes 1, 2, and 3 (the horses) and 12, 13 (the centaurs)
from the shapes 7, 8, 9, 10, 11 (the cats). The finest
level separates the horses and the centaurs in different
classes and results in four classes. Thus, we argue that
the proposed framework provides a powerful tool for
shape classification.

Fig. 10. Classification performance; left: the distance matrix. right: the
dendrogram.

5.3 The effect of number of basis elements
In this section, we study the effect of the number
of basis elements, used in path-straightening, on the
resulting geodesic path. Given two parameterized
surfaces f1 and f2, we again initialize the path with
the linear interpolation to a different surface f3 in the
middle of the path. This initial path is shown in the
upper row of Fig 11. Then, we compute the geodesic
path using different number of basis elements. We
show the geodesic paths that use, respectively, 52, 432
and 1728 basis elements. We can see that the larger
the number of basis elements, the better the final
result is. We also provide the trade-off between the
number of basis elements and the minimum energy
value obtained. The trade-off confirms our assertion.
At the bottom of the figure, we show the geodesic
path obtained when the path-straightening Algorithm
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Fig. 9. The top row shows an initial path formed by linear interpolation between a cat to a horse and back to the cat. The second row illustrates the geodesic
obtained after 800 iterations of path-straightening. The corresponding evolution of the energy is shown on the right. Similarly, the third row shows a linear path
between two hands with bad correspondence and the last row shows the final geodesic, with the corresponding energy is shown on the right.

is initialized with the linear interpolation between f1

and f2. This path is also calculated using the number
of basis elements corresponding to the lowest energy.
This path can be seen as ground truth to visually in-
terpret the previous geodesics (with more complicated
initial conditions and fewer basis elements).

Fig. 11. The effect of the number of basis elements, (1) initial path, (2)
geodesic path using 52 basis elements, (3) geodesic path using 432 basis
elements, (4) geodesic path using 1728 basis elements, (5) geodesic path
using 1728 basis elements after linear interpolation initialization.

6 CONCLUSION
In this paper we have proposed a novel Riemannian
framework for computing geodesic paths between

shapes of parameterized surfaces. These geodesics are
invariant to rigid motion, scaling and most impor-
tantly reparameterization of individual surfaces. The
novelty lies in defining a Riemannian metric directly
on the quotient (shape) space, rather than inheriting
it from pre-shape space, and in using it to formulate
a path energy that measures only the normal com-
ponents of velocities along the path. The geodesic
computation is based on a path-straightening tech-
nique that iteratively corrects paths between surfaces
until geodesics are achieved. We have presented some
examples of geodesics between surfaces in shape
spaces and utilized the distances between surfaces
for classification of some 3D shapes. However, the
computational costs of our programs are deemed high
and convergence should be accelerated in order to
be able to apply this framework in realistic practical
scenarios such as, for instance, human body action
recognition.
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